Spaces:
				
			
			
	
			
			
		Paused
		
	
	
	
			
			
	
	
	
	
		
		
		Paused
		
	
		Xue-She Wang
		
	commited on
		
		
					Commit 
							
							·
						
						0d95f10
	
0
								Parent(s):
							
							
init
Browse filesThis view is limited to 50 files because it contains too many changes.  
							See raw diff
- .DS_Store +0 -0
 - CODEOWNERS +1 -0
 - LICENSE +674 -0
 - README.md +0 -0
 - app/app_settings.py +54 -0
 - app/user_manager.py +140 -0
 - comfy/.DS_Store +0 -0
 - comfy/checkpoint_pickle.py +13 -0
 - comfy/cldm/cldm.py +312 -0
 - comfy/cli_args.py +126 -0
 - comfy/clip_config_bigg.json +23 -0
 - comfy/clip_model.py +188 -0
 - comfy/clip_vision.py +116 -0
 - comfy/clip_vision_config_g.json +18 -0
 - comfy/clip_vision_config_h.json +18 -0
 - comfy/clip_vision_config_vitl.json +18 -0
 - comfy/conds.py +78 -0
 - comfy/controlnet.py +516 -0
 - comfy/diffusers_convert.py +261 -0
 - comfy/diffusers_load.py +36 -0
 - comfy/extra_samplers/uni_pc.py +894 -0
 - comfy/gligen.py +341 -0
 - comfy/k_diffusion/sampling.py +810 -0
 - comfy/k_diffusion/utils.py +313 -0
 - comfy/latent_formats.py +39 -0
 - comfy/ldm/.DS_Store +0 -0
 - comfy/ldm/models/autoencoder.py +228 -0
 - comfy/ldm/modules/attention.py +781 -0
 - comfy/ldm/modules/diffusionmodules/__init__.py +0 -0
 - comfy/ldm/modules/diffusionmodules/model.py +650 -0
 - comfy/ldm/modules/diffusionmodules/openaimodel.py +886 -0
 - comfy/ldm/modules/diffusionmodules/upscaling.py +85 -0
 - comfy/ldm/modules/diffusionmodules/util.py +304 -0
 - comfy/ldm/modules/distributions/__init__.py +0 -0
 - comfy/ldm/modules/distributions/distributions.py +92 -0
 - comfy/ldm/modules/ema.py +80 -0
 - comfy/ldm/modules/encoders/__init__.py +0 -0
 - comfy/ldm/modules/encoders/noise_aug_modules.py +35 -0
 - comfy/ldm/modules/sub_quadratic_attention.py +273 -0
 - comfy/ldm/modules/temporal_ae.py +245 -0
 - comfy/ldm/util.py +197 -0
 - comfy/lora.py +224 -0
 - comfy/model_base.py +425 -0
 - comfy/model_detection.py +320 -0
 - comfy/model_management.py +805 -0
 - comfy/model_patcher.py +357 -0
 - comfy/model_sampling.py +134 -0
 - comfy/ops.py +114 -0
 - comfy/options.py +6 -0
 - comfy/sample.py +118 -0
 
    	
        .DS_Store
    ADDED
    
    | 
         Binary file (8.2 kB). View file 
     | 
| 
         | 
    	
        CODEOWNERS
    ADDED
    
    | 
         @@ -0,0 +1 @@ 
     | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            *       @comfyanonymous
         
     | 
    	
        LICENSE
    ADDED
    
    | 
         @@ -0,0 +1,674 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
                                GNU GENERAL PUBLIC LICENSE
         
     | 
| 2 | 
         
            +
                                   Version 3, 29 June 2007
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
             Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
         
     | 
| 5 | 
         
            +
             Everyone is permitted to copy and distribute verbatim copies
         
     | 
| 6 | 
         
            +
             of this license document, but changing it is not allowed.
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
                                        Preamble
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
              The GNU General Public License is a free, copyleft license for
         
     | 
| 11 | 
         
            +
            software and other kinds of works.
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
              The licenses for most software and other practical works are designed
         
     | 
| 14 | 
         
            +
            to take away your freedom to share and change the works.  By contrast,
         
     | 
| 15 | 
         
            +
            the GNU General Public License is intended to guarantee your freedom to
         
     | 
| 16 | 
         
            +
            share and change all versions of a program--to make sure it remains free
         
     | 
| 17 | 
         
            +
            software for all its users.  We, the Free Software Foundation, use the
         
     | 
| 18 | 
         
            +
            GNU General Public License for most of our software; it applies also to
         
     | 
| 19 | 
         
            +
            any other work released this way by its authors.  You can apply it to
         
     | 
| 20 | 
         
            +
            your programs, too.
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
              When we speak of free software, we are referring to freedom, not
         
     | 
| 23 | 
         
            +
            price.  Our General Public Licenses are designed to make sure that you
         
     | 
| 24 | 
         
            +
            have the freedom to distribute copies of free software (and charge for
         
     | 
| 25 | 
         
            +
            them if you wish), that you receive source code or can get it if you
         
     | 
| 26 | 
         
            +
            want it, that you can change the software or use pieces of it in new
         
     | 
| 27 | 
         
            +
            free programs, and that you know you can do these things.
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
              To protect your rights, we need to prevent others from denying you
         
     | 
| 30 | 
         
            +
            these rights or asking you to surrender the rights.  Therefore, you have
         
     | 
| 31 | 
         
            +
            certain responsibilities if you distribute copies of the software, or if
         
     | 
| 32 | 
         
            +
            you modify it: responsibilities to respect the freedom of others.
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
              For example, if you distribute copies of such a program, whether
         
     | 
| 35 | 
         
            +
            gratis or for a fee, you must pass on to the recipients the same
         
     | 
| 36 | 
         
            +
            freedoms that you received.  You must make sure that they, too, receive
         
     | 
| 37 | 
         
            +
            or can get the source code.  And you must show them these terms so they
         
     | 
| 38 | 
         
            +
            know their rights.
         
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
              Developers that use the GNU GPL protect your rights with two steps:
         
     | 
| 41 | 
         
            +
            (1) assert copyright on the software, and (2) offer you this License
         
     | 
| 42 | 
         
            +
            giving you legal permission to copy, distribute and/or modify it.
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
              For the developers' and authors' protection, the GPL clearly explains
         
     | 
| 45 | 
         
            +
            that there is no warranty for this free software.  For both users' and
         
     | 
| 46 | 
         
            +
            authors' sake, the GPL requires that modified versions be marked as
         
     | 
| 47 | 
         
            +
            changed, so that their problems will not be attributed erroneously to
         
     | 
| 48 | 
         
            +
            authors of previous versions.
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
              Some devices are designed to deny users access to install or run
         
     | 
| 51 | 
         
            +
            modified versions of the software inside them, although the manufacturer
         
     | 
| 52 | 
         
            +
            can do so.  This is fundamentally incompatible with the aim of
         
     | 
| 53 | 
         
            +
            protecting users' freedom to change the software.  The systematic
         
     | 
| 54 | 
         
            +
            pattern of such abuse occurs in the area of products for individuals to
         
     | 
| 55 | 
         
            +
            use, which is precisely where it is most unacceptable.  Therefore, we
         
     | 
| 56 | 
         
            +
            have designed this version of the GPL to prohibit the practice for those
         
     | 
| 57 | 
         
            +
            products.  If such problems arise substantially in other domains, we
         
     | 
| 58 | 
         
            +
            stand ready to extend this provision to those domains in future versions
         
     | 
| 59 | 
         
            +
            of the GPL, as needed to protect the freedom of users.
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
              Finally, every program is threatened constantly by software patents.
         
     | 
| 62 | 
         
            +
            States should not allow patents to restrict development and use of
         
     | 
| 63 | 
         
            +
            software on general-purpose computers, but in those that do, we wish to
         
     | 
| 64 | 
         
            +
            avoid the special danger that patents applied to a free program could
         
     | 
| 65 | 
         
            +
            make it effectively proprietary.  To prevent this, the GPL assures that
         
     | 
| 66 | 
         
            +
            patents cannot be used to render the program non-free.
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
              The precise terms and conditions for copying, distribution and
         
     | 
| 69 | 
         
            +
            modification follow.
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
                                   TERMS AND CONDITIONS
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
              0. Definitions.
         
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
              "This License" refers to version 3 of the GNU General Public License.
         
     | 
| 76 | 
         
            +
             
     | 
| 77 | 
         
            +
              "Copyright" also means copyright-like laws that apply to other kinds of
         
     | 
| 78 | 
         
            +
            works, such as semiconductor masks.
         
     | 
| 79 | 
         
            +
             
     | 
| 80 | 
         
            +
              "The Program" refers to any copyrightable work licensed under this
         
     | 
| 81 | 
         
            +
            License.  Each licensee is addressed as "you".  "Licensees" and
         
     | 
| 82 | 
         
            +
            "recipients" may be individuals or organizations.
         
     | 
| 83 | 
         
            +
             
     | 
| 84 | 
         
            +
              To "modify" a work means to copy from or adapt all or part of the work
         
     | 
| 85 | 
         
            +
            in a fashion requiring copyright permission, other than the making of an
         
     | 
| 86 | 
         
            +
            exact copy.  The resulting work is called a "modified version" of the
         
     | 
| 87 | 
         
            +
            earlier work or a work "based on" the earlier work.
         
     | 
| 88 | 
         
            +
             
     | 
| 89 | 
         
            +
              A "covered work" means either the unmodified Program or a work based
         
     | 
| 90 | 
         
            +
            on the Program.
         
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
              To "propagate" a work means to do anything with it that, without
         
     | 
| 93 | 
         
            +
            permission, would make you directly or secondarily liable for
         
     | 
| 94 | 
         
            +
            infringement under applicable copyright law, except executing it on a
         
     | 
| 95 | 
         
            +
            computer or modifying a private copy.  Propagation includes copying,
         
     | 
| 96 | 
         
            +
            distribution (with or without modification), making available to the
         
     | 
| 97 | 
         
            +
            public, and in some countries other activities as well.
         
     | 
| 98 | 
         
            +
             
     | 
| 99 | 
         
            +
              To "convey" a work means any kind of propagation that enables other
         
     | 
| 100 | 
         
            +
            parties to make or receive copies.  Mere interaction with a user through
         
     | 
| 101 | 
         
            +
            a computer network, with no transfer of a copy, is not conveying.
         
     | 
| 102 | 
         
            +
             
     | 
| 103 | 
         
            +
              An interactive user interface displays "Appropriate Legal Notices"
         
     | 
| 104 | 
         
            +
            to the extent that it includes a convenient and prominently visible
         
     | 
| 105 | 
         
            +
            feature that (1) displays an appropriate copyright notice, and (2)
         
     | 
| 106 | 
         
            +
            tells the user that there is no warranty for the work (except to the
         
     | 
| 107 | 
         
            +
            extent that warranties are provided), that licensees may convey the
         
     | 
| 108 | 
         
            +
            work under this License, and how to view a copy of this License.  If
         
     | 
| 109 | 
         
            +
            the interface presents a list of user commands or options, such as a
         
     | 
| 110 | 
         
            +
            menu, a prominent item in the list meets this criterion.
         
     | 
| 111 | 
         
            +
             
     | 
| 112 | 
         
            +
              1. Source Code.
         
     | 
| 113 | 
         
            +
             
     | 
| 114 | 
         
            +
              The "source code" for a work means the preferred form of the work
         
     | 
| 115 | 
         
            +
            for making modifications to it.  "Object code" means any non-source
         
     | 
| 116 | 
         
            +
            form of a work.
         
     | 
| 117 | 
         
            +
             
     | 
| 118 | 
         
            +
              A "Standard Interface" means an interface that either is an official
         
     | 
| 119 | 
         
            +
            standard defined by a recognized standards body, or, in the case of
         
     | 
| 120 | 
         
            +
            interfaces specified for a particular programming language, one that
         
     | 
| 121 | 
         
            +
            is widely used among developers working in that language.
         
     | 
| 122 | 
         
            +
             
     | 
| 123 | 
         
            +
              The "System Libraries" of an executable work include anything, other
         
     | 
| 124 | 
         
            +
            than the work as a whole, that (a) is included in the normal form of
         
     | 
| 125 | 
         
            +
            packaging a Major Component, but which is not part of that Major
         
     | 
| 126 | 
         
            +
            Component, and (b) serves only to enable use of the work with that
         
     | 
| 127 | 
         
            +
            Major Component, or to implement a Standard Interface for which an
         
     | 
| 128 | 
         
            +
            implementation is available to the public in source code form.  A
         
     | 
| 129 | 
         
            +
            "Major Component", in this context, means a major essential component
         
     | 
| 130 | 
         
            +
            (kernel, window system, and so on) of the specific operating system
         
     | 
| 131 | 
         
            +
            (if any) on which the executable work runs, or a compiler used to
         
     | 
| 132 | 
         
            +
            produce the work, or an object code interpreter used to run it.
         
     | 
| 133 | 
         
            +
             
     | 
| 134 | 
         
            +
              The "Corresponding Source" for a work in object code form means all
         
     | 
| 135 | 
         
            +
            the source code needed to generate, install, and (for an executable
         
     | 
| 136 | 
         
            +
            work) run the object code and to modify the work, including scripts to
         
     | 
| 137 | 
         
            +
            control those activities.  However, it does not include the work's
         
     | 
| 138 | 
         
            +
            System Libraries, or general-purpose tools or generally available free
         
     | 
| 139 | 
         
            +
            programs which are used unmodified in performing those activities but
         
     | 
| 140 | 
         
            +
            which are not part of the work.  For example, Corresponding Source
         
     | 
| 141 | 
         
            +
            includes interface definition files associated with source files for
         
     | 
| 142 | 
         
            +
            the work, and the source code for shared libraries and dynamically
         
     | 
| 143 | 
         
            +
            linked subprograms that the work is specifically designed to require,
         
     | 
| 144 | 
         
            +
            such as by intimate data communication or control flow between those
         
     | 
| 145 | 
         
            +
            subprograms and other parts of the work.
         
     | 
| 146 | 
         
            +
             
     | 
| 147 | 
         
            +
              The Corresponding Source need not include anything that users
         
     | 
| 148 | 
         
            +
            can regenerate automatically from other parts of the Corresponding
         
     | 
| 149 | 
         
            +
            Source.
         
     | 
| 150 | 
         
            +
             
     | 
| 151 | 
         
            +
              The Corresponding Source for a work in source code form is that
         
     | 
| 152 | 
         
            +
            same work.
         
     | 
| 153 | 
         
            +
             
     | 
| 154 | 
         
            +
              2. Basic Permissions.
         
     | 
| 155 | 
         
            +
             
     | 
| 156 | 
         
            +
              All rights granted under this License are granted for the term of
         
     | 
| 157 | 
         
            +
            copyright on the Program, and are irrevocable provided the stated
         
     | 
| 158 | 
         
            +
            conditions are met.  This License explicitly affirms your unlimited
         
     | 
| 159 | 
         
            +
            permission to run the unmodified Program.  The output from running a
         
     | 
| 160 | 
         
            +
            covered work is covered by this License only if the output, given its
         
     | 
| 161 | 
         
            +
            content, constitutes a covered work.  This License acknowledges your
         
     | 
| 162 | 
         
            +
            rights of fair use or other equivalent, as provided by copyright law.
         
     | 
| 163 | 
         
            +
             
     | 
| 164 | 
         
            +
              You may make, run and propagate covered works that you do not
         
     | 
| 165 | 
         
            +
            convey, without conditions so long as your license otherwise remains
         
     | 
| 166 | 
         
            +
            in force.  You may convey covered works to others for the sole purpose
         
     | 
| 167 | 
         
            +
            of having them make modifications exclusively for you, or provide you
         
     | 
| 168 | 
         
            +
            with facilities for running those works, provided that you comply with
         
     | 
| 169 | 
         
            +
            the terms of this License in conveying all material for which you do
         
     | 
| 170 | 
         
            +
            not control copyright.  Those thus making or running the covered works
         
     | 
| 171 | 
         
            +
            for you must do so exclusively on your behalf, under your direction
         
     | 
| 172 | 
         
            +
            and control, on terms that prohibit them from making any copies of
         
     | 
| 173 | 
         
            +
            your copyrighted material outside their relationship with you.
         
     | 
| 174 | 
         
            +
             
     | 
| 175 | 
         
            +
              Conveying under any other circumstances is permitted solely under
         
     | 
| 176 | 
         
            +
            the conditions stated below.  Sublicensing is not allowed; section 10
         
     | 
| 177 | 
         
            +
            makes it unnecessary.
         
     | 
| 178 | 
         
            +
             
     | 
| 179 | 
         
            +
              3. Protecting Users' Legal Rights From Anti-Circumvention Law.
         
     | 
| 180 | 
         
            +
             
     | 
| 181 | 
         
            +
              No covered work shall be deemed part of an effective technological
         
     | 
| 182 | 
         
            +
            measure under any applicable law fulfilling obligations under article
         
     | 
| 183 | 
         
            +
            11 of the WIPO copyright treaty adopted on 20 December 1996, or
         
     | 
| 184 | 
         
            +
            similar laws prohibiting or restricting circumvention of such
         
     | 
| 185 | 
         
            +
            measures.
         
     | 
| 186 | 
         
            +
             
     | 
| 187 | 
         
            +
              When you convey a covered work, you waive any legal power to forbid
         
     | 
| 188 | 
         
            +
            circumvention of technological measures to the extent such circumvention
         
     | 
| 189 | 
         
            +
            is effected by exercising rights under this License with respect to
         
     | 
| 190 | 
         
            +
            the covered work, and you disclaim any intention to limit operation or
         
     | 
| 191 | 
         
            +
            modification of the work as a means of enforcing, against the work's
         
     | 
| 192 | 
         
            +
            users, your or third parties' legal rights to forbid circumvention of
         
     | 
| 193 | 
         
            +
            technological measures.
         
     | 
| 194 | 
         
            +
             
     | 
| 195 | 
         
            +
              4. Conveying Verbatim Copies.
         
     | 
| 196 | 
         
            +
             
     | 
| 197 | 
         
            +
              You may convey verbatim copies of the Program's source code as you
         
     | 
| 198 | 
         
            +
            receive it, in any medium, provided that you conspicuously and
         
     | 
| 199 | 
         
            +
            appropriately publish on each copy an appropriate copyright notice;
         
     | 
| 200 | 
         
            +
            keep intact all notices stating that this License and any
         
     | 
| 201 | 
         
            +
            non-permissive terms added in accord with section 7 apply to the code;
         
     | 
| 202 | 
         
            +
            keep intact all notices of the absence of any warranty; and give all
         
     | 
| 203 | 
         
            +
            recipients a copy of this License along with the Program.
         
     | 
| 204 | 
         
            +
             
     | 
| 205 | 
         
            +
              You may charge any price or no price for each copy that you convey,
         
     | 
| 206 | 
         
            +
            and you may offer support or warranty protection for a fee.
         
     | 
| 207 | 
         
            +
             
     | 
| 208 | 
         
            +
              5. Conveying Modified Source Versions.
         
     | 
| 209 | 
         
            +
             
     | 
| 210 | 
         
            +
              You may convey a work based on the Program, or the modifications to
         
     | 
| 211 | 
         
            +
            produce it from the Program, in the form of source code under the
         
     | 
| 212 | 
         
            +
            terms of section 4, provided that you also meet all of these conditions:
         
     | 
| 213 | 
         
            +
             
     | 
| 214 | 
         
            +
                a) The work must carry prominent notices stating that you modified
         
     | 
| 215 | 
         
            +
                it, and giving a relevant date.
         
     | 
| 216 | 
         
            +
             
     | 
| 217 | 
         
            +
                b) The work must carry prominent notices stating that it is
         
     | 
| 218 | 
         
            +
                released under this License and any conditions added under section
         
     | 
| 219 | 
         
            +
                7.  This requirement modifies the requirement in section 4 to
         
     | 
| 220 | 
         
            +
                "keep intact all notices".
         
     | 
| 221 | 
         
            +
             
     | 
| 222 | 
         
            +
                c) You must license the entire work, as a whole, under this
         
     | 
| 223 | 
         
            +
                License to anyone who comes into possession of a copy.  This
         
     | 
| 224 | 
         
            +
                License will therefore apply, along with any applicable section 7
         
     | 
| 225 | 
         
            +
                additional terms, to the whole of the work, and all its parts,
         
     | 
| 226 | 
         
            +
                regardless of how they are packaged.  This License gives no
         
     | 
| 227 | 
         
            +
                permission to license the work in any other way, but it does not
         
     | 
| 228 | 
         
            +
                invalidate such permission if you have separately received it.
         
     | 
| 229 | 
         
            +
             
     | 
| 230 | 
         
            +
                d) If the work has interactive user interfaces, each must display
         
     | 
| 231 | 
         
            +
                Appropriate Legal Notices; however, if the Program has interactive
         
     | 
| 232 | 
         
            +
                interfaces that do not display Appropriate Legal Notices, your
         
     | 
| 233 | 
         
            +
                work need not make them do so.
         
