vivaceailab commited on
Commit
922c574
Β·
verified Β·
1 Parent(s): fef2177

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +201 -0
app.py CHANGED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import random
4
+
5
+ import spaces
6
+ from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler
7
+ import torch
8
+
9
+ device = "cuda" if torch.cuda.is_available() else "cpu"
10
+ model_repo_id = "tensorart/stable-diffusion-3.5-large-TurboX"
11
+
12
+ if torch.cuda.is_available():
13
+ torch_dtype = torch.float16
14
+ else:
15
+ torch_dtype = torch.float32
16
+
17
+ pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
+
19
+ pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(model_repo_id, subfolder="scheduler", shift=5)
20
+
21
+ pipe = pipe.to(device)
22
+
23
+ MAX_SEED = np.iinfo(np.int32).max
24
+ MAX_IMAGE_SIZE = 1024
25
+
26
+ @spaces.GPU(duration=65)
27
+ def infer(
28
+ prompt,
29
+ negative_prompt="",
30
+ seed=42,
31
+ randomize_seed=False,
32
+ width=1024,
33
+ height=1024,
34
+ guidance_scale=1.5,
35
+ num_inference_steps=8,
36
+ progress=gr.Progress(track_tqdm=True),
37
+ ):
38
+ if randomize_seed:
39
+ seed = random.randint(0, MAX_SEED)
40
+
41
+ generator = torch.Generator().manual_seed(seed)
42
+
43
+ image = pipe(
44
+ prompt=prompt,
45
+ negative_prompt=negative_prompt,
46
+ guidance_scale=guidance_scale,
47
+ num_inference_steps=num_inference_steps,
48
+ width=width,
49
+ height=height,
50
+ generator=generator,
51
+ ).images[0]
52
+
53
+ return image, seed
54
+
55
+
56
+ examples = [
57
+ "A capybara wearing a suit holding a sign that reads Hello World",
58
+ "A serene mountain lake at sunset with cherry blossoms floating on the water",
59
+ "A magical crystal dragon with iridescent scales in a glowing forest",
60
+ "A Victorian steampunk teapot with intricate brass gears and rose gold accents",
61
+ "A futuristic neon cityscape with flying cars and holographic billboards",
62
+ "A red panda painter creating a masterpiece with tiny paws in an art studio",
63
+ ]
64
+
65
+ css = """
66
+ body {
67
+ background: linear-gradient(135deg, #f9e2e6 0%, #e8f3fc 50%, #e2f9f2 100%);
68
+ background-attachment: fixed;
69
+ min-height: 100vh;
70
+ }
71
+
72
+ #col-container {
73
+ margin: 0 auto;
74
+ max-width: 640px;
75
+ background-color: rgba(255, 255, 255, 0.85);
76
+ border-radius: 16px;
77
+ box-shadow: 0 8px 16px rgba(0, 0, 0, 0.1);
78
+ padding: 24px;
79
+ backdrop-filter: blur(10px);
80
+ }
81
+
82
+ .gradio-container {
83
+ background: transparent !important;
84
+ }
85
+
86
+ .gr-button-primary {
87
+ background: linear-gradient(90deg, #6b9dfc, #8c6bfc) !important;
88
+ border: none !important;
89
+ transition: all 0.3s ease;
90
+ }
91
+
92
+ .gr-button-primary:hover {
93
+ transform: translateY(-2px);
94
+ box-shadow: 0 5px 15px rgba(108, 99, 255, 0.3);
95
+ }
96
+
97
+ .gr-form {
98
+ border-radius: 12px;
99
+ background-color: rgba(255, 255, 255, 0.7);
100
+ }
101
+
102
+ .gr-accordion {
103
+ border-radius: 12px;
104
+ overflow: hidden;
105
+ }
106
+
107
+ h1 {
108
+ background: linear-gradient(90deg, #6b9dfc, #8c6bfc);
109
+ -webkit-background-clip: text;
110
+ -webkit-text-fill-color: transparent;
111
+ font-weight: 800;
112
+ }
113
+ """
114
+
115
+ with gr.Blocks(theme="apriel", css=css) as demo:
116
+ with gr.Column(elem_id="col-container"):
117
+ gr.Markdown(" # TensorArt Stable Diffusion 3.5 Large TurboX")
118
+ gr.Markdown("[8-step distilled turbo model](https://huggingface.co/tensorart/stable-diffusion-3.5-large-TurboX)")
119
+ with gr.Row():
120
+ prompt = gr.Text(
121
+ label="Prompt",
122
+ show_label=False,
123
+ max_lines=1,
124
+ placeholder="Enter your prompt",
125
+ container=False,
126
+ )
127
+
128
+ run_button = gr.Button("Run", scale=0, variant="primary")
129
+
130
+ result = gr.Image(label="Result", show_label=False)
131
+
132
+ with gr.Accordion("Advanced Settings", open=False):
133
+ negative_prompt = gr.Text(
134
+ label="Negative prompt",
135
+ max_lines=1,
136
+ placeholder="Enter a negative prompt",
137
+ )
138
+
139
+ seed = gr.Slider(
140
+ label="Seed",
141
+ minimum=0,
142
+ maximum=MAX_SEED,
143
+ step=1,
144
+ value=0,
145
+ )
146
+
147
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
148
+
149
+ with gr.Row():
150
+ width = gr.Slider(
151
+ label="Width",
152
+ minimum=512,
153
+ maximum=MAX_IMAGE_SIZE,
154
+ step=32,
155
+ value=1024,
156
+ )
157
+
158
+ height = gr.Slider(
159
+ label="Height",
160
+ minimum=512,
161
+ maximum=MAX_IMAGE_SIZE,
162
+ step=32,
163
+ value=1024,
164
+ )
165
+
166
+ with gr.Row():
167
+ guidance_scale = gr.Slider(
168
+ label="Guidance scale",
169
+ minimum=0.0,
170
+ maximum=7.5,
171
+ step=0.1,
172
+ value=1.5,
173
+ )
174
+
175
+ num_inference_steps = gr.Slider(
176
+ label="Number of inference steps",
177
+ minimum=1,
178
+ maximum=50,
179
+ step=1,
180
+ value=8,
181
+ )
182
+
183
+ gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=True, cache_mode="lazy")
184
+ gr.on(
185
+ triggers=[run_button.click, prompt.submit],
186
+ fn=infer,
187
+ inputs=[
188
+ prompt,
189
+ negative_prompt,
190
+ seed,
191
+ randomize_seed,
192
+ width,
193
+ height,
194
+ guidance_scale,
195
+ num_inference_steps,
196
+ ],
197
+ outputs=[result, seed],
198
+ )
199
+
200
+ if __name__ == "__main__":
201
+ demo.launch(mcp_server=True)