vittore commited on
Commit
5736950
·
1 Parent(s): 8852df7
Files changed (1) hide show
  1. app.py +0 -242
app.py CHANGED
@@ -21,245 +21,3 @@ from share_btn import community_icon_html, loading_icon_html, share_js
21
  import user_history
22
  from illusion_style import css
23
 
24
- from transformers.utils.hub import move_cache
25
-
26
- move_cache()
27
-
28
- BASE_MODEL = "SG161222/Realistic_Vision_V5.1_noVAE"
29
-
30
- # Initialize both pipelines
31
- vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)
32
- #init_pipe = DiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V5.1_noVAE", torch_dtype=torch.float16)
33
- controlnet = ControlNetModel.from_pretrained("monster-labs/control_v1p_sd15_qrcode_monster", torch_dtype=torch.float16)#, torch_dtype=torch.float16)
34
- main_pipe = StableDiffusionControlNetPipeline.from_pretrained(
35
- BASE_MODEL,
36
- controlnet=controlnet,
37
- vae=vae,
38
- safety_checker=None,
39
- torch_dtype=torch.float16,
40
- ).to("cuda")
41
-
42
- #main_pipe.unet = torch.compile(main_pipe.unet, mode="reduce-overhead", fullgraph=True)
43
- #main_pipe.unet.to(memory_format=torch.channels_last)
44
- #main_pipe.unet = torch.compile(main_pipe.unet, mode="reduce-overhead", fullgraph=True)
45
- #model_id = "stabilityai/sd-x2-latent-upscaler"
46
- image_pipe = StableDiffusionControlNetImg2ImgPipeline(**main_pipe.components)
47
-
48
-
49
- #image_pipe.unet = torch.compile(image_pipe.unet, mode="reduce-overhead", fullgraph=True)
50
- #upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16)
51
- #upscaler.to("cuda")
52
-
53
-
54
- # Sampler map
55
- SAMPLER_MAP = {
56
- "DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
57
- "Euler": lambda config: EulerDiscreteScheduler.from_config(config),
58
- }
59
-
60
- def center_crop_resize(img, output_size=(512, 512)):
61
- width, height = img.size
62
-
63
- # Calculate dimensions to crop to the center
64
- new_dimension = min(width, height)
65
- left = (width - new_dimension)/2
66
- top = (height - new_dimension)/2
67
- right = (width + new_dimension)/2
68
- bottom = (height + new_dimension)/2
69
-
70
- # Crop and resize
71
- img = img.crop((left, top, right, bottom))
72
- img = img.resize(output_size)
73
-
74
- return img
75
-
76
- def common_upscale(samples, width, height, upscale_method, crop=False):
77
- if crop == "center":
78
- old_width = samples.shape[3]
79
- old_height = samples.shape[2]
80
- old_aspect = old_width / old_height
81
- new_aspect = width / height
82
- x = 0
83
- y = 0
84
- if old_aspect > new_aspect:
85
- x = round((old_width - old_width * (new_aspect / old_aspect)) / 2)
86
- elif old_aspect < new_aspect:
87
- y = round((old_height - old_height * (old_aspect / new_aspect)) / 2)
88
- s = samples[:,:,y:old_height-y,x:old_width-x]
89
- else:
90
- s = samples
91
-
92
- return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method)
93
-
94
- def upscale(samples, upscale_method, scale_by):
95
- #s = samples.copy()
96
- width = round(samples["images"].shape[3] * scale_by)
97
- height = round(samples["images"].shape[2] * scale_by)
98
- s = common_upscale(samples["images"], width, height, upscale_method, "disabled")
99
- return (s)
100
-
101
- def check_inputs(prompt: str, control_image: Image.Image):
102
- if control_image is None:
103
- raise gr.Error("Please select or upload an Input Illusion")
104
- if prompt is None or prompt == "":
105
- raise gr.Error("Prompt is required")
106
-
107
- def convert_to_pil(base64_image):
108
- pil_image = Image.open(base64_image)
109
- return pil_image
110
-
111
- def convert_to_base64(pil_image):
112
- with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as temp_file:
113
- image.save(temp_file.name)
114
- return temp_file.name
115
-
116
- # Inference function
117
- @spaces.GPU
118
- def inference(
119
- control_image: Image.Image,
120
- prompt: str,
121
- negative_prompt: str,
122
- guidance_scale: float = 8.0,
123
- controlnet_conditioning_scale: float = 1,
124
- control_guidance_start: float = 1,
125
- control_guidance_end: float = 1,
126
- upscaler_strength: float = 0.5,
127
- seed: int = -1,
128
- sampler = "DPM++ Karras SDE",
129
- progress = gr.Progress(track_tqdm=True),
130
- profile: gr.OAuthProfile | None = None,
131
- ):
132
- start_time = time.time()
133
- start_time_struct = time.localtime(start_time)
134
- start_time_formatted = time.strftime("%H:%M:%S", start_time_struct)
135
- print(f"Inference started at {start_time_formatted}")
136
-
137
- # Generate the initial image
138
- #init_image = init_pipe(prompt).images[0]
139
-
140
- # Rest of your existing code
141
- control_image_small = center_crop_resize(control_image)
142
- control_image_large = center_crop_resize(control_image, (1024, 1024))
143
-
144
- main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config)
145
- my_seed = random.randint(0, 2**32 - 1) if seed == -1 else seed
146
- generator = torch.Generator(device="cuda").manual_seed(my_seed)
147
-
148
- out = main_pipe(
149
- prompt=prompt,
150
- negative_prompt=negative_prompt,
151
- image=control_image_small,
152
- guidance_scale=float(guidance_scale),
153
- controlnet_conditioning_scale=float(controlnet_conditioning_scale),
154
- generator=generator,
155
- control_guidance_start=float(control_guidance_start),
156
- control_guidance_end=float(control_guidance_end),