     | 
| 234 | 
         
            +
             
     | 
| 235 | 
         
            +
              A compilation of a covered work with other separate and independent
         
     | 
| 236 | 
         
            +
            works, which are not by their nature extensions of the covered work,
         
     | 
| 237 | 
         
            +
            and which are not combined with it such as to form a larger program,
         
     | 
| 238 | 
         
            +
            in or on a volume of a storage or distribution medium, is called an
         
     | 
| 239 | 
         
            +
            "aggregate" if the compilation and its resulting copyright are not
         
     | 
| 240 | 
         
            +
            used to limit the access or legal rights of the compilation's users
         
     | 
| 241 | 
         
            +
            beyond what the individual works permit.  Inclusion of a covered work
         
     | 
| 242 | 
         
            +
            in an aggregate does not cause this License to apply to the other
         
     | 
| 243 | 
         
            +
            parts of the aggregate.
         
     | 
| 244 | 
         
            +
             
     | 
| 245 | 
         
            +
              6. Conveying Non-Source Forms.
         
     | 
| 246 | 
         
            +
             
     | 
| 247 | 
         
            +
              You may convey a covered work in object code form under the terms
         
     | 
| 248 | 
         
            +
            of sections 4 and 5, provided that you also convey the
         
     | 
| 249 | 
         
            +
            machine-readable Corresponding Source under the terms of this License,
         
     | 
| 250 | 
         
            +
            in one of these ways:
         
     | 
| 251 | 
         
            +
             
     | 
| 252 | 
         
            +
                a) Convey the object code in, or embodied in, a physical product
         
     | 
| 253 | 
         
            +
                (including a physical distribution medium), accompanied by the
         
     | 
| 254 | 
         
            +
                Corresponding Source fixed on a durable physical medium
         
     | 
| 255 | 
         
            +
                customarily used for software interchange.
         
     | 
| 256 | 
         
            +
             
     | 
| 257 | 
         
            +
                b) Convey the object code in, or embodied in, a physical product
         
     | 
| 258 | 
         
            +
                (including a physical distribution medium), accompanied by a
         
     | 
| 259 | 
         
            +
                written offer, valid for at least three years and valid for as
         
     | 
| 260 | 
         
            +
                long as you offer spare parts or customer support for that product
         
     | 
| 261 | 
         
            +
                model, to give anyone who possesses the object code either (1) a
         
     | 
| 262 | 
         
            +
                copy of the Corresponding Source for all the software in the
         
     | 
| 263 | 
         
            +
                product that is covered by this License, on a durable physical
         
     | 
| 264 | 
         
            +
                medium customarily used for software interchange, for a price no
         
     | 
| 265 | 
         
            +
                more than your reasonable cost of physically performing this
         
     | 
| 266 | 
         
            +
                conveying of source, or (2) access to copy the
         
     | 
| 267 | 
         
            +
                Corresponding Source from a network server at no charge.
         
     | 
| 268 | 
         
            +
             
     | 
| 269 | 
         
            +
                c) Convey individual copies of the object code with a copy of the
         
     | 
| 270 | 
         
            +
                written offer to provide the Corresponding Source.  This
         
     | 
| 271 | 
         
            +
                alternative is allowed only occasionally and noncommercially, and
         
     | 
| 272 | 
         
            +
                only if you received the object code with such an offer, in accord
         
     | 
| 273 | 
         
            +
                with subsection 6b.
         
     | 
| 274 | 
         
            +
             
     | 
| 275 | 
         
            +
                d) Convey the object code by offering access from a designated
         
     | 
| 276 | 
         
            +
                place (gratis or for a charge), and offer equivalent access to the
         
     | 
| 277 | 
         
            +
                Corresponding Source in the same way through the same place at no
         
     | 
| 278 | 
         
            +
                further charge.  You need not require recipients to copy the
         
     | 
| 279 | 
         
            +
                Corresponding Source along with the object code.  If the place to
         
     | 
| 280 | 
         
            +
                copy the object code is a network server, the Corresponding Source
         
     | 
| 281 | 
         
            +
                may be on a different server (operated by you or a third party)
         
     | 
| 282 | 
         
            +
                that supports equivalent copying facilities, provided you maintain
         
     | 
| 283 | 
         
            +
                clear directions next to the object code saying where to find the
         
     | 
| 284 | 
         
            +
                Corresponding Source.  Regardless of what server hosts the
         
     | 
| 285 | 
         
            +
                Corresponding Source, you remain obligated to ensure that it is
         
     | 
| 286 | 
         
            +
                available for as long as needed to satisfy these requirements.
         
     | 
| 287 | 
         
            +
             
     | 
| 288 | 
         
            +
                e) Convey the object code using peer-to-peer transmission, provided
         
     | 
| 289 | 
         
            +
                you inform other peers where the object code and Corresponding
         
     | 
| 290 | 
         
            +
                Source of the work are being offered to the general public at no
         
     | 
| 291 | 
         
            +
                charge under subsection 6d.
         
     | 
| 292 | 
         
            +
             
     | 
| 293 | 
         
            +
              A separable portion of the object code, whose source code is excluded
         
     | 
| 294 | 
         
            +
            from the Corresponding Source as a System Library, need not be
         
     | 
| 295 | 
         
            +
            included in conveying the object code work.
         
     | 
| 296 | 
         
            +
             
     | 
| 297 | 
         
            +
              A "User Product" is either (1) a "consumer product", which means any
         
     | 
| 298 | 
         
            +
            tangible personal property which is normally used for personal, family,
         
     | 
| 299 | 
         
            +
            or household purposes, or (2) anything designed or sold for incorporation
         
     | 
| 300 | 
         
            +
            into a dwelling.  In determining whether a product is a consumer product,
         
     | 
| 301 | 
         
            +
            doubtful cases shall be resolved in favor of coverage.  For a particular
         
     | 
| 302 | 
         
            +
            product received by a particular user, "normally used" refers to a
         
     | 
| 303 | 
         
            +
            typical or common use of that class of product, regardless of the status
         
     | 
| 304 | 
         
            +
            of the particular user or of the way in which the particular user
         
     | 
| 305 | 
         
            +
            actually uses, or expects or is expected to use, the product.  A product
         
     | 
| 306 | 
         
            +
            is a consumer product regardless of whether the product has substantial
         
     | 
| 307 | 
         
            +
            commercial, industrial or non-consumer uses, unless such uses represent
         
     | 
| 308 | 
         
            +
            the only significant mode of use of the product.
         
     | 
| 309 | 
         
            +
             
     | 
| 310 | 
         
            +
              "Installation Information" for a User Product means any methods,
         
     | 
| 311 | 
         
            +
            procedures, authorization keys, or other information required to install
         
     | 
| 312 | 
         
            +
            and execute modified versions of a covered work in that User Product from
         
     | 
| 313 | 
         
            +
            a modified version of its Corresponding Source.  The information must
         
     | 
| 314 | 
         
            +
            suffice to ensure that the continued functioning of the modified object
         
     | 
| 315 | 
         
            +
            code is in no case prevented or interfered with solely because
         
     | 
| 316 | 
         
            +
            modification has been made.
         
     | 
| 317 | 
         
            +
             
     | 
| 318 | 
         
            +
              If you convey an object code work under this section in, or with, or
         
     | 
| 319 | 
         
            +
            specifically for use in, a User Product, and the conveying occurs as
         
     | 
| 320 | 
         
            +
            part of a transaction in which the right of possession and use of the
         
     | 
| 321 | 
         
            +
            User Product is transferred to the recipient in perpetuity or for a
         
     | 
| 322 | 
         
            +
            fixed term (regardless of how the transaction is characterized), the
         
     | 
| 323 | 
         
            +
            Corresponding Source conveyed under this section must be accompanied
         
     | 
| 324 | 
         
            +
            by the Installation Information.  But this requirement does not apply
         
     | 
| 325 | 
         
            +
            if neither you nor any third party retains the ability to install
         
     | 
| 326 | 
         
            +
            modified object code on the User Product (for example, the work has
         
     | 
| 327 | 
         
            +
            been installed in ROM).
         
     | 
| 328 | 
         
            +
             
     | 
| 329 | 
         
            +
              The requirement to provide Installation Information does not include a
         
     | 
| 330 | 
         
            +
            requirement to continue to provide support service, warranty, or updates
         
     | 
| 331 | 
         
            +
            for a work that has been modified or installed by the recipient, or for
         
     | 
| 332 | 
         
            +
            the User Product in which it has been modified or installed.  Access to a
         
     | 
| 333 | 
         
            +
            network may be denied when the modification itself materially and
         
     | 
| 334 | 
         
            +
            adversely affects the operation of the network or violates the rules and
         
     | 
| 335 | 
         
            +
            protocols for communication across the network.
         
     | 
| 336 | 
         
            +
             
     | 
| 337 | 
         
            +
              Corresponding Source conveyed, and Installation Information provided,
         
     | 
| 338 | 
         
            +
            in accord with this section must be in a format that is publicly
         
     | 
| 339 | 
         
            +
            documented (and with an implementation available to the public in
         
     | 
| 340 | 
         
            +
            source code form), and must require no special password or key for
         
     | 
| 341 | 
         
            +
            unpacking, reading or copying.
         
     | 
| 342 | 
         
            +
             
     | 
| 343 | 
         
            +
              7. Additional Terms.
         
     | 
| 344 | 
         
            +
             
     | 
| 345 | 
         
            +
              "Additional permissions" are terms that supplement the terms of this
         
     | 
| 346 | 
         
            +
            License by making exceptions from one or more of its conditions.
         
     | 
| 347 | 
         
            +
            Additional permissions that are applicable to the entire Program shall
         
     | 
| 348 | 
         
            +
            be treated as though they were included in this License, to the extent
         
     | 
| 349 | 
         
            +
            that they are valid under applicable law.  If additional permissions
         
     | 
| 350 | 
         
            +
            apply only to part of the Program, that part may be used separately
         
     | 
| 351 | 
         
            +
            under those permissions, but the entire Program remains governed by
         
     | 
| 352 | 
         
            +
            this License without regard to the additional permissions.
         
     | 
| 353 | 
         
            +
             
     | 
| 354 | 
         
            +
              When you convey a copy of a covered work, you may at your option
         
     | 
| 355 | 
         
            +
            remove any additional permissions from that copy, or from any part of
         
     | 
| 356 | 
         
            +
            it.  (Additional permissions may be written to require their own
         
     | 
| 357 | 
         
            +
            removal in certain cases when you modify the work.)  You may place
         
     | 
| 358 | 
         
            +
            additional permissions on material, added by you to a covered work,
         
     | 
| 359 | 
         
            +
            for which you have or can give appropriate copyright permission.
         
     | 
| 360 | 
         
            +
             
     | 
| 361 | 
         
            +
              Notwithstanding any other provision of this License, for material you
         
     | 
| 362 | 
         
            +
            add to a covered work, you may (if authorized by the copyright holders of
         
     | 
| 363 | 
         
            +
            that material) supplement the terms of this License with terms:
         
     | 
| 364 | 
         
            +
             
     | 
| 365 | 
         
            +
                a) Disclaiming warranty or limiting liability differently from the
         
     | 
| 366 | 
         
            +
                terms of sections 15 and 16 of this License; or
         
     | 
| 367 | 
         
            +
             
     | 
| 368 | 
         
            +
                b) Requiring preservation of specified reasonable legal notices or
         
     | 
| 369 | 
         
            +
                author attributions in that material or in the Appropriate Legal
         
     | 
| 370 | 
         
            +
                Notices displayed by works containing it; or
         
     | 
| 371 | 
         
            +
             
     | 
| 372 | 
         
            +
                c) Prohibiting misrepresentation of the origin of that material, or
         
     | 
| 373 | 
         
            +
                requiring that modified versions of such material be marked in
         
     | 
| 374 | 
         
            +
                reasonable ways as different from the original version; or
         
     | 
| 375 | 
         
            +
             
     | 
| 376 | 
         
            +
                d) Limiting the use for publicity purposes of names of licensors or
         
     | 
| 377 | 
         
            +
                authors of the material; or
         
     | 
| 378 | 
         
            +
             
     | 
| 379 | 
         
            +
                e) Declining to grant rights under trademark law for use of some
         
     | 
| 380 | 
         
            +
                trade names, trademarks, or service marks; or
         
     | 
| 381 | 
         
            +
             
     | 
| 382 | 
         
            +
                f) Requiring indemnification of licensors and authors of that
         
     | 
| 383 | 
         
            +
                material by anyone who conveys the material (or modified versions of
         
     | 
| 384 | 
         
            +
                it) with contractual assumptions of liability to the recipient, for
         
     | 
| 385 | 
         
            +
                any liability that these contractual assumptions directly impose on
         
     | 
| 386 | 
         
            +
                those licensors and authors.
         
     | 
| 387 | 
         
            +
             
     | 
| 388 | 
         
            +
              All other non-permissive additional terms are considered "further
         
     | 
| 389 | 
         
            +
            restrictions" within the meaning of section 10.  If the Program as you
         
     | 
| 390 | 
         
            +
            received it, or any part of it, contains a notice stating that it is
         
     | 
| 391 | 
         
            +
            governed by this License along with a term that is a further
         
     | 
| 392 | 
         
            +
            restriction, you may remove that term.  If a license document contains
         
     | 
| 393 | 
         
            +
            a further restriction but permits relicensing or conveying under this
         
     | 
| 394 | 
         
            +
            License, you may add to a covered work material governed by the terms
         
     | 
| 395 | 
         
            +
            of that license document, provided that the further restriction does
         
     | 
| 396 | 
         
            +
            not survive such relicensing or conveying.
         
     | 
| 397 | 
         
            +
             
     | 
| 398 | 
         
            +
              If you add terms to a covered work in accord with this section, you
         
     | 
| 399 | 
         
            +
            must place, in the relevant source files, a statement of the
         
     | 
| 400 | 
         
            +
            additional terms that apply to those files, or a notice indicating
         
     | 
| 401 | 
         
            +
            where to find the applicable terms.
         
     | 
| 402 | 
         
            +
             
     | 
| 403 | 
         
            +
              Additional terms, permissive or non-permissive, may be stated in the
         
     | 
| 404 | 
         
            +
            form of a separately written license, or stated as exceptions;
         
     | 
| 405 | 
         
            +
            the above requirements apply either way.
         
     | 
| 406 | 
         
            +
             
     | 
| 407 | 
         
            +
              8. Termination.
         
     | 
| 408 | 
         
            +
             
     | 
| 409 | 
         
            +
              You may not propagate or modify a covered work except as expressly
         
     | 
| 410 | 
         
            +
            provided under this License.  Any attempt otherwise to propagate or
         
     | 
| 411 | 
         
            +
            modify it is void, and will automatically terminate your rights under
         
     | 
| 412 | 
         
            +
            this License (including any patent licenses granted under the third
         
     | 
| 413 | 
         
            +
            paragraph of section 11).
         
     | 
| 414 | 
         
            +
             
     | 
| 415 | 
         
            +
              However, if you cease all violation of this License, then your
         
     | 
| 416 | 
         
            +
            license from a particular copyright holder is reinstated (a)
         
     | 
| 417 | 
         
            +
            provisionally, unless and until the copyright holder explicitly and
         
     | 
| 418 | 
         
            +
            finally terminates your license, and (b) permanently, if the copyright
         
     | 
| 419 | 
         
            +
            holder fails to notify you of the violation by some reasonable means
         
     | 
| 420 | 
         
            +
            prior to 60 days after the cessation.
         
     | 
| 421 | 
         
            +
             
     | 
| 422 | 
         
            +
              Moreover, your license from a particular copyright holder is
         
     | 
| 423 | 
         
            +
            reinstated permanently if the copyright holder notifies you of the
         
     | 
| 424 | 
         
            +
            violation by some reasonable means, this is the first time you have
         
     | 
| 425 | 
         
            +
            received notice of violation of this License (for any work) from that
         
     | 
| 426 | 
         
            +
            copyright holder, and you cure the violation prior to 30 days after
         
     | 
| 427 | 
         
            +
            your receipt of the notice.
         
     | 
| 428 | 
         
            +
             
     | 
| 429 | 
         
            +
              Termination of your rights under this section does not terminate the
         
     | 
| 430 | 
         
            +
            licenses of parties who have received copies or rights from you under
         
     | 
| 431 | 
         
            +
            this License.  If your rights have been terminated and not permanently
         
     | 
| 432 | 
         
            +
            reinstated, you do not qualify to receive new licenses for the same
         
     | 
| 433 | 
         
            +
            material under section 10.
         
     | 
| 434 | 
         
            +
             
     | 
| 435 | 
         
            +
              9. Acceptance Not Required for Having Copies.
         
     | 
| 436 | 
         
            +
             
     | 
| 437 | 
         
            +
              You are not required to accept this License in order to receive or
         
     | 
| 438 | 
         
            +
            run a copy of the Program.  Ancillary propagation of a covered work
         
     | 
| 439 | 
         
            +
            occurring solely as a consequence of using peer-to-peer transmission
         
     | 
| 440 | 
         
            +
            to receive a copy likewise does not require acceptance.  However,
         
     | 
| 441 | 
         
            +
            nothing other than this License grants you permission to propagate or
         
     | 
| 442 | 
         
            +
            modify any covered work.  These actions infringe copyright if you do
         
     | 
| 443 | 
         
            +
            not accept this License.  Therefore, by modifying or propagating a
         
     | 
| 444 | 
         
            +
            covered work, you indicate your acceptance of this License to do so.
         
     | 
| 445 | 
         
            +
             
     | 
| 446 | 
         
            +
              10. Automatic Licensing of Downstream Recipients.
         
     | 
| 447 | 
         
            +
             
     | 
| 448 | 
         
            +
              Each time you convey a covered work, the recipient automatically
         
     | 
| 449 | 
         
            +
            receives a license from the original licensors, to run, modify and
         
     | 
| 450 | 
         
            +
            propagate that work, subject to this License.  You are not responsible
         
     | 
| 451 | 
         
            +
            for enforcing compliance by third parties with this License.
         
     | 
| 452 | 
         
            +
             
     | 
| 453 | 
         
            +
              An "entity transaction" is a transaction transferring control of an
         
     | 
| 454 | 
         
            +
            organization, or substantially all assets of one, or subdividing an
         
     | 
| 455 | 
         
            +
            organization, or merging organizations.  If propagation of a covered
         
     | 
| 456 | 
         
            +
            work results from an entity transaction, each party to that
         
     | 
| 457 | 
         
            +
            transaction who receives a copy of the work also receives whatever
         
     | 
| 458 | 
         
            +
            licenses to the work the party's predecessor in interest had or could
         
     | 
| 459 | 
         
            +
            give under the previous paragraph, plus a right to possession of the
         
     | 
| 460 | 
         
            +
            Corresponding Source of the work from the predecessor in interest, if
         
     | 
| 461 | 
         
            +
            the predecessor has it or can get it with reasonable efforts.
         
     | 
| 462 | 
         
            +
             
     | 
| 463 | 
         
            +
              You may not impose any further restrictions on the exercise of the
         
     | 
| 464 | 
         
            +
            rights granted or affirmed under this License.  For example, you may
         
     | 
| 465 | 
         
            +
            not impose a license fee, royalty, or other charge for exercise of
         
     | 
| 466 | 
         
            +
            rights granted under this License, and you may not initiate litigation
         
     | 
| 467 | 
         
            +
            (including a cross-claim or counterclaim in a lawsuit) alleging that
         
     | 
| 468 | 
         
            +
            any patent claim is infringed by making, using, selling, offering for
         
     | 
| 469 | 
         
            +
            sale, or importing the Program or any portion of it.
         
     | 
| 470 | 
         
            +
             
     | 
| 471 | 
         
            +
              11. Patents.
         
     | 
| 472 | 
         
            +
             
     | 
| 473 | 
         
            +
              A "contributor" is a copyright holder who authorizes use under this
         
     | 
| 474 | 
         
            +
            License of the Program or a work on which the Program is based.  The
         
     | 
| 475 | 
         
            +
            work thus licensed is called the contributor's "contributor version".
         
     | 
| 476 | 
         
            +
             
     | 
| 477 | 
         
            +
              A contributor's "essential patent claims" are all patent claims
         
     | 
| 478 | 
         
            +
            owned or controlled by the contributor, whether already acquired or
         
     | 
| 479 | 
         
            +
            hereafter acquired, that would be infringed by some manner, permitted
         
     | 
| 480 | 
         
            +
            by this License, of making, using, or selling its contributor version,
         
     | 
| 481 | 
         
            +
            but do not include claims that would be infringed only as a
         
     | 
| 482 | 
         
            +
            consequence of further modification of the contributor version.  For
         
     | 
| 483 | 
         
            +
            purposes of this definition, "control" includes the right to grant
         
     | 
| 484 | 
         
            +
            patent sublicenses in a manner consistent with the requirements of
         
     | 
| 485 | 
         
            +
            this License.
         
     | 
| 486 | 
         
            +
             
     | 
| 487 | 
         
            +
              Each contributor grants you a non-exclusive, worldwide, royalty-free
         
     | 
| 488 | 
         
            +
            patent license under the contributor's essential patent claims, to
         
     | 
| 489 | 
         
            +
            make, use, sell, offer for sale, import and otherwise run, modify and
         
     | 
| 490 | 
         
            +
            propagate the contents of its contributor version.
         
