Spaces:
Sleeping
Sleeping
Vivien
commited on
Commit
·
5185219
1
Parent(s):
dab4ce7
Add possibility to compose queries and use images as queries
Browse files- app.py +75 -27
- requirements.txt +1 -0
app.py
CHANGED
|
@@ -1,8 +1,9 @@
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd, numpy as np
|
| 3 |
-
from html import escape
|
| 4 |
-
import os
|
| 5 |
from transformers import CLIPProcessor, CLIPModel
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
@st.cache(
|
|
@@ -19,47 +20,72 @@ def load():
|
|
| 19 |
df = {0: pd.read_csv("data.csv"), 1: pd.read_csv("data2.csv")}
|
| 20 |
embeddings = {0: np.load("embeddings.npy"), 1: np.load("embeddings2.npy")}
|
| 21 |
for k in [0, 1]:
|
| 22 |
-
embeddings[k] = np.
|
| 23 |
-
|
|
|
|
| 24 |
)
|
| 25 |
return model, processor, df, embeddings
|
| 26 |
|
| 27 |
|
| 28 |
model, processor, df, embeddings = load()
|
| 29 |
-
|
| 30 |
source = {0: "\nSource: Unsplash", 1: "\nSource: The Movie Database (TMDB)"}
|
| 31 |
|
| 32 |
|
| 33 |
-
def get_html(url_list, height=200):
|
| 34 |
-
html = "<div style='margin-top: 20px; max-width: 1200px; display: flex; flex-wrap: wrap; justify-content: space-evenly'>"
|
| 35 |
-
for url, title, link in url_list:
|
| 36 |
-
html2 = f"<img title='{escape(title)}' style='height: {height}px; margin: 5px' src='{escape(url)}'>"
|
| 37 |
-
if len(link) > 0:
|
| 38 |
-
html2 = f"<a href='{escape(link)}' target='_blank'>" + html2 + "</a>"
|
| 39 |
-
html = html + html2
|
| 40 |
-
html += "</div>"
|
| 41 |
-
return html
|
| 42 |
-
|
| 43 |
-
|
| 44 |
def compute_text_embeddings(list_of_strings):
|
| 45 |
inputs = processor(text=list_of_strings, return_tensors="pt", padding=True)
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
st.cache(show_spinner=False)
|
| 50 |
|
| 51 |
|
| 52 |
def image_search(query, corpus, n_results=24):
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
k = 0 if corpus == "Unsplash" else 1
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
return [
|
| 59 |
(
|
| 60 |
df[k].iloc[i]["path"],
|
| 61 |
df[k].iloc[i]["tooltip"] + source[k],
|
| 62 |
-
|
| 63 |
)
|
| 64 |
for i in results
|
| 65 |
]
|
|
@@ -112,11 +138,33 @@ def main():
|
|
| 112 |
)
|
| 113 |
st.sidebar.markdown(description)
|
| 114 |
_, c, _ = st.columns((1, 3, 1))
|
| 115 |
-
|
|
|
|
|
|
|
|
|
|
| 116 |
corpus = st.radio("", ["Unsplash", "Movies"])
|
| 117 |
if len(query) > 0:
|
| 118 |
results = image_search(query, corpus)
|
| 119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
|
| 122 |
if __name__ == "__main__":
|
|
|
|
| 1 |
+
from html import escape
|
| 2 |
+
import re
|
| 3 |
import streamlit as st
|
| 4 |
import pandas as pd, numpy as np
|
|
|
|
|
|
|
| 5 |
from transformers import CLIPProcessor, CLIPModel
|
| 6 |
+
from st_clickable_images import clickable_images
|
| 7 |
|
| 8 |
|
| 9 |
@st.cache(
|
|
|
|
| 20 |
df = {0: pd.read_csv("data.csv"), 1: pd.read_csv("data2.csv")}
|
| 21 |
embeddings = {0: np.load("embeddings.npy"), 1: np.load("embeddings2.npy")}
|
| 22 |
for k in [0, 1]:
|
| 23 |
+
embeddings[k] = embeddings[k] - np.mean(embeddings[k], axis=0)
|
| 24 |
+
embeddings[k] = embeddings[k] / np.linalg.norm(
|
| 25 |
+
embeddings[k], axis=1, keepdims=True
|
| 26 |
)
|
| 27 |
return model, processor, df, embeddings
|
| 28 |
|
| 29 |
|
| 30 |
model, processor, df, embeddings = load()
|
|
|
|
| 31 |
source = {0: "\nSource: Unsplash", 1: "\nSource: The Movie Database (TMDB)"}
|
| 32 |
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
def compute_text_embeddings(list_of_strings):
|
| 35 |
inputs = processor(text=list_of_strings, return_tensors="pt", padding=True)
|
| 36 |
+
result = model.get_text_features(**inputs).detach().numpy()
|
| 37 |
+