157
- num_inference_steps=15,
158
- output_type="latent"
159
- )
160
- upscaled_latents = upscale(out, "nearest-exact", 2)
161
- out_image = image_pipe(
162
- prompt=prompt,
163
- negative_prompt=negative_prompt,
164
- control_image=control_image_large,
165
- image=upscaled_latents,
166
- guidance_scale=float(guidance_scale),
167
- generator=generator,
168
- num_inference_steps=20,
169
- strength=upscaler_strength,
170
- control_guidance_start=float(control_guidance_start),
171
- control_guidance_end=float(control_guidance_end),
172
- controlnet_conditioning_scale=float(controlnet_conditioning_scale)
173
- )
174
- end_time = time.time()
175
- end_time_struct = time.localtime(end_time)
176
- end_time_formatted = time.strftime("%H:%M:%S", end_time_struct)
177
- print(f"Inference ended at {end_time_formatted}, taking {end_time-start_time}s")
178
-
179
- # Save image + metadata
180
- user_history.save_image(
181
- label=prompt,
182
- image=out_image["images"][0],
183
- profile=profile,
184
- metadata={
185
- "prompt": prompt,
186
- "negative_prompt": negative_prompt,
187
- "guidance_scale": guidance_scale,
188
- "controlnet_conditioning_scale": controlnet_conditioning_scale,
189
- "control_guidance_start": control_guidance_start,
190
- "control_guidance_end": control_guidance_end,
191
- "upscaler_strength": upscaler_strength,
192
- "seed": seed,
193
- "sampler": sampler,
194
- },
195
- )
196
-
197
- return out_image["images"][0], gr.update(visible=True), gr.update(visible=True), my_seed
198
-
199
- with gr.Blocks() as app:
200
- gr.Markdown(
201
- '''
202
- <center><h1>Illusion Diffusion HQ 🌀</h1></span>
203
- <span font-size:16px;">Generate stunning high quality illusion artwork with Stable Diffusion</span>
204
- </center>
205
-
206
- This project works by using
207
- [Monster Labs QR Control Net](https://huggingface.co/monster-labs/control_v1p_sd15_qrcode_monster) and [multimodalart](https://twitter.com/multimodalart)
208
- Given a prompt and your pattern, we use a QR code conditioned controlnet to create a stunning illusion! Credit to: [MrUgleh](https://twitter.com/MrUgleh) for discovering the workflow :)
209
- '''
210
- )
211
- state_img_input = gr.State()
212
- state_img_output = gr.State()
213
- with gr.Row():
214
- with gr.Column():
215
- control_image = gr.Image(label="Input Illusion", type="pil", elem_id="control_image")
216
- controlnet_conditioning_scale = gr.Slider(minimum=0.0, maximum=5.0, step=0.01, value=0.8, label="Illusion strength", elem_id="illusion_strength", info="ControlNet conditioning scale")
217
- gr.Examples(examples=["checkers.png", "checkers_mid.jpg", "pattern.png", "ultra_checkers.png", "spiral.jpeg", "funky.jpeg" ], inputs=control_image)
218
- prompt = gr.Textbox(label="Prompt", elem_id="prompt", info="Type what you want to generate", placeholder="Medieval village scene with busy streets and castle in the distance")
219
- negative_prompt = gr.Textbox(label="Negative Prompt", info="Type what you don't want to see", value="low quality", elem_id="negative_prompt")
220
- with gr.Accordion(label="Advanced Options", open=False):
221
- guidance_scale = gr.Slider(minimum=0.0, maximum=50.0, step=0.25, value=7.5, label="Guidance Scale")
222
- sampler = gr.Dropdown(choices=list(SAMPLER_MAP.keys()), value="Euler")
223
- control_start = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0, label="Start of ControlNet")
224
- control_end = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1, label="End of ControlNet")
225
- strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1, label="Strength of the upscaler")
226
- seed = gr.Slider(minimum=-1, maximum=9999999999, step=1, value=-1, label="Seed", info="-1 means random seed")
227
- used_seed = gr.Number(label="Last seed used",interactive=False)
228
- run_btn = gr.Button("Run")
229
- with gr.Column():
230
- result_image = gr.Image(label="Illusion Diffusion Output", interactive=False, elem_id="output")
231
- with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
232
- community_icon = gr.HTML(community_icon_html)
233
- loading_icon = gr.HTML(loading_icon_html)
234
- share_button = gr.Button("Share to community", elem_id="share-btn")
235
-
236
- prompt.submit(
237
- check_inputs,
238
- inputs=[prompt, control_image],
239
- queue=False
240
- ).success(
241
- inference,
242
- inputs=[control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, control_start, control_end, strength, seed, sampler],
243
- outputs=[result_image, result_image, share_group, used_seed])
244
-
245
- run_btn.click(
246
- check_inputs,
247
- inputs=[prompt, control_image],
248
- queue=False
249
- ).success(
250
- inference,
251
- inputs=[control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, control_start, control_end, strength, seed, sampler],
252
- outputs=[result_image, result_image, share_group, used_seed])
253
-
254
- share_button.click(None, [], [], js=share_js)
255
-
256
- with gr.Blocks(css=css) as app_with_history:
257
- with gr.Tab("Demo"):
258
- app.render()
259
- with gr.Tab("Past generations"):
260
- user_history.render()
261
-
262
- app_with_history.queue(max_size=20,api_open=False )
263
-
264
- if __name__ == "__main__":
265
- app_with_history.launch(max_threads=400)
 
21
  import user_history
22
  from illusion_style import css
23