     | 
| 491 | 
         
            +
             
     | 
| 492 | 
         
            +
              In the following three paragraphs, a "patent license" is any express
         
     | 
| 493 | 
         
            +
            agreement or commitment, however denominated, not to enforce a patent
         
     | 
| 494 | 
         
            +
            (such as an express permission to practice a patent or covenant not to
         
     | 
| 495 | 
         
            +
            sue for patent infringement).  To "grant" such a patent license to a
         
     | 
| 496 | 
         
            +
            party means to make such an agreement or commitment not to enforce a
         
     | 
| 497 | 
         
            +
            patent against the party.
         
     | 
| 498 | 
         
            +
             
     | 
| 499 | 
         
            +
              If you convey a covered work, knowingly relying on a patent license,
         
     | 
| 500 | 
         
            +
            and the Corresponding Source of the work is not available for anyone
         
     | 
| 501 | 
         
            +
            to copy, free of charge and under the terms of this License, through a
         
     | 
| 502 | 
         
            +
            publicly available network server or other readily accessible means,
         
     | 
| 503 | 
         
            +
            then you must either (1) cause the Corresponding Source to be so
         
     | 
| 504 | 
         
            +
            available, or (2) arrange to deprive yourself of the benefit of the
         
     | 
| 505 | 
         
            +
            patent license for this particular work, or (3) arrange, in a manner
         
     | 
| 506 | 
         
            +
            consistent with the requirements of this License, to extend the patent
         
     | 
| 507 | 
         
            +
            license to downstream recipients.  "Knowingly relying" means you have
         
     | 
| 508 | 
         
            +
            actual knowledge that, but for the patent license, your conveying the
         
     | 
| 509 | 
         
            +
            covered work in a country, or your recipient's use of the covered work
         
     | 
| 510 | 
         
            +
            in a country, would infringe one or more identifiable patents in that
         
     | 
| 511 | 
         
            +
            country that you have reason to believe are valid.
         
     | 
| 512 | 
         
            +
             
     | 
| 513 | 
         
            +
              If, pursuant to or in connection with a single transaction or
         
     | 
| 514 | 
         
            +
            arrangement, you convey, or propagate by procuring conveyance of, a
         
     | 
| 515 | 
         
            +
            covered work, and grant a patent license to some of the parties
         
     | 
| 516 | 
         
            +
            receiving the covered work authorizing them to use, propagate, modify
         
     | 
| 517 | 
         
            +
            or convey a specific copy of the covered work, then the patent license
         
     | 
| 518 | 
         
            +
            you grant is automatically extended to all recipients of the covered
         
     | 
| 519 | 
         
            +
            work and works based on it.
         
     | 
| 520 | 
         
            +
             
     | 
| 521 | 
         
            +
              A patent license is "discriminatory" if it does not include within
         
     | 
| 522 | 
         
            +
            the scope of its coverage, prohibits the exercise of, or is
         
     | 
| 523 | 
         
            +
            conditioned on the non-exercise of one or more of the rights that are
         
     | 
| 524 | 
         
            +
            specifically granted under this License.  You may not convey a covered
         
     | 
| 525 | 
         
            +
            work if you are a party to an arrangement with a third party that is
         
     | 
| 526 | 
         
            +
            in the business of distributing software, under which you make payment
         
     | 
| 527 | 
         
            +
            to the third party based on the extent of your activity of conveying
         
     | 
| 528 | 
         
            +
            the work, and under which the third party grants, to any of the
         
     | 
| 529 | 
         
            +
            parties who would receive the covered work from you, a discriminatory
         
     | 
| 530 | 
         
            +
            patent license (a) in connection with copies of the covered work
         
     | 
| 531 | 
         
            +
            conveyed by you (or copies made from those copies), or (b) primarily
         
     | 
| 532 | 
         
            +
            for and in connection with specific products or compilations that
         
     | 
| 533 | 
         
            +
            contain the covered work, unless you entered into that arrangement,
         
     | 
| 534 | 
         
            +
            or that patent license was granted, prior to 28 March 2007.
         
     | 
| 535 | 
         
            +
             
     | 
| 536 | 
         
            +
              Nothing in this License shall be construed as excluding or limiting
         
     | 
| 537 | 
         
            +
            any implied license or other defenses to infringement that may
         
     | 
| 538 | 
         
            +
            otherwise be available to you under applicable patent law.
         
     | 
| 539 | 
         
            +
             
     | 
| 540 | 
         
            +
              12. No Surrender of Others' Freedom.
         
     | 
| 541 | 
         
            +
             
     | 
| 542 | 
         
            +
              If conditions are imposed on you (whether by court order, agreement or
         
     | 
| 543 | 
         
            +
            otherwise) that contradict the conditions of this License, they do not
         
     | 
| 544 | 
         
            +
            excuse you from the conditions of this License.  If you cannot convey a
         
     | 
| 545 | 
         
            +
            covered work so as to satisfy simultaneously your obligations under this
         
     | 
| 546 | 
         
            +
            License and any other pertinent obligations, then as a consequence you may
         
     | 
| 547 | 
         
            +
            not convey it at all.  For example, if you agree to terms that obligate you
         
     | 
| 548 | 
         
            +
            to collect a royalty for further conveying from those to whom you convey
         
     | 
| 549 | 
         
            +
            the Program, the only way you could satisfy both those terms and this
         
     | 
| 550 | 
         
            +
            License would be to refrain entirely from conveying the Program.
         
     | 
| 551 | 
         
            +
             
     | 
| 552 | 
         
            +
              13. Use with the GNU Affero General Public License.
         
     | 
| 553 | 
         
            +
             
     | 
| 554 | 
         
            +
              Notwithstanding any other provision of this License, you have
         
     | 
| 555 | 
         
            +
            permission to link or combine any covered work with a work licensed
         
     | 
| 556 | 
         
            +
            under version 3 of the GNU Affero General Public License into a single
         
     | 
| 557 | 
         
            +
            combined work, and to convey the resulting work.  The terms of this
         
     | 
| 558 | 
         
            +
            License will continue to apply to the part which is the covered work,
         
     | 
| 559 | 
         
            +
            but the special requirements of the GNU Affero General Public License,
         
     | 
| 560 | 
         
            +
            section 13, concerning interaction through a network will apply to the
         
     | 
| 561 | 
         
            +
            combination as such.
         
     | 
| 562 | 
         
            +
             
     | 
| 563 | 
         
            +
              14. Revised Versions of this License.
         
     | 
| 564 | 
         
            +
             
     | 
| 565 | 
         
            +
              The Free Software Foundation may publish revised and/or new versions of
         
     | 
| 566 | 
         
            +
            the GNU General Public License from time to time.  Such new versions will
         
     | 
| 567 | 
         
            +
            be similar in spirit to the present version, but may differ in detail to
         
     | 
| 568 | 
         
            +
            address new problems or concerns.
         
     | 
| 569 | 
         
            +
             
     | 
| 570 | 
         
            +
              Each version is given a distinguishing version number.  If the
         
     | 
| 571 | 
         
            +
            Program specifies that a certain numbered version of the GNU General
         
     | 
| 572 | 
         
            +
            Public License "or any later version" applies to it, you have the
         
     | 
| 573 | 
         
            +
            option of following the terms and conditions either of that numbered
         
     | 
| 574 | 
         
            +
            version or of any later version published by the Free Software
         
     | 
| 575 | 
         
            +
            Foundation.  If the Program does not specify a version number of the
         
     | 
| 576 | 
         
            +
            GNU General Public License, you may choose any version ever published
         
     | 
| 577 | 
         
            +
            by the Free Software Foundation.
         
     | 
| 578 | 
         
            +
             
     | 
| 579 | 
         
            +
              If the Program specifies that a proxy can decide which future
         
     | 
| 580 | 
         
            +
            versions of the GNU General Public License can be used, that proxy's
         
     | 
| 581 | 
         
            +
            public statement of acceptance of a version permanently authorizes you
         
     | 
| 582 | 
         
            +
            to choose that version for the Program.
         
     | 
| 583 | 
         
            +
             
     | 
| 584 | 
         
            +
              Later license versions may give you additional or different
         
     | 
| 585 | 
         
            +
            permissions.  However, no additional obligations are imposed on any
         
     | 
| 586 | 
         
            +
            author or copyright holder as a result of your choosing to follow a
         
     | 
| 587 | 
         
            +
            later version.
         
     | 
| 588 | 
         
            +
             
     | 
| 589 | 
         
            +
              15. Disclaimer of Warranty.
         
     | 
| 590 | 
         
            +
             
     | 
| 591 | 
         
            +
              THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
         
     | 
| 592 | 
         
            +
            APPLICABLE LAW.  EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
         
     | 
| 593 | 
         
            +
            HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
         
     | 
| 594 | 
         
            +
            OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
         
     | 
| 595 | 
         
            +
            THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
         
     | 
| 596 | 
         
            +
            PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
         
     | 
| 597 | 
         
            +
            IS WITH YOU.  SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
         
     | 
| 598 | 
         
            +
            ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
         
     | 
| 599 | 
         
            +
             
     | 
| 600 | 
         
            +
              16. Limitation of Liability.
         
     | 
| 601 | 
         
            +
             
     | 
| 602 | 
         
            +
              IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
         
     | 
| 603 | 
         
            +
            WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
         
     | 
| 604 | 
         
            +
            THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
         
     | 
| 605 | 
         
            +
            GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
         
     | 
| 606 | 
         
            +
            USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
         
     | 
| 607 | 
         
            +
            DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
         
     | 
| 608 | 
         
            +
            PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
         
     | 
| 609 | 
         
            +
            EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
         
     | 
| 610 | 
         
            +
            SUCH DAMAGES.
         
     | 
| 611 | 
         
            +
             
     | 
| 612 | 
         
            +
              17. Interpretation of Sections 15 and 16.
         
     | 
| 613 | 
         
            +
             
     | 
| 614 | 
         
            +
              If the disclaimer of warranty and limitation of liability provided
         
     | 
| 615 | 
         
            +
            above cannot be given local legal effect according to their terms,
         
     | 
| 616 | 
         
            +
            reviewing courts shall apply local law that most closely approximates
         
     | 
| 617 | 
         
            +
            an absolute waiver of all civil liability in connection with the
         
     | 
| 618 | 
         
            +
            Program, unless a warranty or assumption of liability accompanies a
         
     | 
| 619 | 
         
            +
            copy of the Program in return for a fee.
         
     | 
| 620 | 
         
            +
             
     | 
| 621 | 
         
            +
                                 END OF TERMS AND CONDITIONS
         
     | 
| 622 | 
         
            +
             
     | 
| 623 | 
         
            +
                        How to Apply These Terms to Your New Programs
         
     | 
| 624 | 
         
            +
             
     | 
| 625 | 
         
            +
              If you develop a new program, and you want it to be of the greatest
         
     | 
| 626 | 
         
            +
            possible use to the public, the best way to achieve this is to make it
         
     | 
| 627 | 
         
            +
            free software which everyone can redistribute and change under these terms.
         
     | 
| 628 | 
         
            +
             
     | 
| 629 | 
         
            +
              To do so, attach the following notices to the program.  It is safest
         
     | 
| 630 | 
         
            +
            to attach them to the start of each source file to most effectively
         
     | 
| 631 | 
         
            +
            state the exclusion of warranty; and each file should have at least
         
     | 
| 632 | 
         
            +
            the "copyright" line and a pointer to where the full notice is found.
         
     | 
| 633 | 
         
            +
             
     | 
| 634 | 
         
            +
                <one line to give the program's name and a brief idea of what it does.>
         
     | 
| 635 | 
         
            +
                Copyright (C) <year>  <name of author>
         
     | 
| 636 | 
         
            +
             
     | 
| 637 | 
         
            +
                This program is free software: you can redistribute it and/or modify
         
     | 
| 638 | 
         
            +
                it under the terms of the GNU General Public License as published by
         
     | 
| 639 | 
         
            +
                the Free Software Foundation, either version 3 of the License, or
         
     | 
| 640 | 
         
            +
                (at your option) any later version.
         
     | 
| 641 | 
         
            +
             
     | 
| 642 | 
         
            +
                This program is distributed in the hope that it will be useful,
         
     | 
| 643 | 
         
            +
                but WITHOUT ANY WARRANTY; without even the implied warranty of
         
     | 
| 644 | 
         
            +
                MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
         
     | 
| 645 | 
         
            +
                GNU General Public License for more details.
         
     | 
| 646 | 
         
            +
             
     | 
| 647 | 
         
            +
                You should have received a copy of the GNU General Public License
         
     | 
| 648 | 
         
            +
                along with this program.  If not, see <https://www.gnu.org/licenses/>.
         
     | 
| 649 | 
         
            +
             
     | 
| 650 | 
         
            +
            Also add information on how to contact you by electronic and paper mail.
         
     | 
| 651 | 
         
            +
             
     | 
| 652 | 
         
            +
              If the program does terminal interaction, make it output a short
         
     | 
| 653 | 
         
            +
            notice like this when it starts in an interactive mode:
         
     | 
| 654 | 
         
            +
             
     | 
| 655 | 
         
            +
                <program>  Copyright (C) <year>  <name of author>
         
     | 
| 656 | 
         
            +
                This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
         
     | 
| 657 | 
         
            +
                This is free software, and you are welcome to redistribute it
         
     | 
| 658 | 
         
            +
                under certain conditions; type `show c' for details.
         
     | 
| 659 | 
         
            +
             
     | 
| 660 | 
         
            +
            The hypothetical commands `show w' and `show c' should show the appropriate
         
     | 
| 661 | 
         
            +
            parts of the General Public License.  Of course, your program's commands
         
     | 
| 662 | 
         
            +
            might be different; for a GUI interface, you would use an "about box".
         
     | 
| 663 | 
         
            +
             
     | 
| 664 | 
         
            +
              You should also get your employer (if you work as a programmer) or school,
         
     | 
| 665 | 
         
            +
            if any, to sign a "copyright disclaimer" for the program, if necessary.
         
     | 
| 666 | 
         
            +
            For more information on this, and how to apply and follow the GNU GPL, see
         
     | 
| 667 | 
         
            +
            <https://www.gnu.org/licenses/>.
         
     | 
| 668 | 
         
            +
             
     | 
| 669 | 
         
            +
              The GNU General Public License does not permit incorporating your program
         
     | 
| 670 | 
         
            +
            into proprietary programs.  If your program is a subroutine library, you
         
     | 
| 671 | 
         
            +
            may consider it more useful to permit linking proprietary applications with
         
     | 
| 672 | 
         
            +
            the library.  If this is what you want to do, use the GNU Lesser General
         
     | 
| 673 | 
         
            +
            Public License instead of this License.  But first, please read
         
     | 
| 674 | 
         
            +
            <https://www.gnu.org/licenses/why-not-lgpl.html>.
         
     | 
    	
        README.md
    ADDED
    
    | 
         
            File without changes
         
     | 
    	
        app/app_settings.py
    ADDED
    
    | 
         @@ -0,0 +1,54 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import os
         
     | 
| 2 | 
         
            +
            import json
         
     | 
| 3 | 
         
            +
            from aiohttp import web
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            class AppSettings():
         
     | 
| 7 | 
         
            +
                def __init__(self, user_manager):
         
     | 
| 8 | 
         
            +
                    self.user_manager = user_manager
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
                def get_settings(self, request):
         
     | 
| 11 | 
         
            +
                    file = self.user_manager.get_request_user_filepath(
         
     | 
| 12 | 
         
            +
                        request, "comfy.settings.json")
         
     | 
| 13 | 
         
            +
                    if os.path.isfile(file):
         
     | 
| 14 | 
         
            +
                        with open(file) as f:
         
     | 
| 15 | 
         
            +
                            return json.load(f)
         
     | 
| 16 | 
         
            +
                    else:
         
     | 
| 17 | 
         
            +
                        return {}
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
                def save_settings(self, request, settings):
         
     | 
| 20 | 
         
            +
                    file = self.user_manager.get_request_user_filepath(
         
     | 
| 21 | 
         
            +
                        request, "comfy.settings.json")
         
     | 
| 22 | 
         
            +
                    with open(file, "w") as f:
         
     | 
| 23 | 
         
            +
                        f.write(json.dumps(settings, indent=4))
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
                def add_routes(self, routes):
         
     | 
| 26 | 
         
            +
                    @routes.get("/settings")
         
     | 
| 27 | 
         
            +
                    async def get_settings(request):
         
     | 
| 28 | 
         
            +
                        return web.json_response(self.get_settings(request))
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
                    @routes.get("/settings/{id}")
         
     | 
| 31 | 
         
            +
                    async def get_setting(request):
         
     | 
| 32 | 
         
            +
                        value = None
         
     | 
| 33 | 
         
            +
                        settings = self.get_settings(request)
         
     | 
| 34 | 
         
            +
                        setting_id = request.match_info.get("id", None)
         
     | 
| 35 | 
         
            +
                        if setting_id and setting_id in settings:
         
     | 
| 36 | 
         
            +
                            value = settings[setting_id]
         
     | 
| 37 | 
         
            +
                        return web.json_response(value)
         
     | 
| 38 | 
         
            +
             
     | 
| 39 | 
         
            +
                    @routes.post("/settings")
         
     | 
| 40 | 
         
            +
                    async def post_settings(request):
         
     | 
| 41 | 
         
            +
                        settings = self.get_settings(request)
         
     | 
| 42 | 
         
            +
                        new_settings = await request.json()
         
     | 
| 43 | 
         
            +
                        self.save_settings(request, {**settings, **new_settings})
         
     | 
| 44 | 
         
            +
                        return web.Response(status=200)
         
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
                    @routes.post("/settings/{id}")
         
     | 
| 47 | 
         
            +
                    async def post_setting(request):
         
     | 
| 48 | 
         
            +
                        setting_id = request.match_info.get("id", None)
         
     | 
| 49 | 
         
            +
                        if not setting_id:
         
     | 
| 50 | 
         
            +
                            return web.Response(status=400)
         
     | 
| 51 | 
         
            +
                        settings = self.get_settings(request)
         
     | 
| 52 | 
         
            +
                        settings[setting_id] = await request.json()
         
     | 
| 53 | 
         
            +
                        self.save_settings(request, settings)
         
     | 
| 54 | 
         
            +
                        return web.Response(status=200)
         
     | 
    	
        app/user_manager.py
    ADDED
    
    | 
         @@ -0,0 +1,140 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import json
         
     | 
| 2 | 
         
            +
            import os
         
     | 
| 3 | 
         
            +
            import re
         
     | 
| 4 | 
         
            +
            import uuid
         
     | 
| 5 | 
         
            +
            from aiohttp import web
         
     | 
| 6 | 
         
            +
            from comfy.cli_args import args
         
     | 
| 7 | 
         
            +
            from folder_paths import user_directory
         
     | 
| 8 | 
         
            +
            from .app_settings import AppSettings
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            default_user = "default"
         
     | 
| 11 | 
         
            +
            users_file = os.path.join(user_directory, "users.json")
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
            class UserManager():
         
     | 
| 15 | 
         
            +
                def __init__(self):
         
     | 
| 16 | 
         
            +
                    global user_directory
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
                    self.settings = AppSettings(self)
         
     | 
| 19 | 
         
            +
                    if not os.path.exists(user_directory):
         
     | 
| 20 | 
         
            +
                        os.mkdir(user_directory)
         
     | 
| 21 | 
         
            +
                        if not args.multi_user:
         
     | 
| 22 | 
         
            +
                            print("****** User settings have been changed to be stored on the server instead of browser storage. ******")
         
     | 
| 23 | 
         
            +
                            print("****** For multi-user setups add the --multi-user CLI argument to enable multiple user profiles. ******")
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
                    if args.multi_user:
         
     | 
| 26 | 
         
            +
                        if os.path.isfile(users_file):
         
     | 
| 27 | 
         
            +
                            with open(users_file) as f:
         
     | 
| 28 | 
         
            +
                                self.users = json.load(f)
         
     | 
| 29 | 
         
            +
                        else:
         
     | 
| 30 | 
         
            +
                            self.users = {}
         
     | 
| 31 | 
         
            +
                    else:
         
     | 
| 32 | 
         
            +
                        self.users = {"default": "default"}
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
                def get_request_user_id(self, request):
         
     | 
| 35 | 
         
            +
                    user = "default"
         
     | 
| 36 | 
         
            +
                    if args.multi_user and "comfy-user" in request.headers:
         
     | 
| 37 | 
         
            +
                        user = request.headers["comfy-user"]
         
     | 
| 38 | 
         
            +
             
     | 
| 39 | 
         
            +
                    if user not in self.users:
         
     | 
| 40 | 
         
            +
                        raise KeyError("Unknown user: " + user)
         