return result / np.linalg.norm(result, axis=1, keepdims=True)
|
|
|
|
|
|
|
| 38 |
|
| 39 |
|
| 40 |
def image_search(query, corpus, n_results=24):
|
| 41 |
+
positive_embeddings = None
|
| 42 |
+
|
| 43 |
+
def concatenate_embeddings(e1, e2):
|
| 44 |
+
if e1 is None:
|
| 45 |
+
return e2
|
| 46 |
+
else:
|
| 47 |
+
return np.concatenate((e1, e2), axis=0)
|
| 48 |
+
|
| 49 |
+
splitted_query = query.split("/")
|
| 50 |
+
|
| 51 |
+
positive_queries = splitted_query[0].split(";")
|
| 52 |
+
for positive_query in positive_queries:
|
| 53 |
+
match = re.match(r"\[(Movies|Unsplash):(\d{1,5})\](.*)", positive_query)
|
| 54 |
+
if match:
|
| 55 |
+
corpus2, idx, remainder = match.groups()
|
| 56 |
+
idx, remainder = int(idx), remainder.strip()
|
| 57 |
+
k = 0 if corpus2 == "Unsplash" else 1
|
| 58 |
+
positive_embeddings = concatenate_embeddings(
|
| 59 |
+
positive_embeddings, embeddings[k][idx : idx + 1, :]
|
| 60 |
+
)
|
| 61 |
+
if len(remainder) > 0:
|
| 62 |
+
positive_embeddings = concatenate_embeddings(
|
| 63 |
+
positive_embeddings, compute_text_embeddings([remainder])
|
| 64 |
+
)
|
| 65 |
+
else:
|
| 66 |
+
positive_embeddings = concatenate_embeddings(
|
| 67 |
+
positive_embeddings, compute_text_embeddings([positive_query])
|
| 68 |
+
)
|
| 69 |
k = 0 if corpus == "Unsplash" else 1
|
| 70 |
+
dot_product = embeddings[k] @ positive_embeddings.T
|
| 71 |
+
dot_product = dot_product - np.mean(dot_product, axis=0)
|
| 72 |
+
dot_product = dot_product / np.linalg.norm(dot_product, axis=0)
|
| 73 |
+
dot_product = np.min(dot_product, axis=1)
|
| 74 |
+
|
| 75 |
+
if len(splitted_query) > 1:
|
| 76 |
+
negative_queries = (" ".join(splitted_query[1:])).split(";")
|
| 77 |
+
negative_embeddings = compute_text_embeddings(negative_queries)
|
| 78 |
+
dot_product2 = embeddings[k] @ negative_embeddings.T
|
| 79 |
+
dot_product2 = dot_product2 - np.mean(dot_product2, axis=0)
|
| 80 |
+
dot_product2 = dot_product2 / np.linalg.norm(dot_product2, axis=0)
|
| 81 |
+
dot_product -= np.max(dot_product2, axis=1)
|
| 82 |
+
|
| 83 |
+
results = np.argsort(dot_product)[-1 : -n_results - 1 : -1]
|
| 84 |
return [
|
| 85 |
(
|
| 86 |
df[k].iloc[i]["path"],
|
| 87 |
df[k].iloc[i]["tooltip"] + source[k],
|
| 88 |
+
i,
|
| 89 |
)
|
| 90 |
for i in results
|
| 91 |
]
|
|
|
|
| 138 |
)
|
| 139 |
st.sidebar.markdown(description)
|
| 140 |
_, c, _ = st.columns((1, 3, 1))
|
| 141 |
+
if "query" in st.session_state:
|
| 142 |
+
query = c.text_input("", value=st.session_state["query"])
|
| 143 |
+
else:
|
| 144 |
+
query = c.text_input("", value="clouds at sunset")
|
| 145 |
corpus = st.radio("", ["Unsplash", "Movies"])
|
| 146 |
if len(query) > 0:
|
| 147 |
results = image_search(query, corpus)
|
| 148 |
+
clicked = clickable_images(
|
| 149 |
+
[result[0] for result in results],
|
| 150 |
+
titles=[result[1] for result in results],
|
| 151 |
+
div_style={
|
| 152 |
+
"display": "flex",
|
| 153 |
+
"justify-content": "center",
|
| 154 |
+
"flex-wrap": "wrap",
|
| 155 |
+
},
|
| 156 |
+
img_style={"margin": "2px", "height": "200px"},
|
| 157 |
+
)
|
| 158 |
+
if clicked >= 0:
|
| 159 |
+
change_query = False
|
| 160 |
+
if "last_clicked" not in st.session_state:
|
| 161 |
+
change_query = True
|
| 162 |
+
else:
|
| 163 |
+
if clicked != st.session_state["last_clicked"]:
|
| 164 |
+
change_query = True
|
| 165 |
+
if change_query:
|
| 166 |
+
st.session_state["query"] = f"[{corpus}:{results[clicked][2]}]"
|
| 167 |
+
st.experimental_rerun()
|
| 168 |
|
| 169 |
|
| 170 |
if __name__ == "__main__":
|
requirements.txt
CHANGED
|
@@ -2,3 +2,4 @@ torch
|
|
| 2 |
transformers
|
| 3 |
numpy
|
| 4 |
pandas
|
|
|
|
|
|
| 2 |
transformers
|
| 3 |
numpy
|
| 4 |
pandas
|
| 5 |
+
st-clickable-images
|