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
                    return user
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
                def get_request_user_filepath(self, request, file, type="userdata", create_dir=True):
         
     | 
| 45 | 
         
            +
                    global user_directory
         
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
                    if type == "userdata":
         
     | 
| 48 | 
         
            +
                        root_dir = user_directory
         
     | 
| 49 | 
         
            +
                    else:
         
     | 
| 50 | 
         
            +
                        raise KeyError("Unknown filepath type:" + type)
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
                    user = self.get_request_user_id(request)
         
     | 
| 53 | 
         
            +
                    path = user_root = os.path.abspath(os.path.join(root_dir, user))
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
                    # prevent leaving /{type}
         
     | 
| 56 | 
         
            +
                    if os.path.commonpath((root_dir, user_root)) != root_dir:
         
     | 
| 57 | 
         
            +
                        return None
         
     | 
| 58 | 
         
            +
             
     | 
| 59 | 
         
            +
                    parent = user_root
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
                    if file is not None:
         
     | 
| 62 | 
         
            +
                        # prevent leaving /{type}/{user}
         
     | 
| 63 | 
         
            +
                        path = os.path.abspath(os.path.join(user_root, file))
         
     | 
| 64 | 
         
            +
                        if os.path.commonpath((user_root, path)) != user_root:
         
     | 
| 65 | 
         
            +
                            return None
         
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
                    if create_dir and not os.path.exists(parent):
         
     | 
| 68 | 
         
            +
                        os.mkdir(parent)
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
                    return path
         
     | 
| 71 | 
         
            +
             
     | 
| 72 | 
         
            +
                def add_user(self, name):
         
     | 
| 73 | 
         
            +
                    name = name.strip()
         
     | 
| 74 | 
         
            +
                    if not name:
         
     | 
| 75 | 
         
            +
                        raise ValueError("username not provided")
         
     | 
| 76 | 
         
            +
                    user_id = re.sub("[^a-zA-Z0-9-_]+", '-', name)
         
     | 
| 77 | 
         
            +
                    user_id = user_id + "_" + str(uuid.uuid4())
         
     | 
| 78 | 
         
            +
             
     | 
| 79 | 
         
            +
                    self.users[user_id] = name
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
                    global users_file
         
     | 
| 82 | 
         
            +
                    with open(users_file, "w") as f:
         
     | 
| 83 | 
         
            +
                        json.dump(self.users, f)
         
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
                    return user_id
         
     | 
| 86 | 
         
            +
             
     | 
| 87 | 
         
            +
                def add_routes(self, routes):
         
     | 
| 88 | 
         
            +
                    self.settings.add_routes(routes)
         
     | 
| 89 | 
         
            +
             
     | 
| 90 | 
         
            +
                    @routes.get("/users")
         
     | 
| 91 | 
         
            +
                    async def get_users(request):
         
     | 
| 92 | 
         
            +
                        if args.multi_user:
         
     | 
| 93 | 
         
            +
                            return web.json_response({"storage": "server", "users": self.users})
         
     | 
| 94 | 
         
            +
                        else:
         
     | 
| 95 | 
         
            +
                            user_dir = self.get_request_user_filepath(request, None, create_dir=False)
         
     | 
| 96 | 
         
            +
                            return web.json_response({
         
     | 
| 97 | 
         
            +
                                "storage": "server",
         
     | 
| 98 | 
         
            +
                                "migrated": os.path.exists(user_dir)
         
     | 
| 99 | 
         
            +
                            })
         
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
                    @routes.post("/users")
         
     | 
| 102 | 
         
            +
                    async def post_users(request):
         
     | 
| 103 | 
         
            +
                        body = await request.json()
         
     | 
| 104 | 
         
            +
                        username = body["username"]
         
     | 
| 105 | 
         
            +
                        if username in self.users.values():
         
     | 
| 106 | 
         
            +
                            return web.json_response({"error": "Duplicate username."}, status=400)
         
     | 
| 107 | 
         
            +
             
     | 
| 108 | 
         
            +
                        user_id = self.add_user(username)
         
     | 
| 109 | 
         
            +
                        return web.json_response(user_id)
         
     | 
| 110 | 
         
            +
             
     | 
| 111 | 
         
            +
                    @routes.get("/userdata/{file}")
         
     | 
| 112 | 
         
            +
                    async def getuserdata(request):
         
     | 
| 113 | 
         
            +
                        file = request.match_info.get("file", None)
         
     | 
| 114 | 
         
            +
                        if not file:
         
     | 
| 115 | 
         
            +
                            return web.Response(status=400)
         
     | 
| 116 | 
         
            +
                            
         
     | 
| 117 | 
         
            +
                        path = self.get_request_user_filepath(request, file)
         
     | 
| 118 | 
         
            +
                        if not path:
         
     | 
| 119 | 
         
            +
                            return web.Response(status=403)
         
     | 
| 120 | 
         
            +
                        
         
     | 
| 121 | 
         
            +
                        if not os.path.exists(path):
         
     | 
| 122 | 
         
            +
                            return web.Response(status=404)
         
     | 
| 123 | 
         
            +
                        
         
     | 
| 124 | 
         
            +
                        return web.FileResponse(path)
         
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
                    @routes.post("/userdata/{file}")
         
     | 
| 127 | 
         
            +
                    async def post_userdata(request):
         
     | 
| 128 | 
         
            +
                        file = request.match_info.get("file", None)
         
     | 
| 129 | 
         
            +
                        if not file:
         
     | 
| 130 | 
         
            +
                            return web.Response(status=400)
         
     | 
| 131 | 
         
            +
                            
         
     | 
| 132 | 
         
            +
                        path = self.get_request_user_filepath(request, file)
         
     | 
| 133 | 
         
            +
                        if not path:
         
     | 
| 134 | 
         
            +
                            return web.Response(status=403)
         
     | 
| 135 | 
         
            +
             
     | 
| 136 | 
         
            +
                        body = await request.read()
         
     | 
| 137 | 
         
            +
                        with open(path, "wb") as f:
         
     | 
| 138 | 
         
            +
                            f.write(body)
         
     | 
| 139 | 
         
            +
                            
         
     | 
| 140 | 
         
            +
                        return web.Response(status=200)
         
     | 
    	
        comfy/.DS_Store
    ADDED
    
    | 
         Binary file (8.2 kB). View file 
     | 
| 
         | 
    	
        comfy/checkpoint_pickle.py
    ADDED
    
    | 
         @@ -0,0 +1,13 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import pickle
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
            load = pickle.load
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            class Empty:
         
     | 
| 6 | 
         
            +
                pass
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            class Unpickler(pickle.Unpickler):
         
     | 
| 9 | 
         
            +
                def find_class(self, module, name):
         
     | 
| 10 | 
         
            +
                    #TODO: safe unpickle
         
     | 
| 11 | 
         
            +
                    if module.startswith("pytorch_lightning"):
         
     | 
| 12 | 
         
            +
                        return Empty
         
     | 
| 13 | 
         
            +
                    return super().find_class(module, name)
         
     | 
    	
        comfy/cldm/cldm.py
    ADDED
    
    | 
         @@ -0,0 +1,312 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            #taken from: https://github.com/lllyasviel/ControlNet
         
     | 
| 2 | 
         
            +
            #and modified
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            import torch
         
     | 
| 5 | 
         
            +
            import torch as th
         
     | 
| 6 | 
         
            +
            import torch.nn as nn
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            from ..ldm.modules.diffusionmodules.util import (
         
     | 
| 9 | 
         
            +
                zero_module,
         
     | 
| 10 | 
         
            +
                timestep_embedding,
         
     | 
| 11 | 
         
            +
            )
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            from ..ldm.modules.attention import SpatialTransformer
         
     | 
| 14 | 
         
            +
            from ..ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample
         
     | 
| 15 | 
         
            +
            from ..ldm.util import exists
         
     | 
| 16 | 
         
            +
            import comfy.ops
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            class ControlledUnetModel(UNetModel):
         
     | 
| 19 | 
         
            +
                #implemented in the ldm unet
         
     | 
| 20 | 
         
            +
                pass
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
            class ControlNet(nn.Module):
         
     | 
| 23 | 
         
            +
                def __init__(
         
     | 
| 24 | 
         
            +
                    self,
         
     | 
| 25 | 
         
            +
                    image_size,
         
     | 
| 26 | 
         
            +
                    in_channels,
         
     | 
| 27 | 
         
            +
                    model_channels,
         
     | 
| 28 | 
         
            +
                    hint_channels,
         
     | 
| 29 | 
         
            +
                    num_res_blocks,
         
     | 
| 30 | 
         
            +
                    dropout=0,
         
     | 
| 31 | 
         
            +
                    channel_mult=(1, 2, 4, 8),
         
     | 
| 32 | 
         
            +
                    conv_resample=True,
         
     | 
| 33 | 
         
            +
                    dims=2,
         
     | 
| 34 | 
         
            +
                    num_classes=None,
         
     | 
| 35 | 
         
            +
                    use_checkpoint=False,
         
     | 
| 36 | 
         
            +
                    dtype=torch.float32,
         
     | 
| 37 | 
         
            +
                    num_heads=-1,
         
     | 
| 38 | 
         
            +
                    num_head_channels=-1,
         
     | 
| 39 | 
         
            +
                    num_heads_upsample=-1,
         
     | 
| 40 | 
         
            +
                    use_scale_shift_norm=False,
         
     | 
| 41 | 
         
            +
                    resblock_updown=False,
         
     | 
| 42 | 
         
            +
                    use_new_attention_order=False,
         
     | 
| 43 | 
         
            +
                    use_spatial_transformer=False,    # custom transformer support
         
     | 
| 44 | 
         
            +
                    transformer_depth=1,              # custom transformer support
         
     | 
| 45 | 
         
            +
                    context_dim=None,                 # custom transformer support
         
     | 
| 46 | 
         
            +
                    n_embed=None,                     # custom support for prediction of discrete ids into codebook of first stage vq model
         
     | 
| 47 | 
         
            +
                    legacy=True,
         
     | 
| 48 | 
         
            +
                    disable_self_attentions=None,
         
     | 
| 49 | 
         
            +
                    num_attention_blocks=None,
         
     | 
| 50 | 
         
            +
                    disable_middle_self_attn=False,
         
     | 
| 51 | 
         
            +
                    use_linear_in_transformer=False,
         
     | 
| 52 | 
         
            +
                    adm_in_channels=None,
         
     | 
| 53 | 
         
            +
                    transformer_depth_middle=None,
         
     | 
| 54 | 
         
            +
                    transformer_depth_output=None,
         
     | 
| 55 | 
         
            +
                    device=None,
         
     | 
| 56 | 
         
            +
                    operations=comfy.ops.disable_weight_init,
         
     | 
| 57 | 
         
            +
                    **kwargs,
         
     | 
| 58 | 
         
            +
                ):
         
     | 
| 59 | 
         
            +
                    super().__init__()
         
     | 
| 60 | 
         
            +
                    assert use_spatial_transformer == True, "use_spatial_transformer has to be true"
         
     | 
| 61 | 
         
            +
                    if use_spatial_transformer:
         
     | 
| 62 | 
         
            +
                        assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
                    if context_dim is not None:
         
     | 
| 65 | 
         
            +
                        assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
         
     | 
| 66 | 
         
            +
                        # from omegaconf.listconfig import ListConfig
         
     | 
| 67 | 
         
            +
                        # if type(context_dim) == ListConfig:
         
     | 
| 68 | 
         
            +
                        #     context_dim = list(context_dim)
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
                    if num_heads_upsample == -1:
         
     | 
| 71 | 
         
            +
                        num_heads_upsample = num_heads
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
                    if num_heads == -1:
         
     | 
| 74 | 
         
            +
                        assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
         
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
                    if num_head_channels == -1:
         
     | 
| 77 | 
         
            +
                        assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
         
     | 
| 78 | 
         
            +
             
     | 
| 79 | 
         
            +
                    self.dims = dims
         
     | 
| 80 | 
         
            +
                    self.image_size = image_size
         
     | 
| 81 | 
         
            +
                    self.in_channels = in_channels
         
     | 
| 82 | 
         
            +
                    self.model_channels = model_channels
         
     | 
| 83 | 
         
            +
             
     | 
| 84 | 
         
            +
                    if isinstance(num_res_blocks, int):
         
     | 
| 85 | 
         
            +
                        self.num_res_blocks = len(channel_mult) * [num_res_blocks]
         
     | 
| 86 | 
         
            +
                    else:
         
     | 
| 87 | 
         
            +
                        if len(num_res_blocks) != len(channel_mult):
         
     | 
| 88 | 
         
            +
                            raise ValueError("provide num_res_blocks either as an int (globally constant) or "
         
     | 
| 89 | 
         
            +
                                             "as a list/tuple (per-level) with the same length as channel_mult")
         
     | 
| 90 | 
         
            +
                        self.num_res_blocks = num_res_blocks
         
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
                    if disable_self_attentions is not None:
         
     | 
| 93 | 
         
            +
                        # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
         
     | 
| 94 | 
         
            +
                        assert len(disable_self_attentions) == len(channel_mult)
         
     | 
| 95 | 
         
            +
                    if num_attention_blocks is not None:
         
     | 
| 96 | 
         
            +
                        assert len(num_attention_blocks) == len(self.num_res_blocks)
         
     | 
| 97 | 
         
            +
                        assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
         
     | 
| 98 | 
         
            +
             
     | 
| 99 | 
         
            +
                    transformer_depth = transformer_depth[:]
         
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
                    self.dropout = dropout
         
     | 
| 102 | 
         
            +
                    self.channel_mult = channel_mult
         
     | 
| 103 | 
         
            +
                    self.conv_resample = conv_resample
         
     | 
| 104 | 
         
            +
                    self.num_classes = num_classes
         
     | 
| 105 | 
         
            +
                    self.use_checkpoint = use_checkpoint
         
     | 
| 106 | 
         
            +
                    self.dtype = dtype
         
     | 
| 107 | 
         
            +
                    self.num_heads = num_heads
         
     | 
| 108 | 
         
            +
                    self.num_head_channels = num_head_channels
         
     | 
| 109 | 
         
            +
                    self.num_heads_upsample = num_heads_upsample
         
     | 
| 110 | 
         
            +
                    self.predict_codebook_ids = n_embed is not None
         
     | 
| 111 | 
         
            +
             
     | 
| 112 | 
         
            +
                    time_embed_dim = model_channels * 4
         
     | 
| 113 | 
         
            +
                    self.time_embed = nn.Sequential(
         
     | 
| 114 | 
         
            +
                        operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
         
     | 
| 115 | 
         
            +
                        nn.SiLU(),
         
     | 
| 116 | 
         
            +
                        operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
         
     | 
| 117 | 
         
            +
                    )
         
     | 
| 118 | 
         
            +
             
     | 
| 119 | 
         
            +
                    if self.num_classes is not None:
         
     | 
| 120 | 
         
            +
                        if isinstance(self.num_classes, int):
         
     | 
| 121 | 
         
            +
                            self.label_emb = nn.Embedding(num_classes, time_embed_dim)
         
     | 
| 122 | 
         
            +
                        elif self.num_classes == "continuous":
         
     | 
| 123 | 
         
            +
                            print("setting up linear c_adm embedding layer")
         
     | 
| 124 | 
         
            +
                            self.label_emb = nn.Linear(1, time_embed_dim)
         
     | 
| 125 | 
         
            +
                        elif self.num_classes == "sequential":
         
     | 
| 126 | 
         
            +
                            assert adm_in_channels is not None
         
     | 
| 127 | 
         
            +
                            self.label_emb = nn.Sequential(
         
     | 
| 128 | 
         
            +
                                nn.Sequential(
         
     | 
| 129 | 
         
            +
                                    operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
         
     | 
| 130 | 
         
            +
                                    nn.SiLU(),
         
     | 
| 131 | 
         
            +
                                    operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
         
     | 
| 132 | 
         
            +
                                )
         
     | 
| 133 | 
         
            +
                            )
         
     | 
| 134 | 
         
            +
                        else:
         
     | 
| 135 | 
         
            +
                            raise ValueError()
         
     | 
| 136 | 
         
            +
             
     | 
| 137 | 
         
            +
                    self.input_blocks = nn.ModuleList(
         
     | 
| 138 | 
         
            +
                        [
         
     | 
| 139 | 
         
            +
                            TimestepEmbedSequential(
         
     | 
| 140 | 
         
            +
                                operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
         
     | 
| 141 | 
         
            +
                            )
         
     | 
| 142 | 
         
            +
                        ]
         
     | 
| 143 | 
         
            +
                    )
         
     | 
| 144 | 
         
            +
                    self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels, operations=operations, dtype=self.dtype, device=device)])
         
     | 
| 145 | 
         
            +
             
     | 
| 146 | 
         
            +
                    self.input_hint_block = TimestepEmbedSequential(
         
     | 
| 147 | 
         
            +
                                operations.conv_nd(dims, hint_channels, 16, 3, padding=1, dtype=self.dtype, device=device),
         
     | 
| 148 | 
         
            +
                                nn.SiLU(),
         
     | 
| 149 | 
         
            +
                                operations.conv_nd(dims, 16, 16, 3, padding=1, dtype=self.dtype, device=device),
         
     | 
| 150 | 
         
            +
                                nn.SiLU(),
         
     | 
| 151 | 
         
            +
                                operations.conv_nd(dims, 16, 32, 3, padding=1, stride=2, dtype=self.dtype, device=device),
         
     | 
| 152 | 
         
            +
                                nn.SiLU(),
         
     | 
| 153 | 
         
            +
                                operations.conv_nd(dims, 32, 32, 3, padding=1, dtype=self.dtype, device=device),
         
     | 
| 154 | 
         
            +
                                nn.SiLU(),
         
     | 
| 155 | 
         
            +
                                operations.conv_nd(dims, 32, 96, 3, padding=1, stride=2, dtype=self.dtype, device=device),
         
     | 
| 156 | 
         
            +
                                nn.SiLU(),
         
     | 
| 157 | 
         
            +
                                operations.conv_nd(dims, 96, 96, 3, padding=1, dtype=self.dtype, device=device),
         
     | 
| 158 | 
         
            +
                                nn.SiLU(),
         
     | 
| 159 | 
         
            +
                                operations.conv_nd(dims, 96, 256, 3, padding=1, stride=2, dtype=self.dtype, device=device),
         
     | 
| 160 | 
         
            +
                                nn.SiLU(),
         
     | 
| 161 | 
         
            +
                                operations.conv_nd(dims, 256, model_channels, 3, padding=1, dtype=self.dtype, device=device)
         
     | 
| 162 | 
         
            +
                    )
         
     | 
| 163 | 
         
            +
             
     | 
| 164 | 
         
            +
                    self._feature_size = model_channels
         
     | 
| 165 | 
         
            +
                    input_block_chans = [model_channels]
         
     | 
| 166 | 
         
            +
                    ch = model_channels
         
     | 
| 167 | 
         
            +
                    ds = 1
         
     | 
| 168 | 
         
            +
                    for level, mult in enumerate(channel_mult):
         
     | 
| 169 | 
         
            +
                        for nr in range(self.num_res_blocks[level]):
         
     | 
| 170 | 
         
            +
                            layers = [
         
     | 
| 171 | 
         
            +
                                ResBlock(
         
     | 
| 172 | 
         
            +
                                    ch,
         
     | 
| 173 | 
         
            +
                                    time_embed_dim,
         
     | 
| 174 | 
         
            +
                                    dropout,
         
     | 
| 175 | 
         
            +
                                    out_channels=mult * model_channels,
         
     | 
| 176 | 
         
            +
                                    dims=dims,
         
     | 
| 177 | 
         
            +
                                    use_checkpoint=use_checkpoint,
         
     | 
| 178 | 
         
            +
                                    use_scale_shift_norm=use_scale_shift_norm,
         
     | 
| 179 | 
         
            +
                                    dtype=self.dtype,
         
     | 
| 180 | 
         
            +
                                    device=device,
         
     | 
| 181 | 
         
            +
                                    operations=operations,
         
     | 
| 182 | 
         
            +
                                )
         
     | 
| 183 | 
         
            +
                            ]
         
     | 
| 184 | 
         
            +
                            ch = mult * model_channels
         
     | 
| 185 | 
         
            +
                            num_transformers = transformer_depth.pop(0)
         
     | 
| 186 | 
         
            +
                            if num_transformers > 0:
         
     | 
| 187 | 
         
            +
                                if num_head_channels == -1:
         
     | 
| 188 | 
         
            +
                                    dim_head = ch // num_heads
         
     | 
| 189 | 
         
            +
                                else:
         
     | 
| 190 | 
         
            +
                                    num_heads = ch // num_head_channels
         
     | 
| 191 | 
         
            +
                                    dim_head = num_head_channels
         
     | 
| 192 | 
         
            +
                                if legacy:
         
     | 
| 193 | 
         
            +
                                    #num_heads = 1
         
     | 
| 194 | 
         
            +
                                    dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
         
     | 
| 195 | 
         
            +
                                if exists(disable_self_attentions):
         
     | 
| 196 | 
         
            +
                                    disabled_sa = disable_self_attentions[level]
         
     | 
| 197 | 
         
            +
                                else:
         
     | 
| 198 | 
         
            +
                                    disabled_sa = False
         
     | 
| 199 | 
         
            +
             
     | 
| 200 | 
         
            +
                                if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
         
     | 
| 201 | 
         
            +
                                    layers.append(
         
     | 
| 202 | 
         
            +
                                        SpatialTransformer(
         
     | 
| 203 | 
         
            +
                                            ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
         
     | 
| 204 | 
         
            +
                                            disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
         
     | 
| 205 | 
         
            +
                                            use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
         
     | 
| 206 | 
         
            +
                                        )
         
     | 
| 207 | 
         
            +
                                    )
         
     | 
| 208 | 
         
            +
                            self.input_blocks.append(TimestepEmbedSequential(*layers))
         
     | 
| 209 | 
         
            +
                            self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device))
         
     | 
| 210 | 
         
            +
                            self._feature_size += ch
         
     | 
| 211 | 
         
            +
                            input_block_chans.append(ch)
         
     | 
| 212 | 
         
            +
                        if level != len(channel_mult) - 1:
         
     | 
| 213 | 
         
            +
                            out_ch = ch
         
     | 
| 214 | 
         
            +
                            self.input_blocks.append(
         
     | 
| 215 | 
         
            +
                                TimestepEmbedSequential(
         
     | 
| 216 | 
         
            +
                                    ResBlock(
         
     | 
| 217 | 
         
            +
                                        ch,
         
     | 
| 218 | 
         
            +
                                        time_embed_dim,
         
     | 
| 219 | 
         
            +
                                        dropout,
         
     | 
| 220 | 
         
            +
                                        out_channels=out_ch,
         
     | 
| 221 | 
         
            +
                                        dims=dims,
         
     | 
| 222 | 
         
            +
                                        use_checkpoint=use_checkpoint,
         
     | 
| 223 | 
         
            +
                                        use_scale_shift_norm=use_scale_shift_norm,
         
     | 
| 224 | 
         
            +
                                        down=True,
         
     | 
| 225 | 
         
            +
                                        dtype=self.dtype,
         
     | 
| 226 | 
         
            +
                                        device=device,
         
     | 
| 227 | 
         
            +
                                        operations=operations
         
     | 
| 228 | 
         
            +
                                    )
         
     | 
| 229 | 
         
            +
                                    if resblock_updown
         
     | 
| 230 | 
         
            +
                                    else Downsample(
         
     | 
| 231 | 
         
            +
                                        ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations
         
     | 
| 232 | 
         
            +
                                    )
         
     | 
| 233 | 
         
            +
                                )
         
     | 
| 234 | 
         
            +
                            )
         
     | 
| 235 | 
         
            +
                            ch = out_ch
         
     | 
| 236 | 
         
            +
                            input_block_chans.append(ch)
         
     | 
| 237 | 
         
            +
                            self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device))
         
     | 
| 238 | 
         
            +
                            ds *= 2
         
     | 
| 239 | 
         
            +
                            self._feature_size += ch
         
     | 
| 240 | 
         
            +
             
     | 
| 241 | 
         
            +
                    if num_head_channels == -1:
         
     | 
| 242 | 
         
            +
                        dim_head = ch // num_heads
         
     | 
| 243 | 
         
            +
                    else:
         
     | 
| 244 | 
         
            +
                        num_heads = ch // num_head_channels
         
     | 
| 245 | 
         
            +
                        dim_head = num_head_channels
         
     | 
| 246 | 
         
            +
                    if legacy:
         
     | 
| 247 | 
         
            +
                        #num_heads = 1
         
     | 
| 248 | 
         
            +
                        dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
         
     | 
| 249 | 
         
            +
                    mid_block = [
         
     | 
| 250 | 
         
            +
                        ResBlock(
         
     | 
| 251 | 
         
            +
                            ch,
         
     | 
| 252 | 
         
            +
                            time_embed_dim,
         
     | 
| 253 | 
         
            +
                            dropout,
         
     | 
| 254 | 
         
            +
                            dims=dims,
         
     | 
| 255 | 
         
            +
                            use_checkpoint=use_checkpoint,
         
     | 
| 256 | 
         
            +
                            use_scale_shift_norm=use_scale_shift_norm,
         
     | 
| 257 | 
         
            +
                            dtype=self.dtype,
         
     | 
| 258 | 
         
            +
                            device=device,
         
     | 
| 259 | 
         
            +
                            operations=operations
         
     | 
| 260 | 
         
            +
                        )]
         
     | 
| 261 | 
         
            +
                    if transformer_depth_middle >= 0:
         
     | 
| 262 | 
         
            +
                        mid_block += [SpatialTransformer(  # always uses a self-attn
         
     | 
| 263 | 
         
            +
                                        ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
         
     | 
| 264 | 
         
            +
                                        disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
         
     | 
| 265 | 
         
            +
                                        use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
         
     | 
| 266 | 
         
            +
                                    ),
         
     | 
| 267 | 
         
            +
                        ResBlock(
         
     | 
| 268 | 
         
            +
                            ch,
         
     | 
| 269 | 
         
            +
                            time_embed_dim,
         
     | 
| 270 | 
         
            +
                            dropout,
         
     | 
| 271 | 
         
            +
                            dims=dims,
         
     | 
| 272 | 
         
            +
                            use_checkpoint=use_checkpoint,
         
     | 
| 273 | 
         
            +
                            use_scale_shift_norm=use_scale_shift_norm,
         
     | 
| 274 | 
         
            +
                            dtype=self.dtype,
         
     | 
| 275 | 
         
            +
                            device=device,
         
     | 
| 276 | 
         
            +
                            operations=operations
         
     | 
| 277 | 
         
            +
                        )]
         
     | 
| 278 | 
         
            +
                    self.middle_block = TimestepEmbedSequential(*mid_block)
         
     | 
| 279 | 
         
            +
                    self.middle_block_out = self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device)
         
     | 
| 280 | 
         
            +
                    self._feature_size += ch
         
     | 
| 281 | 
         
            +
             
     | 
| 282 | 
         
            +
                def make_zero_conv(self, channels, operations=None, dtype=None, device=None):
         
     | 
| 283 | 
         
            +
                    return TimestepEmbedSequential(operations.conv_nd(self.dims, channels, channels, 1, padding=0, dtype=dtype, device=device))
         
     | 
| 284 | 
         
            +
             
     | 
| 285 | 
         
            +
                def forward(self, x, hint, timesteps, context, y=None, **kwargs):
         
     | 
| 286 | 
         
            +
                    t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
         
     | 
| 287 | 
         
            +
                    emb = self.time_embed(t_emb)
         
     | 
| 288 | 
         
            +
             
     | 
| 289 | 
         
            +
                    guided_hint = self.input_hint_block(hint, emb, context)
         
     | 
| 290 | 
         
            +
             
     | 
| 291 | 
         
            +
                    outs = []
         
     | 
| 292 | 
         
            +
             
     | 
| 293 | 
         
            +
                    hs = []
         
     | 
| 294 | 
         
            +
                    if self.num_classes is not None:
         
     | 
| 295 | 
         
            +
                        assert y.shape[0] == x.shape[0]
         
     | 
| 296 | 
         
            +
                        emb = emb + self.label_emb(y)
         
     | 
| 297 | 
         
            +
             
     | 
| 298 | 
         
            +
                    h = x
         
     | 
| 299 | 
         
            +
                    for module, zero_conv in zip(self.input_blocks, self.zero_convs):
         
     | 
| 300 | 
         
            +
                        if guided_hint is not None:
         
     | 
| 301 | 
         
            +
                            h = module(h, emb, context)
         
     | 
| 302 | 
         
            +
                            h += guided_hint
         
     | 
| 303 | 
         
            +
                            guided_hint = None
         
     | 
| 304 | 
         
            +
                        else:
         
     | 
| 305 | 
         
            +
                            h = module(h, emb, context)
         
     | 
| 306 | 
         
            +
                        outs.append(zero_conv(h, emb, context))
         
     | 
| 307 | 
         
            +
             
     | 
| 308 | 
         
            +
                    h = self.middle_block(h, emb, context)
         
     | 
| 309 | 
         
            +
                    outs.append(self.middle_block_out(h, emb, context))
         
     | 
| 310 | 
         
            +
             
     | 
| 311 | 
         
            +
                    return outs
         
     | 
| 312 | 
         
            +
             
     | 
    	
        comfy/cli_args.py
    ADDED
    
    | 
         @@ -0,0 +1,126 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import argparse
         
     | 
| 2 | 
         
            +
            import enum
         
     | 
| 3 | 
         
            +
            import comfy.options
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            class EnumAction(argparse.Action):
         
     | 
| 6 | 
         
            +
                """
         
     | 
| 7 | 
         
            +
                Argparse action for handling Enums
         
     | 
| 8 | 
         
            +
                """
         
     | 
| 9 | 
         
            +
                def __init__(self, **kwargs):
         
     | 
| 10 | 
         
            +
                    # Pop off the type value
         
     | 
| 11 | 
         
            +
                    enum_type = kwargs.pop("type", None)
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
                    # Ensure an Enum subclass is provided
         
     | 
| 14 | 
         
            +
                    if enum_type is None:
         
     | 
| 15 | 
         
            +
                        raise ValueError("type must be assigned an Enum when using EnumAction")
         
     | 
| 16 | 
         
            +
                    if not issubclass(enum_type, enum.Enum):
         
     | 
| 17 | 
         
            +
                        raise TypeError("type must be an Enum when using EnumAction")
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
                    # Generate choices from the Enum
         
     | 
| 20 | 
         
            +
                    choices = tuple(e.value for e in enum_type)
         
     | 
| 21 | 
         
            +
                    kwargs.setdefault("choices", choices)
         
     | 
| 22 | 
         
            +
                    kwargs.setdefault("metavar", f"[{','.join(list(choices))}]")
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
                    super(EnumAction, self).__init__(**kwargs)
         
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
                    self._enum = enum_type
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
                def __call__(self, parser, namespace, values, option_string=None):
         
     | 
| 29 | 
         
            +
                    # Convert value back into an Enum
         
     | 
| 30 | 
         
            +
                    value = self._enum(values)
         
     | 
| 31 | 
         
            +
                    setattr(namespace, self.dest, value)
         
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
            parser = argparse.ArgumentParser()
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
            parser.add_argument("--listen", type=str, default="127.0.0.1", metavar="IP", nargs="?", const="0.0.0.0", help="Specify the IP address to listen on (default: 127.0.0.1). If --listen is provided without an argument, it defaults to 0.0.0.0. (listens on all)")
         
     | 
| 37 | 
         
            +
            parser.add_argument("--port", type=int, default=8188, help="Set the listen port.")
         
     | 
| 38 | 
         
            +
            parser.add_argument("--enable-cors-header", type=str, default=None, metavar="ORIGIN", nargs="?", const="*", help="Enable CORS (Cross-Origin Resource Sharing) with optional origin or allow all with default '*'.")
         
     | 
| 39 | 
         
            +
            parser.add_argument("--max-upload-size", type=float, default=100, help="Set the maximum upload size in MB.")
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
            parser.add_argument("--extra-model-paths-config", type=str, default=None, metavar="PATH", nargs='+', action='append', help="Load one or more extra_model_paths.yaml files.")
         
     | 
| 42 | 
         
            +
            parser.add_argument("--output-directory", type=str, default=None, help="Set the ComfyUI output directory.")
         
     | 
| 43 | 
         
            +
            parser.add_argument("--temp-directory", type=str, default=None, help="Set the ComfyUI temp directory (default is in the ComfyUI directory).")
         
     | 
| 44 | 
         
            +
            parser.add_argument("--input-directory", type=str, default=None, help="Set the ComfyUI input directory.")
         
     | 
| 45 | 
         
            +
            parser.add_argument("--auto-launch", action="store_true", help="Automatically launch ComfyUI in the default browser.")
         
     | 
| 46 | 
         
            +
            parser.add_argument("--disable-auto-launch", action="store_true", help="Disable auto launching the browser.")
         
     | 
| 47 | 
         
            +
            parser.add_argument("--cuda-device", type=int, default=None, metavar="DEVICE_ID", help="Set the id of the cuda device this instance will use.")
         
     | 
| 48 | 
         
            +
            cm_group = parser.add_mutually_exclusive_group()
         
     | 
| 49 | 
         
            +
            cm_group.add_argument("--cuda-malloc", action="store_true", help="Enable cudaMallocAsync (enabled by default for torch 2.0 and up).")
         
     | 
| 50 | 
         
            +
            cm_group.add_argument("--disable-cuda-malloc", action="store_true", help="Disable cudaMallocAsync.")
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
            parser.add_argument("--dont-upcast-attention", action="store_true", help="Disable upcasting of attention. Can boost speed but increase the chances of black images.")
         
     | 
| 53 | 
         
            +
             
     | 
| 54 | 
         
            +
            fp_group = parser.add_mutually_exclusive_group()
         
     | 
| 55 | 
         
            +
            fp_group.add_argument("--force-fp32", action="store_true", help="Force fp32 (If this makes your GPU work better please report it).")
         
     | 
| 56 | 
         
            +
            fp_group.add_argument("--force-fp16", action="store_true", help="Force fp16.")
         
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
            fpunet_group = parser.add_mutually_exclusive_group()
         
     | 
| 59 | 
         
            +
            fpunet_group.add_argument("--bf16-unet", action="store_true", help="Run the UNET in bf16. This should only be used for testing stuff.")
         
     | 
| 60 | 
         
            +
            fpunet_group.add_argument("--fp16-unet", action="store_true", help="Store unet weights in fp16.")
         
     | 
| 61 | 
         
            +
            fpunet_group.add_argument("--fp8_e4m3fn-unet", action="store_true", help="Store unet weights in fp8_e4m3fn.")
         
     | 
| 62 | 
         
            +
            fpunet_group.add_argument("--fp8_e5m2-unet", action="store_true", help="Store unet weights in fp8_e5m2.")
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
            fpvae_group = parser.add_mutually_exclusive_group()
         
     | 
| 65 | 
         
            +
            fpvae_group.add_argument("--fp16-vae", action="store_true", help="Run the VAE in fp16, might cause black images.")
         
     | 
| 66 | 
         
            +
            fpvae_group.add_argument("--fp32-vae", action="store_true", help="Run the VAE in full precision fp32.")
         
     | 
| 67 | 
         
            +
            fpvae_group.add_argument("--bf16-vae", action="store_true", help="Run the VAE in bf16.")
         
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
            parser.add_argument("--cpu-vae", action="store_true", help="Run the VAE on the CPU.")
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
            fpte_group = parser.add_mutually_exclusive_group()
         
     | 
| 72 | 
         
            +
            fpte_group.add_argument("--fp8_e4m3fn-text-enc", action="store_true", help="Store text encoder weights in fp8 (e4m3fn variant).")
         
     | 
| 73 | 
         
            +
            fpte_group.add_argument("--fp8_e5m2-text-enc", action="store_true", help="Store text encoder weights in fp8 (e5m2 variant).")
         
     | 
| 74 | 
         
            +
            fpte_group.add_argument("--fp16-text-enc", action="store_true", help="Store text encoder weights in fp16.")
         
     | 
| 75 | 
         
            +
            fpte_group.add_argument("--fp32-text-enc", action="store_true", help="Store text encoder weights in fp32.")
         
     | 
| 76 | 
         
            +
             
     | 
| 77 | 
         
            +
             
     | 
| 78 | 
         
            +
            parser.add_argument("--directml", type=int, nargs="?", metavar="DIRECTML_DEVICE", const=-1, help="Use torch-directml.")
         
     | 
| 79 | 
         
            +
             
     | 
| 80 | 
         
            +
            parser.add_argument("--disable-ipex-optimize", action="store_true", help="Disables ipex.optimize when loading models with Intel GPUs.")
         
     | 
| 81 | 
         
            +
             
     | 
| 82 | 
         
            +
            class LatentPreviewMethod(enum.Enum):
         
     | 
| 83 | 
         
            +
                NoPreviews = "none"
         
     | 
| 84 | 
         
            +
                Auto = "auto"
         
     | 
| 85 | 
         
            +
                Latent2RGB = "latent2rgb"
         
     | 
| 86 | 
         
            +
                TAESD = "taesd"
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
            parser.add_argument("--preview-method", type=LatentPreviewMethod, default=LatentPreviewMethod.NoPreviews, help="Default preview method for sampler nodes.", action=EnumAction)
         
     | 
| 89 | 
         
            +
             
     | 
| 90 | 
         
            +
            attn_group = parser.add_mutually_exclusive_group()
         
     | 
| 91 | 
         
            +
            attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization. Ignored when xformers is used.")
         
     | 
| 92 | 
         
            +
            attn_group.add_argument("--use-quad-cross-attention", action="store_true", help="Use the sub-quadratic cross attention optimization . Ignored when xformers is used.")
         
     | 
| 93 | 
         
            +
            attn_group.add_argument("--use-pytorch-cross-attention", action="store_true", help="Use the new pytorch 2.0 cross attention function.")
         
     | 
| 94 | 
         
            +
             
     | 
| 95 | 
         
            +
            parser.add_argument("--disable-xformers", action="store_true", help="Disable xformers.")
         
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
            vram_group = parser.add_mutually_exclusive_group()
         
     | 
| 98 | 
         
            +
            vram_group.add_argument("--gpu-only", action="store_true", help="Store and run everything (text encoders/CLIP models, etc... on the GPU).")
         
     | 
| 99 | 
         
            +
            vram_group.add_argument("--highvram", action="store_true", help="By default models will be unloaded to CPU memory after being used. This option keeps them in GPU memory.")
         
     | 
| 100 | 
         
            +
            vram_group.add_argument("--normalvram", action="store_true", help="Used to force normal vram use if lowvram gets automatically enabled.")
         
     | 
| 101 | 
         
            +
            vram_group.add_argument("--lowvram", action="store_true", help="Split the unet in parts to use less vram.")
         
     | 
| 102 | 
         
            +
            vram_group.add_argument("--novram", action="store_true", help="When lowvram isn't enough.")
         
     | 
| 103 | 
         
            +
            vram_group.add_argument("--cpu", action="store_true", help="To use the CPU for everything (slow).")
         
     | 
| 104 | 
         
            +
             
     | 
| 105 | 
         
            +
             
     | 
| 106 | 
         
            +
            parser.add_argument("--disable-smart-memory", action="store_true", help="Force ComfyUI to agressively offload to regular ram instead of keeping models in vram when it can.")
         
     | 
| 107 | 
         
            +
            parser.add_argument("--deterministic", action="store_true", help="Make pytorch use slower deterministic algorithms when it can. Note that this might not make images deterministic in all cases.")
         
     | 
| 108 | 
         
            +
             
     | 
| 109 | 
         
            +
            parser.add_argument("--dont-print-server", action="store_true", help="Don't print server output.")
         
     | 
| 110 | 
         
            +
            parser.add_argument("--quick-test-for-ci", action="store_true", help="Quick test for CI.")
         
     | 
| 111 | 
         
            +
            parser.add_argument("--windows-standalone-build", action="store_true", help="Windows standalone build: Enable convenient things that most people using the standalone windows build will probably enjoy (like auto opening the page on startup).")
         
     | 
| 112 | 
         
            +
             
     | 
| 113 | 
         
            +
            parser.add_argument("--disable-metadata", action="store_true", help="Disable saving prompt metadata in files.")
         
     | 
| 114 | 
         
            +
             
     | 
| 115 | 
         
            +
            parser.add_argument("--multi-user", action="store_true", help="Enables per-user storage.")
         
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
            if comfy.options.args_parsing:
         
     | 
| 118 | 
         
            +
                args = parser.parse_args()
         
     | 
| 119 | 
         
            +
            else:
         
     | 
| 120 | 
         
            +
                args = parser.parse_args([])
         
     | 
| 121 | 
         
            +
             
     | 
| 122 | 
         
            +
            if args.windows_standalone_build:
         
     | 
| 123 | 
         
            +
                args.auto_launch = True
         
     | 
| 124 | 
         
            +
             
     | 
| 125 | 
         
            +
            if args.disable_auto_launch:
         
     | 
| 126 | 
         
            +
                args.auto_launch = False
         
     | 
    	
        comfy/clip_config_bigg.json
    ADDED
    
    | 
         @@ -0,0 +1,23 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {
         
     | 
| 2 | 
         
            +
              "architectures": [
         
     | 
| 3 | 
         
            +
                "CLIPTextModel"
         
     | 
| 4 | 
         
            +
              ],
         
     | 
| 5 | 
         
            +
              "attention_dropout": 0.0,
         
     | 
| 6 | 
         
            +
              "bos_token_id": 0,
         
     | 
| 7 | 
         
            +
              "dropout": 0.0,
         
     | 
| 8 | 
         
            +
              "eos_token_id": 2,
         
     | 
| 9 | 
         
            +
              "hidden_act": "gelu",
         
     | 
| 10 | 
         
            +
              "hidden_size": 1280,
         
     | 
| 11 | 
         
            +
              "initializer_factor": 1.0,
         
     | 
| 12 | 
         
            +
              "initializer_range": 0.02,
         
     | 
| 13 | 
         
            +
              "intermediate_size": 5120,
         
     | 
| 14 | 
         
            +
              "layer_norm_eps": 1e-05,
         
     | 
| 15 | 
         
            +
              "max_position_embeddings": 77,
         
     | 
| 16 | 
         
            +
              "model_type": "clip_text_model",
         
     | 
| 17 | 
         
            +
              "num_attention_heads": 20,
         
     | 
| 18 | 
         
            +
              "num_hidden_layers": 32,
         
     | 
| 19 | 
         
            +
              "pad_token_id": 1,
         
     | 
| 20 | 
         
            +
              "projection_dim": 1280,
         
     | 
| 21 | 
         
            +
              "torch_dtype": "float32",
         
     | 
| 22 | 
         
            +
              "vocab_size": 49408
         
     | 
| 23 | 
         
            +
            }
         
     | 
    	
        comfy/clip_model.py
    ADDED
    
    | 
         @@ -0,0 +1,188 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            from comfy.ldm.modules.attention import optimized_attention_for_device
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            class CLIPAttention(torch.nn.Module):
         
     | 
| 5 | 
         
            +
                def __init__(self, embed_dim, heads, dtype, device, operations):
         
     | 
| 6 | 
         
            +
                    super().__init__()
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
                    self.heads = heads
         
     | 
| 9 | 
         
            +
                    self.q_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
         
     | 
| 10 | 
         
            +
                    self.k_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
         
     | 
| 11 | 
         
            +
                    self.v_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
                    self.out_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
                def forward(self, x, mask=None, optimized_attention=None):
         
     | 
| 16 | 
         
            +
                    q = self.q_proj(x)
         
     | 
| 17 | 
         
            +
                    k = self.k_proj(x)
         
     | 
| 18 | 
         
            +
                    v = self.v_proj(x)
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
                    out = optimized_attention(q, k, v, self.heads, mask)
         
     | 
| 21 | 
         
            +
                    return self.out_proj(out)
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
            ACTIVATIONS = {"quick_gelu": lambda a: a * torch.sigmoid(1.702 * a),
         
     | 
| 24 | 
         
            +
                           "gelu": torch.nn.functional.gelu,
         
     | 
| 25 | 
         
            +
            }
         
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
            class CLIPMLP(torch.nn.Module):
         
     | 
| 28 | 
         
            +
                def __init__(self, embed_dim, intermediate_size, activation, dtype, device, operations):
         
     | 
| 29 | 
         
            +
                    super().__init__()
         
     | 
| 30 | 
         
            +
                    self.fc1 = operations.Linear(embed_dim, intermediate_size, bias=True, dtype=dtype, device=device)
         
     | 
| 31 | 
         
            +
                    self.activation = ACTIVATIONS[activation]
         
     | 
| 32 | 
         
            +
                    self.fc2 = operations.Linear(intermediate_size, embed_dim, bias=True, dtype=dtype, device=device)
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
                def forward(self, x):
         
     | 
| 35 | 
         
            +
                    x = self.fc1(x)
         
     | 
| 36 | 
         
            +
                    x = self.activation(x)
         
     | 
| 37 | 
         
            +
                    x = self.fc2(x)
         
     | 
| 38 | 
         
            +
                    return x
         
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
            class CLIPLayer(torch.nn.Module):
         
     | 
| 41 | 
         
            +
                def __init__(self, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations):
         
     | 
| 42 | 
         
            +
                    super().__init__()
         
     | 
| 43 | 
         
            +
                    self.layer_norm1 = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
         
     | 
| 44 | 
         
            +
                    self.self_attn = CLIPAttention(embed_dim, heads, dtype, device, operations)
         
     | 
| 45 | 
         
            +
                    self.layer_norm2 = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
         
     | 
| 46 | 
         
            +
                    self.mlp = CLIPMLP(embed_dim, intermediate_size, intermediate_activation, dtype, device, operations)
         
     | 
| 47 | 
         
            +
             
     | 
| 48 | 
         
            +
                def forward(self, x, mask=None, optimized_attention=None):
         
     | 
| 49 | 
         
            +
                    x += self.self_attn(self.layer_norm1(x), mask, optimized_attention)
         
     | 
| 50 | 
         
            +
                    x += self.mlp(self.layer_norm2(x))
         
     | 
| 51 | 
         
            +
                    return x
         
     | 
| 52 | 
         
            +
             
     | 
| 53 | 
         
            +
             
     | 
| 54 | 
         
            +
            class CLIPEncoder(torch.nn.Module):
         
     | 
| 55 | 
         
            +
                def __init__(self, num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations):
         
     | 
| 56 | 
         
            +
                    super().__init__()
         
     | 
| 57 | 
         
            +
                    self.layers = torch.nn.ModuleList([CLIPLayer(embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations) for i in range(num_layers)])
         
     | 
| 58 | 
         
            +
             
     | 
| 59 | 
         
            +
                def forward(self, x, mask=None, intermediate_output=None):
         
     | 
| 60 | 
         
            +
                    optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None, small_input=True)
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
                    if intermediate_output is not None:
         
     | 
| 63 | 
         
            +
                        if intermediate_output < 0:
         
     | 
| 64 | 
         
            +
                            intermediate_output = len(self.layers) + intermediate_output
         
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
                    intermediate = None
         
     | 
| 67 | 
         
            +
                    for i, l in enumerate(self.layers):
         
     | 
| 68 | 
         
            +
                        x = l(x, mask, optimized_attention)
         
     | 
| 69 | 
         
            +
                        if i == intermediate_output:
         
     | 
| 70 | 
         
            +
                            intermediate = x.clone()
         
     | 
| 71 | 
         
            +
                    return x, intermediate
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
            class CLIPEmbeddings(torch.nn.Module):
         
     | 
| 74 | 
         
            +
                def __init__(self, embed_dim, vocab_size=49408, num_positions=77, dtype=None, device=None):
         
     | 
| 75 | 
         
            +
                    super().__init__()
         
     | 
| 76 | 
         
            +
                    self.token_embedding = torch.nn.Embedding(vocab_size, embed_dim, dtype=dtype, device=device)
         
     | 
| 77 | 
         
            +
                    self.position_embedding = torch.nn.Embedding(num_positions, embed_dim, dtype=dtype, device=device)
         
     | 
| 78 | 
         
            +
             
     | 
| 79 | 
         
            +
                def forward(self, input_tokens):
         
     | 
| 80 | 
         
            +
                    return self.token_embedding(input_tokens) + self.position_embedding.weight
         
     | 
| 81 | 
         
            +
             
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
            class CLIPTextModel_(torch.nn.Module):
         
     | 
| 84 | 
         
            +
                def __init__(self, config_dict, dtype, device, operations):
         
     | 
| 85 | 
         
            +
                    num_layers = config_dict["num_hidden_layers"]
         
     | 
| 86 | 
         
            +
                    embed_dim = config_dict["hidden_size"]
         
     | 
| 87 | 
         
            +
                    heads = config_dict["num_attention_heads"]
         
     | 
| 88 | 
         
            +
                    intermediate_size = config_dict["intermediate_size"]
         
     | 
| 89 | 
         
            +
                    intermediate_activation = config_dict["hidden_act"]
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
                    super().__init__()
         
     | 
| 92 | 
         
            +
                    self.embeddings = CLIPEmbeddings(embed_dim, dtype=torch.float32, device=device)
         
     | 
| 93 | 
         
            +
                    self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
         
     | 
| 94 | 
         
            +
                    self.final_layer_norm = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
         
     | 
| 95 | 
         
            +
             
     | 
| 96 | 
         
            +
                def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True):
         
     | 
| 97 | 
         
            +
                    x = self.embeddings(input_tokens)
         
     | 
| 98 | 
         
            +
                    mask = None
         
     | 
| 99 | 
         
            +
                    if attention_mask is not None:
         
     | 
| 100 | 
         
            +
                        mask = 1.0 - attention_mask.to(x.dtype).unsqueeze(1).unsqueeze(1).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
         
     | 
| 101 | 
         
            +
                        mask = mask.masked_fill(mask.to(torch.bool), float("-inf"))
         
     | 
| 102 | 
         
            +
             
     | 
| 103 | 
         
            +
                    causal_mask = torch.empty(x.shape[1], x.shape[1], dtype=x.dtype, device=x.device).fill_(float("-inf")).triu_(1)
         
     | 
| 104 | 
         
            +
                    if mask is not None:
         
     | 
| 105 | 
         
            +
                        mask += causal_mask
         
     | 
| 106 | 
         
            +
                    else:
         
     | 
| 107 | 
         
            +
                        mask = causal_mask
         
     | 
| 108 | 
         
            +
             
     | 
| 109 | 
         
            +
                    x, i = self.encoder(x, mask=mask, intermediate_output=intermediate_output)
         
     | 
| 110 | 
         
            +
                    x = self.final_layer_norm(x)
         
     | 
| 111 | 
         
            +
                    if i is not None and final_layer_norm_intermediate:
         
     | 
| 112 | 
         
            +
                        i = self.final_layer_norm(i)
         
     | 
| 113 | 
         
            +
             
     | 
| 114 | 
         
            +
                    pooled_output = x[torch.arange(x.shape[0], device=x.device), input_tokens.to(dtype=torch.int, device=x.device).argmax(dim=-1),]
         
     | 
| 115 | 
         
            +
                    return x, i, pooled_output
         
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
            class CLIPTextModel(torch.nn.Module):
         
     | 
| 118 | 
         
            +
                def __init__(self, config_dict, dtype, device, operations):
         
     | 
| 119 | 
         
            +
                    super().__init__()
         
     | 
| 120 | 
         
            +
                    self.num_layers = config_dict["num_hidden_layers"]
         
     | 
| 121 | 
         
            +
                    self.text_model = CLIPTextModel_(config_dict, dtype, device, operations)
         
     | 
| 122 | 
         
            +
                    self.dtype = dtype
         
     | 
| 123 | 
         
            +
             
     | 
| 124 | 
         
            +
                def get_input_embeddings(self):
         
     | 
| 125 | 
         
            +
                    return self.text_model.embeddings.token_embedding
         
     | 
| 126 | 
         
            +
             
     | 
| 127 | 
         
            +
                def set_input_embeddings(self, embeddings):
         
     | 
| 128 | 
         
            +
                    self.text_model.embeddings.token_embedding = embeddings
         
     | 
| 129 | 
         
            +
             
     | 
| 130 | 
         
            +
                def forward(self, *args, **kwargs):
         
     | 
| 131 | 
         
            +
                    return self.text_model(*args, **kwargs)
         
     | 
| 132 | 
         
            +
             
     | 
| 133 | 
         
            +
            class CLIPVisionEmbeddings(torch.nn.Module):
         
     | 
| 134 | 
         
            +
                def __init__(self, embed_dim, num_channels=3, patch_size=14, image_size=224, dtype=None, device=None, operations=None):
         
     | 
| 135 | 
         
            +
                    super().__init__()
         
     | 
| 136 | 
         
            +
                    self.class_embedding = torch.nn.Parameter(torch.empty(embed_dim, dtype=dtype, device=device))
         
     | 
| 137 | 
         
            +
             
     | 
| 138 | 
         
            +
                    self.patch_embedding = operations.Conv2d(
         
     | 
| 139 | 
         
            +
                        in_channels=num_channels,
         
     | 
| 140 | 
         
            +
                        out_channels=embed_dim,
         
     | 
| 141 | 
         
            +
                        kernel_size=patch_size,
         
     | 
| 142 | 
         
            +
                        stride=patch_size,
         
     | 
| 143 | 
         
            +
                        bias=False,
         
     | 
| 144 | 
         
            +
                        dtype=dtype,
         
     | 
| 145 | 
         
            +
                        device=device
         
     | 
| 146 | 
         
            +
                    )
         
     | 
| 147 | 
         
            +
             
     | 
| 148 | 
         
            +
                    num_patches = (image_size // patch_size) ** 2
         
     | 
| 149 | 
         
            +
                    num_positions = num_patches + 1
         
     | 
| 150 | 
         
            +
                    self.position_embedding = torch.nn.Embedding(num_positions, embed_dim, dtype=dtype, device=device)
         
     | 
| 151 | 
         
            +
             
     | 
| 152 | 
         
            +
                def forward(self, pixel_values):
         
     | 
| 153 | 
         
            +
                    embeds = self.patch_embedding(pixel_values).flatten(2).transpose(1, 2)
         
     | 
| 154 | 
         
            +
                    return torch.cat([self.class_embedding.to(embeds.device).expand(pixel_values.shape[0], 1, -1), embeds], dim=1) + self.position_embedding.weight.to(embeds.device)
         
     | 
| 155 | 
         
            +
             
     | 
| 156 | 
         
            +
             
     | 
| 157 | 
         
            +
            class CLIPVision(torch.nn.Module):
         
     | 
| 158 | 
         
            +
                def __init__(self, config_dict, dtype, device, operations):
         
     | 
| 159 | 
         
            +
                    super().__init__()
         
     | 
| 160 | 
         
            +
                    num_layers = config_dict["num_hidden_layers"]
         
     | 
| 161 | 
         
            +
                    embed_dim = config_dict["hidden_size"]
         
     | 
| 162 | 
         
            +
                    heads = config_dict["num_attention_heads"]
         
     | 
| 163 | 
         
            +
                    intermediate_size = config_dict["intermediate_size"]
         
     | 
| 164 | 
         
            +
                    intermediate_activation = config_dict["hidden_act"]
         
     | 
| 165 | 
         
            +
             
     | 
| 166 | 
         
            +
                    self.embeddings = CLIPVisionEmbeddings(embed_dim, config_dict["num_channels"], config_dict["patch_size"], config_dict["image_size"], dtype=torch.float32, device=device, operations=operations)
         
     | 
| 167 | 
         
            +
                    self.pre_layrnorm = operations.LayerNorm(embed_dim)
         
     | 
| 168 | 
         
            +
                    self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
         
     | 
| 169 | 
         
            +
                    self.post_layernorm = operations.LayerNorm(embed_dim)
         
     | 
| 170 | 
         
            +
             
     | 
| 171 | 
         
            +
                def forward(self, pixel_values, attention_mask=None, intermediate_output=None):
         
     | 
| 172 | 
         
            +
                    x = self.embeddings(pixel_values)
         
     | 
| 173 | 
         
            +
                    x = self.pre_layrnorm(x)
         
     | 
| 174 | 
         
            +
                    #TODO: attention_mask?
         
     | 
| 175 | 
         
            +
                    x, i = self.encoder(x, mask=None, intermediate_output=intermediate_output)
         
     | 
| 176 | 
         
            +
                    pooled_output = self.post_layernorm(x[:, 0, :])
         
     | 
| 177 | 
         
            +
                    return x, i, pooled_output
         
     | 
| 178 | 
         
            +
             
     | 
| 179 | 
         
            +
            class CLIPVisionModelProjection(torch.nn.Module):
         
     | 
| 180 | 
         
            +
                def __init__(self, config_dict, dtype, device, operations):
         
     | 
| 181 | 
         
            +
                    super().__init__()
         
     | 
| 182 | 
         
            +
                    self.vision_model = CLIPVision(config_dict, dtype, device, operations)
         
     | 
| 183 | 
         
            +
                    self.visual_projection = operations.Linear(config_dict["hidden_size"], config_dict["projection_dim"], bias=False)
         
     | 
| 184 | 
         
            +
             
     | 
| 185 | 
         
            +
                def forward(self, *args, **kwargs):
         
     | 
| 186 | 
         
            +
                    x = self.vision_model(*args, **kwargs)
         
     | 
| 187 | 
         
            +
                    out = self.visual_projection(x[2])
         
     | 
| 188 | 
         
            +
                    return (x[0], x[1], out)
         
     | 
    	
        comfy/clip_vision.py
    ADDED
    
    | 
         @@ -0,0 +1,116 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from .utils import load_torch_file, transformers_convert, state_dict_prefix_replace
         
     | 
| 2 | 
         
            +
            import os
         
     | 
| 3 | 
         
            +
            import torch
         
     | 
| 4 | 
         
            +
            import json
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            import comfy.ops
         
     | 
| 7 | 
         
            +
            import comfy.model_patcher
         
     | 
| 8 | 
         
            +
            import comfy.model_management
         
     | 
| 9 | 
         
            +
            import comfy.utils
         
     | 
| 10 | 
         
            +
            import comfy.clip_model
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
            class Output:
         
     | 
| 13 | 
         
            +
                def __getitem__(self, key):
         
     | 
| 14 | 
         
            +
                    return getattr(self, key)
         
     | 
| 15 | 
         
            +
                def __setitem__(self, key, item):
         
     | 
| 16 | 
         
            +
                    setattr(self, key, item)
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            def clip_preprocess(image, size=224):
         
     | 
| 19 | 
         
            +
                mean = torch.tensor([ 0.48145466,0.4578275,0.40821073], device=image.device, dtype=image.dtype)
         
     | 
| 20 | 
         
            +
                std = torch.tensor([0.26862954,0.26130258,0.27577711], device=image.device, dtype=image.dtype)
         
     | 
| 21 | 
         
            +
                image = image.movedim(-1, 1)
         
     | 
| 22 | 
         
            +
                if not (image.shape[2] == size and image.shape[3] == size):
         
     | 
| 23 | 
         
            +
                    scale = (size / min(image.shape[2], image.shape[3]))
         
     | 
| 24 | 
         
            +
                    image = torch.nn.functional.interpolate(image, size=(round(scale * image.shape[2]), round(scale * image.shape[3])), mode="bicubic", antialias=True)
         
     | 
| 25 | 
         
            +
                    h = (image.shape[2] - size)//2
         
     | 
| 26 | 
         
            +
                    w = (image.shape[3] - size)//2
         
     | 
| 27 | 
         
            +
                    image = image[:,:,h:h+size,w:w+size]
         
     | 
| 28 | 
         
            +
                image = torch.clip((255. * image), 0, 255).round() / 255.0
         
     | 
| 29 | 
         
            +
                return (image - mean.view([3,1,1])) / std.view([3,1,1])
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
            class ClipVisionModel():
         
     | 
| 32 | 
         
            +
                def __init__(self, json_config):
         
     | 
| 33 | 
         
            +
                    with open(json_config) as f:
         
     | 
| 34 | 
         
            +
                        config = json.load(f)
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
                    self.load_device = comfy.model_management.text_encoder_device()
         
     | 
| 37 | 
         
            +
                    offload_device = comfy.model_management.text_encoder_offload_device()
         
     | 
| 38 | 
         
            +
                    self.dtype = comfy.model_management.text_encoder_dtype(self.load_device)
         
     | 
| 39 | 
         
            +
                    self.model = comfy.clip_model.CLIPVisionModelProjection(config, self.dtype, offload_device, comfy.ops.manual_cast)
         
     | 
| 40 | 
         
            +
                    self.model.eval()
         
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
                    self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
                def load_sd(self, sd):
         
     | 
| 45 | 
         
            +
                    return self.model.load_state_dict(sd, strict=False)
         
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
                def get_sd(self):
         
     | 
| 48 | 
         
            +
                    return self.model.state_dict()
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
                def encode_image(self, image):
         
     | 
| 51 | 
         
            +
                    comfy.model_management.load_model_gpu(self.patcher)
         
     | 
| 52 | 
         
            +
                    pixel_values = clip_preprocess(image.to(self.load_device)).float()
         
     | 
| 53 | 
         
            +
                    out = self.model(pixel_values=pixel_values, intermediate_output=-2)
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
                    outputs = Output()
         
     | 
| 56 | 
         
            +
                    outputs["last_hidden_state"] = out[0].to(comfy.model_management.intermediate_device())
         
     | 
| 57 | 
         
            +
                    outputs["image_embeds"] = out[2].to(comfy.model_management.intermediate_device())
         
     | 
| 58 | 
         
            +
                    outputs["penultimate_hidden_states"] = out[1].to(comfy.model_management.intermediate_device())
         
     | 
| 59 | 
         
            +
                    return outputs
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
            def convert_to_transformers(sd, prefix):
         
     | 
| 62 | 
         
            +
                sd_k = sd.keys()
         
     | 
| 63 | 
         
            +
                if "{}transformer.resblocks.0.attn.in_proj_weight".format(prefix) in sd_k:
         
     | 
| 64 | 
         
            +
                    keys_to_replace = {
         
     | 
| 65 | 
         
            +
                        "{}class_embedding".format(prefix): "vision_model.embeddings.class_embedding",
         
     | 
| 66 | 
         
            +
                        "{}conv1.weight".format(prefix): "vision_model.embeddings.patch_embedding.weight",
         
     | 
| 67 | 
         
            +
                        "{}positional_embedding".format(prefix): "vision_model.embeddings.position_embedding.weight",
         
     | 
| 68 | 
         
            +
                        "{}ln_post.bias".format(prefix): "vision_model.post_layernorm.bias",
         
     | 
| 69 | 
         
            +
                        "{}ln_post.weight".format(prefix): "vision_model.post_layernorm.weight",
         
     | 
| 70 | 
         
            +
                        "{}ln_pre.bias".format(prefix): "vision_model.pre_layrnorm.bias",
         
     | 
| 71 | 
         
            +
                        "{}ln_pre.weight".format(prefix): "vision_model.pre_layrnorm.weight",
         
     | 
| 72 | 
         
            +
                    }
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
                    for x in keys_to_replace:
         
     | 
| 75 | 
         
            +
                        if x in sd_k:
         
     | 
| 76 | 
         
            +
                            sd[keys_to_replace[x]] = sd.pop(x)
         
     | 
| 77 | 
         
            +
             
     | 
| 78 | 
         
            +
                    if "{}proj".format(prefix) in sd_k:
         
     | 
| 79 | 
         
            +
                        sd['visual_projection.weight'] = sd.pop("{}proj".format(prefix)).transpose(0, 1)
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
                    sd = transformers_convert(sd, prefix, "vision_model.", 48)
         
     | 
| 82 | 
         
            +
                else:
         
     | 
| 83 | 
         
            +
                    replace_prefix = {prefix: ""}
         
     | 
| 84 | 
         
            +
                    sd = state_dict_prefix_replace(sd, replace_prefix)
         
     | 
| 85 | 
         
            +
                return sd
         
     | 
| 86 | 
         
            +
             
     | 
| 87 | 
         
            +
            def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
         
     | 
| 88 | 
         
            +
                if convert_keys:
         
     | 
| 89 | 
         
            +
                    sd = convert_to_transformers(sd, prefix)
         
     | 
| 90 | 
         
            +
                if "vision_model.encoder.layers.47.layer_norm1.weight" in sd:
         
     | 
| 91 | 
         
            +
                    json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_g.json")
         
     | 
| 92 | 
         
            +
                elif "vision_model.encoder.layers.30.layer_norm1.weight" in sd:
         
     | 
| 93 | 
         
            +
                    json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json")
         
     | 
| 94 | 
         
            +
                elif "vision_model.encoder.layers.22.layer_norm1.weight" in sd:
         
     | 
| 95 | 
         
            +
                    json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json")
         
     | 
| 96 | 
         
            +
                else:
         
     | 
| 97 | 
         
            +
                    return None
         
     | 
| 98 | 
         
            +
             
     | 
| 99 | 
         
            +
                clip = ClipVisionModel(json_config)
         
     | 
| 100 | 
         
            +
                m, u = clip.load_sd(sd)
         
     | 
| 101 | 
         
            +
                if len(m) > 0:
         
     | 
| 102 | 
         
            +
                    print("missing clip vision:", m)
         
     | 
| 103 | 
         
            +
                u = set(u)
         
     | 
| 104 | 
         
            +
                keys = list(sd.keys())
         
     | 
| 105 | 
         
            +
                for k in keys:
         
     | 
| 106 | 
         
            +
                    if k not in u:
         
     | 
| 107 | 
         
            +
                        t = sd.pop(k)
         
     | 
| 108 | 
         
            +
                        del t
         
     | 
| 109 | 
         
            +
                return clip
         
     | 
| 110 | 
         
            +
             
     | 
| 111 | 
         
            +
            def load(ckpt_path):
         
     | 
| 112 | 
         
            +
                sd = load_torch_file(ckpt_path)
         
     | 
| 113 | 
         
            +
                if "visual.transformer.resblocks.0.attn.in_proj_weight" in sd:
         
     | 
| 114 | 
         
            +
                    return load_clipvision_from_sd(sd, prefix="visual.", convert_keys=True)
         
     | 
| 115 | 
         
            +
                else:
         
     | 
| 116 | 
         
            +
                    return load_clipvision_from_sd(sd)
         
     | 
    	
        comfy/clip_vision_config_g.json
    ADDED
    
    | 
         @@ -0,0 +1,18 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {
         
     | 
| 2 | 
         
            +
              "attention_dropout": 0.0,
         
     | 
| 3 | 
         
            +
              "dropout": 0.0,
         
     | 
| 4 | 
         
            +
              "hidden_act": "gelu",
         
     | 
| 5 | 
         
            +
              "hidden_size": 1664,
         
     | 
| 6 | 
         
            +
              "image_size": 224,
         
     | 
| 7 | 
         
            +
              "initializer_factor": 1.0,
         
     | 
| 8 | 
         
            +
              "initializer_range": 0.02,
         
     | 
| 9 | 
         
            +
              "intermediate_size": 8192,
         
     | 
| 10 | 
         
            +
              "layer_norm_eps": 1e-05,
         
     | 
| 11 | 
         
            +
              "model_type": "clip_vision_model",
         
     | 
| 12 | 
         
            +
              "num_attention_heads": 16,
         
     | 
| 13 | 
         
            +
              "num_channels": 3,
         
     | 
| 14 | 
         
            +
              "num_hidden_layers": 48,
         
     | 
| 15 | 
         
            +
              "patch_size": 14,
         
     | 
| 16 | 
         
            +
              "projection_dim": 1280,
         
     | 
| 17 | 
         
            +
              "torch_dtype": "float32"
         
     | 
| 18 | 
         
            +
            }
         
     | 
    	
        comfy/clip_vision_config_h.json
    ADDED
    
    | 
         @@ -0,0 +1,18 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {
         
     | 
| 2 | 
         
            +
              "attention_dropout": 0.0,
         
     | 
| 3 | 
         
            +
              "dropout": 0.0,
         
     | 
| 4 | 
         
            +
              "hidden_act": "gelu",
         
     | 
| 5 | 
         
            +
              "hidden_size": 1280,
         
     | 
| 6 | 
         
            +
              "image_size": 224,
         
     | 
| 7 | 
         
            +
              "initializer_factor": 1.0,
         
     | 
| 8 | 
         
            +
              "initializer_range": 0.02,
         
     | 
| 9 | 
         
            +
              "intermediate_size": 5120,
         
     | 
| 10 | 
         
            +
              "layer_norm_eps": 1e-05,
         
     | 
| 11 | 
         
            +
              "model_type": "clip_vision_model",
         
     | 
| 12 | 
         
            +
              "num_attention_heads": 16,
         
     | 
| 13 | 
         
            +
              "num_channels": 3,
         
     | 
| 14 | 
         
            +
              "num_hidden_layers": 32,
         
     | 
| 15 | 
         
            +
              "patch_size": 14,
         
     | 
| 16 | 
         
            +
              "projection_dim": 1024,
         
     | 
| 17 | 
         
            +
              "torch_dtype": "float32"
         
     | 
| 18 | 
         
            +
            }
         
     | 
    	
        comfy/clip_vision_config_vitl.json
    ADDED
    
    | 
         @@ -0,0 +1,18 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {
         
     | 
| 2 | 
         
            +
              "attention_dropout": 0.0,
         
     | 
| 3 | 
         
            +
              "dropout": 0.0,
         
     | 
| 4 | 
         
            +
              "hidden_act": "quick_gelu",
         
     | 
| 5 | 
         
            +
              "hidden_size": 1024,
         
     | 
| 6 | 
         
            +
              "image_size": 224,
         
     | 
| 7 | 
         
            +
              "initializer_factor": 1.0,
         
     | 
| 8 | 
         
            +
              "initializer_range": 0.02,
         
     | 
| 9 | 
         
            +
              "intermediate_size": 4096,
         
     | 
| 10 | 
         
            +
              "layer_norm_eps": 1e-05,
         
     | 
| 11 | 
         
            +
              "model_type": "clip_vision_model",
         
     | 
| 12 | 
         
            +
              "num_attention_heads": 16,
         
     | 
| 13 | 
         
            +
              "num_channels": 3,
         
     | 
| 14 | 
         
            +
              "num_hidden_layers": 24,
         
     | 
| 15 | 
         
            +
              "patch_size": 14,
         
     | 
| 16 | 
         
            +
              "projection_dim": 768,
         
     | 
| 17 | 
         
            +
              "torch_dtype": "float32"
         
     | 
| 18 | 
         
            +
            }
         
     | 
    	
        comfy/conds.py
    ADDED
    
    | 
         @@ -0,0 +1,78 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            import math
         
     | 
| 3 | 
         
            +
            import comfy.utils
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            def lcm(a, b): #TODO: eventually replace by math.lcm (added in python3.9)
         
     | 
| 7 | 
         
            +
                return abs(a*b) // math.gcd(a, b)
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            class CONDRegular:
         
     | 
| 10 | 
         
            +
                def __init__(self, cond):
         
     | 
| 11 | 
         
            +
                    self.cond = cond
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
                def _copy_with(self, cond):
         
     | 
| 14 | 
         
            +
                    return self.__class__(cond)
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
                def process_cond(self, batch_size, device, **kwargs):
         
     | 
| 17 | 
         
            +
                    return self._copy_with(comfy.utils.repeat_to_batch_size(self.cond, batch_size).to(device))
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
                def can_concat(self, other):
         
     | 
| 20 | 
         
            +
                    if self.cond.shape != other.cond.shape:
         
     | 
| 21 | 
         
            +
                        return False
         
     | 
| 22 | 
         
            +
                    return True
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
                def concat(self, others):
         
     | 
| 25 | 
         
            +
                    conds = [self.cond]
         
     | 
| 26 | 
         
            +
                    for x in others:
         
     | 
| 27 | 
         
            +
                        conds.append(x.cond)
         
     | 
| 28 | 
         
            +
                    return torch.cat(conds)
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
            class CONDNoiseShape(CONDRegular):
         
     | 
| 31 | 
         
            +
                def process_cond(self, batch_size, device, area, **kwargs):
         
     | 
| 32 | 
         
            +
                    data = self.cond[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
         
     | 
| 33 | 
         
            +
                    return self._copy_with(comfy.utils.repeat_to_batch_size(data, batch_size).to(device))
         
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
            class CONDCrossAttn(CONDRegular):
         
     | 
| 37 | 
         
            +
                def can_concat(self, other):
         
     | 
| 38 | 
         
            +
                    s1 = self.cond.shape
         
     | 
| 39 | 
         
            +
                    s2 = other.cond.shape
         
     | 
| 40 | 
         
            +
                    if s1 != s2:
         
     | 
| 41 | 
         
            +
                        if s1[0] != s2[0] or s1[2] != s2[2]: #these 2 cases should not happen
         
     | 
| 42 | 
         
            +
                            return False
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
                        mult_min = lcm(s1[1], s2[1])
         
     | 
| 45 | 
         
            +
                        diff = mult_min // min(s1[1], s2[1])
         
     | 
| 46 | 
         
            +
                        if diff > 4: #arbitrary limit on the padding because it's probably going to impact performance negatively if it's too much
         
     | 
| 47 | 
         
            +
                            return False
         
     | 
| 48 | 
         
            +
                    return True
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
                def concat(self, others):
         
     | 
| 51 | 
         
            +
                    conds = [self.cond]
         
     | 
| 52 | 
         
            +
                    crossattn_max_len = self.cond.shape[1]
         
     | 
| 53 | 
         
            +
                    for x in others:
         
     | 
| 54 | 
         
            +
                        c = x.cond
         
     | 
| 55 | 
         
            +
                        crossattn_max_len = lcm(crossattn_max_len, c.shape[1])
         
     | 
| 56 | 
         
            +
                        conds.append(c)
         
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
                    out = []
         
     | 
| 59 | 
         
            +
                    for c in conds:
         
     | 
| 60 | 
         
            +
                        if c.shape[1] < crossattn_max_len:
         
     | 
| 61 | 
         
            +
                            c = c.repeat(1, crossattn_max_len // c.shape[1], 1) #padding with repeat doesn't change result
         
     | 
| 62 | 
         
            +
                        out.append(c)
         
     | 
| 63 | 
         
            +
                    return torch.cat(out)
         
     | 
| 64 | 
         
            +
             
     | 
| 65 | 
         
            +
            class CONDConstant(CONDRegular):
         
     | 
| 66 | 
         
            +
                def __init__(self, cond):
         
     | 
| 67 | 
         
            +
                    self.cond = cond
         
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
                def process_cond(self, batch_size, device, **kwargs):
         
     | 
| 70 | 
         
            +
                    return self._copy_with(self.cond)
         
     | 
| 71 | 
         
            +
             
     | 
| 72 | 
         
            +
                def can_concat(self, other):
         
     | 
| 73 | 
         
            +
                    if self.cond != other.cond:
         
     | 
| 74 | 
         
            +
                        return False
         
     | 
| 75 | 
         
            +
                    return True
         
     | 
| 76 | 
         
            +
             
     | 
| 77 | 
         
            +
                def concat(self, others):
         
     | 
| 78 | 
         
            +
                    return self.cond
         
     | 
    	
        comfy/controlnet.py
    ADDED
    
    | 
         @@ -0,0 +1,516 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            import math
         
     | 
| 3 | 
         
            +
            import os
         
     | 
| 4 | 
         
            +
            import comfy.utils
         
     | 
| 5 | 
         
            +
            import comfy.model_management
         
     | 
| 6 | 
         
            +
            import comfy.model_detection
         
     | 
| 7 | 
         
            +
            import comfy.model_patcher
         
     | 
| 8 | 
         
            +
            import comfy.ops
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            import comfy.cldm.cldm
         
     | 
| 11 | 
         
            +
            import comfy.t2i_adapter.adapter
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
            def broadcast_image_to(tensor, target_batch_size, batched_number):
         
     | 
| 15 | 
         
            +
                current_batch_size = tensor.shape[0]
         
     | 
| 16 | 
         
            +
                #print(current_batch_size, target_batch_size)
         
     | 
| 17 | 
         
            +
                if current_batch_size == 1:
         
     | 
| 18 | 
         
            +
                    return tensor
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
                per_batch = target_batch_size // batched_number
         
     | 
| 21 | 
         
            +
                tensor = tensor[:per_batch]
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
                if per_batch > tensor.shape[0]:
         
     | 
| 24 | 
         
            +
                    tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0)
         
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
                current_batch_size = tensor.shape[0]
         
     | 
| 27 | 
         
            +
                if current_batch_size == target_batch_size:
         
     | 
| 28 | 
         
            +
                    return tensor
         
     | 
| 29 | 
         
            +
                else:
         
     | 
| 30 | 
         
            +
                    return torch.cat([tensor] * batched_number, dim=0)
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
            class ControlBase:
         
     | 
| 33 | 
         
            +
                def __init__(self, device=None):
         
     | 
| 34 | 
         
            +
                    self.cond_hint_original = None
         
     | 
| 35 | 
         
            +
                    self.cond_hint = None
         
     | 
| 36 | 
         
            +
                    self.strength = 1.0
         
     | 
| 37 | 
         
            +
                    self.timestep_percent_range = (0.0, 1.0)
         
     | 
| 38 | 
         
            +
                    self.global_average_pooling = False
         
     | 
| 39 | 
         
            +
                    self.timestep_range = None
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
                    if device is None:
         
     | 
| 42 | 
         
            +
                        device = comfy.model_management.get_torch_device()
         
     | 
| 43 | 
         
            +
                    self.device = device
         
     | 
| 44 | 
         
            +
                    self.previous_controlnet = None
         
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
                def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(0.0, 1.0)):
         
     | 
| 47 | 
         
            +
                    self.cond_hint_original = cond_hint
         
     | 
| 48 | 
         
            +
                    self.strength = strength
         
     | 
| 49 | 
         
            +
                    self.timestep_percent_range = timestep_percent_range
         
     | 
| 50 | 
         
            +
                    return self
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
                def pre_run(self, model, percent_to_timestep_function):
         
     | 
| 53 | 
         
            +
                    self.timestep_range = (percent_to_timestep_function(self.timestep_percent_range[0]), percent_to_timestep_function(self.timestep_percent_range[1]))
         
     | 
| 54 | 
         
            +
                    if self.previous_controlnet is not None:
         
     | 
| 55 | 
         
            +
                        self.previous_controlnet.pre_run(model, percent_to_timestep_function)
         
     | 
| 56 | 
         
            +
             
     | 
| 57 | 
         
            +
                def set_previous_controlnet(self, controlnet):
         
     | 
| 58 | 
         
            +
                    self.previous_controlnet = controlnet
         
     | 
| 59 | 
         
            +
                    return self
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
                def cleanup(self):
         
     | 
| 62 | 
         
            +
                    if self.previous_controlnet is not None:
         
     | 
| 63 | 
         
            +
                        self.previous_controlnet.cleanup()
         
     | 
| 64 | 
         
            +
                    if self.cond_hint is not None:
         
     | 
| 65 | 
         
            +
                        del self.cond_hint
         
     | 
| 66 | 
         
            +
                        self.cond_hint = None
         
     | 
| 67 | 
         
            +
                    self.timestep_range = None
         
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
                def get_models(self):
         
     | 
| 70 | 
         
            +
                    out = []
         
     | 
| 71 | 
         
            +
                    if self.previous_controlnet is not None:
         
     | 
| 72 | 
         
            +
                        out += self.previous_controlnet.get_models()
         
     | 
| 73 | 
         
            +
                    return out
         
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
                def copy_to(self, c):
         
     | 
| 76 | 
         
            +
                    c.cond_hint_original = self.cond_hint_original
         
     | 
| 77 | 
         
            +
                    c.strength = self.strength
         
     | 
| 78 | 
         
            +
                    c.timestep_percent_range = self.timestep_percent_range
         
     | 
| 79 | 
         
            +
                    c.global_average_pooling = self.global_average_pooling
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
                def inference_memory_requirements(self, dtype):
         
     | 
| 82 | 
         
            +
                    if self.previous_controlnet is not None:
         
     | 
| 83 | 
         
            +
                        return self.previous_controlnet.inference_memory_requirements(dtype)
         
     | 
| 84 | 
         
            +
                    return 0
         
     | 
| 85 | 
         
            +
             
     | 
| 86 | 
         
            +
                def control_merge(self, control_input, control_output, control_prev, output_dtype):
         
     | 
| 87 | 
         
            +
                    out = {'input':[], 'middle':[], 'output': []}
         
     | 
| 88 | 
         
            +
             
     | 
| 89 | 
         
            +
                    if control_input is not None:
         
     | 
| 90 | 
         
            +
                        for i in range(len(control_input)):
         
     | 
| 91 | 
         
            +
                            key = 'input'
         
     | 
| 92 | 
         
            +
                            x = control_input[i]
         
     | 
| 93 | 
         
            +
                            if x is not None:
         
     | 
| 94 | 
         
            +
                                x *= self.strength
         
     | 
| 95 | 
         
            +
                                if x.dtype != output_dtype:
         
     | 
| 96 | 
         
            +
                                    x = x.to(output_dtype)
         
     | 
| 97 | 
         
            +
                            out[key].insert(0, x)
         
     | 
| 98 | 
         
            +
             
     | 
| 99 | 
         
            +
                    if control_output is not None:
         
     | 
| 100 | 
         
            +
                        for i in range(len(control_output)):
         
     | 
| 101 | 
         
            +
                            if i == (len(control_output) - 1):
         
     | 
| 102 | 
         
            +
                                key = 'middle'
         
     | 
| 103 | 
         
            +
                                index = 0
         
     | 
| 104 | 
         
            +
                            else:
         
     | 
| 105 | 
         
            +
                                key = 'output'
         
     | 
| 106 | 
         
            +
                                index = i
         
     | 
| 107 | 
         
            +
                            x = control_output[i]
         
     | 
| 108 | 
         
            +
                            if x is not None:
         
     | 
| 109 | 
         
            +
                                if self.global_average_pooling:
         
     | 
| 110 | 
         
            +
                                    x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3])
         
     | 
| 111 | 
         
            +
             
     | 
| 112 | 
         
            +
                                x *= self.strength
         
     | 
| 113 | 
         
            +
                                if x.dtype != output_dtype:
         
     | 
| 114 | 
         
            +
                                    x = x.to(output_dtype)
         
     | 
| 115 | 
         
            +
             
     | 
| 116 | 
         
            +
                            out[key].append(x)
         
     | 
| 117 | 
         
            +
                    if control_prev is not None:
         
     | 
| 118 | 
         
            +
                        for x in ['input', 'middle', 'output']:
         
     | 
| 119 | 
         
            +
                            o = out[x]
         
     | 
| 120 | 
         
            +
                            for i in range(len(control_prev[x])):
         
     | 
| 121 | 
         
            +
                                prev_val = control_prev[x][i]
         
     | 
| 122 | 
         
            +
                                if i >= len(o):
         
     | 
| 123 | 
         
            +
                                    o.append(prev_val)
         
     | 
| 124 | 
         
            +
                                elif prev_val is not None:
         
     | 
| 125 | 
         
            +
                                    if o[i] is None:
         
     | 
| 126 | 
         
            +
                                        o[i] = prev_val
         
     | 
| 127 | 
         
            +
                                    else:
         
     | 
| 128 | 
         
            +
                                        if o[i].shape[0] < prev_val.shape[0]:
         
     | 
| 129 | 
         
            +
                                            o[i] = prev_val + o[i]
         
     | 
| 130 | 
         
            +
                                        else:
         
     | 
| 131 | 
         
            +
                                            o[i] += prev_val
         
     | 
| 132 | 
         
            +
                    return out
         
     | 
| 133 | 
         
            +
             
     | 
| 134 | 
         
            +
            class ControlNet(ControlBase):
         
     | 
| 135 | 
         
            +
                def __init__(self, control_model, global_average_pooling=False, device=None, load_device=None, manual_cast_dtype=None):
         
     | 
| 136 | 
         
            +
                    super().__init__(device)
         
     | 
| 137 | 
         
            +
                    self.control_model = control_model
         
     | 
| 138 | 
         
            +
                    self.load_device = load_device
         
     | 
| 139 | 
         
            +
                    self.control_model_wrapped = comfy.model_patcher.ModelPatcher(self.control_model, load_device=load_device, offload_device=comfy.model_management.unet_offload_device())
         
     | 
| 140 | 
         
            +
                    self.global_average_pooling = global_average_pooling
         
     | 
| 141 | 
         
            +
                    self.model_sampling_current = None
         
     | 
| 142 | 
         
            +
                    self.manual_cast_dtype = manual_cast_dtype
         
     | 
| 143 | 
         
            +
             
     | 
| 144 | 
         
            +
                def get_control(self, x_noisy, t, cond, batched_number):
         
     | 
| 145 | 
         
            +
                    control_prev = None
         
     | 
| 146 | 
         
            +
                    if self.previous_controlnet is not None:
         
     | 
| 147 | 
         
            +
                        control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
         
     | 
| 148 | 
         
            +
             
     | 
| 149 | 
         
            +
                    if self.timestep_range is not None:
         
     | 
| 150 | 
         
            +
                        if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
         
     | 
| 151 | 
         
            +
                            if control_prev is not None:
         
     | 
| 152 | 
         
            +
                                return control_prev
         
     | 
| 153 | 
         
            +
                            else:
         
     | 
| 154 | 
         
            +
                                return None
         
     | 
| 155 | 
         
            +
             
     | 
| 156 | 
         
            +
                    dtype = self.control_model.dtype
         
     | 
| 157 | 
         
            +
                    if self.manual_cast_dtype is not None:
         
     | 
| 158 | 
         
            +
                        dtype = self.manual_cast_dtype
         
     | 
| 159 | 
         
            +
             
     | 
| 160 | 
         
            +
                    output_dtype = x_noisy.dtype
         
     | 
| 161 | 
         
            +
                    if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
         
     | 
| 162 | 
         
            +
                        if self.cond_hint is not None:
         
     | 
| 163 | 
         
            +
                            del self.cond_hint
         
     | 
| 164 | 
         
            +
                        self.cond_hint = None
         
     | 
| 165 | 
         
            +
                        self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(dtype).to(self.device)
         
     | 
| 166 | 
         
            +
                    if x_noisy.shape[0] != self.cond_hint.shape[0]:
         
     | 
| 167 | 
         
            +
                        self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
         
     | 
| 168 | 
         
            +
             
     | 
| 169 | 
         
            +
                    context = cond['c_crossattn']
         
     | 
| 170 | 
         
            +
                    y = cond.get('y', None)
         
     | 
| 171 | 
         
            +
                    if y is not None:
         
     | 
| 172 | 
         
            +
                        y = y.to(dtype)
         
     | 
| 173 | 
         
            +
                    timestep = self.model_sampling_current.timestep(t)
         
     | 
| 174 | 
         
            +
                    x_noisy = self.model_sampling_current.calculate_input(t, x_noisy)
         
     | 
| 175 | 
         
            +
             
     | 
| 176 | 
         
            +
                    control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.float(), context=context.to(dtype), y=y)
         
     | 
| 177 | 
         
            +
                    return self.control_merge(None, control, control_prev, output_dtype)
         
     | 
| 178 | 
         
            +
             
     | 
| 179 | 
         
            +
                def copy(self):
         
     | 
| 180 | 
         
            +
                    c = ControlNet(self.control_model, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype)
         
     | 
| 181 | 
         
            +
                    self.copy_to(c)
         
     | 
| 182 | 
         
            +
                    return c
         
     | 
| 183 | 
         
            +
             
     | 
| 184 | 
         
            +
                def get_models(self):
         
     | 
| 185 | 
         
            +
                    out = super().get_models()
         
     | 
| 186 | 
         
            +
                    out.append(self.control_model_wrapped)
         
     | 
| 187 | 
         
            +
                    return out
         
     | 
| 188 | 
         
            +
             
     | 
| 189 | 
         
            +
                def pre_run(self, model, percent_to_timestep_function):
         
     | 
| 190 | 
         
            +
                    super().pre_run(model, percent_to_timestep_function)
         
     | 
| 191 | 
         
            +
                    self.model_sampling_current = model.model_sampling
         
     | 
| 192 | 
         
            +
             
     | 
| 193 | 
         
            +
                def cleanup(self):
         
     | 
| 194 | 
         
            +
                    self.model_sampling_current = None
         
     | 
| 195 | 
         
            +
                    super().cleanup()
         
     | 
| 196 | 
         
            +
             
     | 
| 197 | 
         
            +
            class ControlLoraOps:
         
     | 
| 198 | 
         
            +
                class Linear(torch.nn.Module):
         
     | 
| 199 | 
         
            +
                    def __init__(self, in_features: int, out_features: int, bias: bool = True,
         
     | 
| 200 | 
         
            +
                                device=None, dtype=None) -> None:
         
     | 
| 201 | 
         
            +
                        factory_kwargs = {'device': device, 'dtype': dtype}
         
     | 
| 202 | 
         
            +
                        super().__init__()
         
     | 
| 203 | 
         
            +
                        self.in_features = in_features
         
     | 
| 204 | 
         
            +
                        self.out_features = out_features
         
     | 
| 205 | 
         
            +
                        self.weight = None
         
     | 
| 206 | 
         
            +
                        self.up = None
         
     | 
| 207 | 
         
            +
                        self.down = None
         
     | 
| 208 | 
         
            +
                        self.bias = None
         
     | 
| 209 | 
         
            +
             
     | 
| 210 | 
         
            +
                    def forward(self, input):
         
     | 
| 211 | 
         
            +
                        weight, bias = comfy.ops.cast_bias_weight(self, input)
         
     | 
| 212 | 
         
            +
                        if self.up is not None:
         
     | 
| 213 | 
         
            +
                            return torch.nn.functional.linear(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias)
         
     | 
| 214 | 
         
            +
                        else:
         
     | 
| 215 | 
         
            +
                            return torch.nn.functional.linear(input, weight, bias)
         
     | 
| 216 | 
         
            +
             
     | 
| 217 | 
         
            +
                class Conv2d(torch.nn.Module):
         
     | 
| 218 | 
         
            +
                    def __init__(
         
     | 
| 219 | 
         
            +
                        self,
         
     | 
| 220 | 
         
            +
                        in_channels,
         
     | 
| 221 | 
         
            +
                        out_channels,
         
     | 
| 222 | 
         
            +
                        kernel_size,
         
     | 
| 223 | 
         
            +
                        stride=1,
         
     | 
| 224 | 
         
            +
                        padding=0,
         
     | 
| 225 | 
         
            +
                        dilation=1,
         
     | 
| 226 | 
         
            +
                        groups=1,
         
     | 
| 227 | 
         
            +
                        bias=True,
         
     | 
| 228 | 
         
            +
                        padding_mode='zeros',
         
     | 
| 229 | 
         
            +
                        device=None,
         
     | 
| 230 | 
         
            +
                        dtype=None
         
     | 
| 231 | 
         
            +
                    ):
         
     | 
| 232 | 
         
            +
                        super().__init__()
         
     | 
| 233 | 
         
            +
                        self.in_channels = in_channels
         
     | 
| 234 | 
         
            +
                        self.out_channels = out_channels
         
     | 
| 235 | 
         
            +
                        self.kernel_size = kernel_size
         
     | 
| 236 | 
         
            +
                        self.stride = stride
         
     | 
| 237 | 
         
            +
                        self.padding = padding
         
     | 
| 238 | 
         
            +
                        self.dilation = dilation
         
     | 
| 239 | 
         
            +
                        self.transposed = False
         
     | 
| 240 | 
         
            +
                        self.output_padding = 0
         
     | 
| 241 | 
         
            +
                        self.groups = groups
         
     | 
| 242 | 
         
            +
                        self.padding_mode = padding_mode
         
     | 
| 243 | 
         
            +
             
     | 
| 244 | 
         
            +
                        self.weight = None
         
     | 
| 245 | 
         
            +
                        self.bias = None
         
     | 
| 246 | 
         
            +
                        self.up = None
         
     | 
| 247 | 
         
            +
                        self.down = None
         
     | 
| 248 | 
         
            +
             
     | 
| 249 | 
         
            +
             
     | 
| 250 | 
         
            +
                    def forward(self, input):
         
     | 
| 251 | 
         
            +
                        weight, bias = comfy.ops.cast_bias_weight(self, input)
         
     | 
| 252 | 
         
            +
                        if self.up is not None:
         
     | 
| 253 | 
         
            +
                            return torch.nn.functional.conv2d(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias, self.stride, self.padding, self.dilation, self.groups)
         
     | 
| 254 | 
         
            +
                        else:
         
     | 
| 255 | 
         
            +
                            return torch.nn.functional.conv2d(input, weight, bias, self.stride, self.padding, self.dilation, self.groups)
         
     | 
| 256 | 
         
            +
             
     | 
| 257 | 
         
            +
             
     | 
| 258 | 
         
            +
            class ControlLora(ControlNet):
         
     | 
| 259 | 
         
            +
                def __init__(self, control_weights, global_average_pooling=False, device=None):
         
     | 
| 260 | 
         
            +
                    ControlBase.__init__(self, device)
         
     | 
| 261 | 
         
            +
                    self.control_weights = control_weights
         
     | 
| 262 | 
         
            +
                    self.global_average_pooling = global_average_pooling
         
     | 
| 263 | 
         
            +
             
     | 
| 264 | 
         
            +
                def pre_run(self, model, percent_to_timestep_function):
         
     | 
| 265 | 
         
            +
                    super().pre_run(model, percent_to_timestep_function)
         
     | 
| 266 | 
         
            +
                    controlnet_config = model.model_config.unet_config.copy()
         
     | 
| 267 | 
         
            +
                    controlnet_config.pop("out_channels")
         
     | 
| 268 | 
         
            +
                    controlnet_config["hint_channels"] = self.control_weights["input_hint_block.0.weight"].shape[1]
         
     | 
| 269 | 
         
            +
                    self.manual_cast_dtype = model.manual_cast_dtype
         
     | 
| 270 | 
         
            +
                    dtype = model.get_dtype()
         
     | 
| 271 | 
         
            +
                    if self.manual_cast_dtype is None:
         
     | 
| 272 | 
         
            +
                        class control_lora_ops(ControlLoraOps, comfy.ops.disable_weight_init):
         
     | 
| 273 | 
         
            +
                            pass
         
     | 
| 274 | 
         
            +
                    else:
         
     | 
| 275 | 
         
            +
                        class control_lora_ops(ControlLoraOps, comfy.ops.manual_cast):
         
     | 
| 276 | 
         
            +
                            pass
         
     | 
| 277 | 
         
            +
                        dtype = self.manual_cast_dtype
         
     | 
| 278 | 
         
            +
             
     | 
| 279 | 
         
            +
                    controlnet_config["operations"] = control_lora_ops
         
     | 
| 280 | 
         
            +
                    controlnet_config["dtype"] = dtype
         
     | 
| 281 | 
         
            +
                    self.control_model = comfy.cldm.cldm.ControlNet(**controlnet_config)
         
     | 
| 282 | 
         
            +
                    self.control_model.to(comfy.model_management.get_torch_device())
         
     | 
| 283 | 
         
            +
                    diffusion_model = model.diffusion_model
         
     | 
| 284 | 
         
            +
                    sd = diffusion_model.state_dict()
         
     | 
| 285 | 
         
            +
                    cm = self.control_model.state_dict()
         
     | 
| 286 | 
         
            +
             
     | 
| 287 | 
         
            +
                    for k in sd:
         
     | 
| 288 | 
         
            +
                        weight = sd[k]
         
     | 
| 289 | 
         
            +
                        try:
         
     | 
| 290 | 
         
            +
                            comfy.utils.set_attr(self.control_model, k, weight)
         
     | 
| 291 | 
         
            +
                        except:
         
     | 
| 292 | 
         
            +
                            pass
         
     | 
| 293 | 
         
            +
             
     | 
| 294 | 
         
            +
                    for k in self.control_weights:
         
     | 
| 295 | 
         
            +
                        if k not in {"lora_controlnet"}:
         
     | 
| 296 | 
         
            +
                            comfy.utils.set_attr(self.control_model, k, self.control_weights[k].to(dtype).to(comfy.model_management.get_torch_device()))
         
     | 
| 297 | 
         
            +
             
     | 
| 298 | 
         
            +
                def copy(self):
         
     | 
| 299 | 
         
            +
                    c = ControlLora(self.control_weights, global_average_pooling=self.global_average_pooling)
         
     | 
| 300 | 
         
            +
                    self.copy_to(c)
         
     | 
| 301 | 
         
            +
                    return c
         
     | 
| 302 | 
         
            +
             
     | 
| 303 | 
         
            +
                def cleanup(self):
         
     | 
| 304 | 
         
            +
                    del self.control_model
         
     | 
| 305 | 
         
            +
                    self.control_model = None
         
     | 
| 306 | 
         
            +
                    super().cleanup()
         
     | 
| 307 | 
         
            +
             
     | 
| 308 | 
         
            +
                def get_models(self):
         
     | 
| 309 | 
         
            +
                    out = ControlBase.get_models(self)
         
     | 
| 310 | 
         
            +
                    return out
         
     | 
| 311 | 
         
            +
             
     | 
| 312 | 
         
            +
                def inference_memory_requirements(self, dtype):
         
     | 
| 313 | 
         
            +
                    return comfy.utils.calculate_parameters(self.control_weights) * comfy.model_management.dtype_size(dtype) + ControlBase.inference_memory_requirements(self, dtype)
         
     | 
| 314 | 
         
            +
             
     | 
| 315 | 
         
            +
            def load_controlnet(ckpt_path, model=None):
         
     | 
| 316 | 
         
            +
                controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
         
     | 
| 317 | 
         
            +
                if "lora_controlnet" in controlnet_data:
         
     | 
| 318 | 
         
            +
                    return ControlLora(controlnet_data)
         
     | 
| 319 | 
         
            +
             
     | 
| 320 | 
         
            +
                controlnet_config = None
         
     | 
| 321 | 
         
            +
                if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format
         
     | 
| 322 | 
         
            +
                    unet_dtype = comfy.model_management.unet_dtype()
         
     | 
| 323 | 
         
            +
                    controlnet_config = comfy.model_detection.unet_config_from_diffusers_unet(controlnet_data, unet_dtype)
         
     | 
| 324 | 
         
            +
                    diffusers_keys = comfy.utils.unet_to_diffusers(controlnet_config)
         
     | 
| 325 | 
         
            +
                    diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight"
         
     | 
| 326 | 
         
            +
                    diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias"
         
     | 
| 327 | 
         
            +
             
     | 
| 328 | 
         
            +
                    count = 0
         
     | 
| 329 | 
         
            +
                    loop = True
         
     | 
| 330 | 
         
            +
                    while loop:
         
     | 
| 331 | 
         
            +
                        suffix = [".weight", ".bias"]
         
     | 
| 332 | 
         
            +
                        for s in suffix:
         
     | 
| 333 | 
         
            +
                            k_in = "controlnet_down_blocks.{}{}".format(count, s)
         
     | 
| 334 | 
         
            +
                            k_out = "zero_convs.{}.0{}".format(count, s)
         
     | 
| 335 | 
         
            +
                            if k_in not in controlnet_data:
         
     | 
| 336 | 
         
            +
                                loop = False
         
     | 
| 337 | 
         
            +
                                break
         
     | 
| 338 | 
         
            +
                            diffusers_keys[k_in] = k_out
         
     | 
| 339 | 
         
            +
                        count += 1
         
     | 
| 340 | 
         
            +
             
     | 
| 341 | 
         
            +
                    count = 0
         
     | 
| 342 | 
         
            +
                    loop = True
         
     | 
| 343 | 
         
            +
                    while loop:
         
     | 
| 344 | 
         
            +
                        suffix = [".weight", ".bias"]
         
     | 
| 345 | 
         
            +
                        for s in suffix:
         
     | 
| 346 | 
         
            +
                            if count == 0:
         
     | 
| 347 | 
         
            +
                                k_in = "controlnet_cond_embedding.conv_in{}".format(s)
         
     | 
| 348 | 
         
            +
                            else:
         
     | 
| 349 | 
         
            +
                                k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s)
         
     | 
| 350 | 
         
            +
                            k_out = "input_hint_block.{}{}".format(count * 2, s)
         
     | 
| 351 | 
         
            +
                            if k_in not in controlnet_data:
         
     | 
| 352 | 
         
            +
                                k_in = "controlnet_cond_embedding.conv_out{}".format(s)
         
     | 
| 353 | 
         
            +
                                loop = False
         
     | 
| 354 | 
         
            +
                            diffusers_keys[k_in] = k_out
         
     | 
| 355 | 
         
            +
                        count += 1
         
     | 
| 356 | 
         
            +
             
     | 
| 357 | 
         
            +
                    new_sd = {}
         
     | 
| 358 | 
         
            +
                    for k in diffusers_keys:
         
     | 
| 359 | 
         
            +
                        if k in controlnet_data:
         
     | 
| 360 | 
         
            +
                            new_sd[diffusers_keys[k]] = controlnet_data.pop(k)
         
     | 
| 361 | 
         
            +
             
     | 
| 362 | 
         
            +
                    leftover_keys = controlnet_data.keys()
         
     | 
| 363 | 
         
            +
                    if len(leftover_keys) > 0:
         
     | 
| 364 | 
         
            +
                        print("leftover keys:", leftover_keys)
         
     | 
| 365 | 
         
            +
                    controlnet_data = new_sd
         
     | 
| 366 | 
         
            +
             
     | 
| 367 | 
         
            +
                pth_key = 'control_model.zero_convs.0.0.weight'
         
     | 
| 368 | 
         
            +
                pth = False
         
     | 
| 369 | 
         
            +
                key = 'zero_convs.0.0.weight'
         
     | 
| 370 | 
         
            +
                if pth_key in controlnet_data:
         
     | 
| 371 | 
         
            +
                    pth = True
         
     | 
| 372 | 
         
            +
                    key = pth_key
         
     | 
| 373 | 
         
            +
                    prefix = "control_model."
         
     | 
| 374 | 
         
            +
                elif key in controlnet_data:
         
     | 
| 375 | 
         
            +
                    prefix = ""
         
     | 
| 376 | 
         
            +
                else:
         
     | 
| 377 | 
         
            +
                    net = load_t2i_adapter(controlnet_data)
         
     | 
| 378 | 
         
            +
                    if net is None:
         
     | 
| 379 | 
         
            +
                        print("error checkpoint does not contain controlnet or t2i adapter data", ckpt_path)
         
     | 
| 380 | 
         
            +
                    return net
         
     | 
| 381 | 
         
            +
             
     | 
| 382 | 
         
            +
                if controlnet_config is None:
         
     | 
| 383 | 
         
            +
                    unet_dtype = comfy.model_management.unet_dtype()
         
     | 
| 384 | 
         
            +
                    controlnet_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, unet_dtype, True).unet_config
         
     | 
| 385 | 
         
            +
                load_device = comfy.model_management.get_torch_device()
         
     | 
| 386 | 
         
            +
                manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
         
     | 
| 387 | 
         
            +
                if manual_cast_dtype is not None:
         
     | 
| 388 | 
         
            +
                    controlnet_config["operations"] = comfy.ops.manual_cast
         
     | 
| 389 | 
         
            +
                controlnet_config.pop("out_channels")
         
     | 
| 390 | 
         
            +
                controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
         
     | 
| 391 | 
         
            +
                control_model = comfy.cldm.cldm.ControlNet(**controlnet_config)
         
     | 
| 392 | 
         
            +
             
     | 
| 393 | 
         
            +
                if pth:
         
     | 
| 394 | 
         
            +
                    if 'difference' in controlnet_data:
         
     | 
| 395 | 
         
            +
                        if model is not None:
         
     | 
| 396 | 
         
            +
                            comfy.model_management.load_models_gpu([model])
         
     | 
| 397 | 
         
            +
                            model_sd = model.model_state_dict()
         
     | 
| 398 | 
         
            +
                            for x in controlnet_data:
         
     | 
| 399 | 
         
            +
                                c_m = "control_model."
         
     | 
| 400 | 
         
            +
                                if x.startswith(c_m):
         
     | 
| 401 | 
         
            +
                                    sd_key = "diffusion_model.{}".format(x[len(c_m):])
         
     | 
| 402 | 
         
            +
                                    if sd_key in model_sd:
         
     | 
| 403 | 
         
            +
                                        cd = controlnet_data[x]
         
     | 
| 404 | 
         
            +
                                        cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
         
     | 
| 405 | 
         
            +
                        else:
         
     | 
| 406 | 
         
            +
                            print("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")
         
     | 
| 407 | 
         
            +
             
     | 
| 408 | 
         
            +
                    class WeightsLoader(torch.nn.Module):
         
     | 
| 409 | 
         
            +
                        pass
         
     | 
| 410 | 
         
            +
                    w = WeightsLoader()
         
     | 
| 411 | 
         
            +
                    w.control_model = control_model
         
     | 
| 412 | 
         
            +
                    missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
         
     | 
| 413 | 
         
            +
                else:
         
     | 
| 414 | 
         
            +
                    missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
         
     | 
| 415 | 
         
            +
                print(missing, unexpected)
         
     | 
| 416 | 
         
            +
             
     | 
| 417 | 
         
            +
                global_average_pooling = False
         
     | 
| 418 | 
         
            +
                filename = os.path.splitext(ckpt_path)[0]
         
     | 
| 419 | 
         
            +
                if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): #TODO: smarter way of enabling global_average_pooling
         
     | 
| 420 | 
         
            +
                    global_average_pooling = True
         
     | 
| 421 | 
         
            +
             
     | 
| 422 | 
         
            +
                control = ControlNet(control_model, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
         
     | 
| 423 | 
         
            +
                return control
         
     | 
| 424 | 
         
            +
             
     | 
| 425 | 
         
            +
            class T2IAdapter(ControlBase):
         
     | 
| 426 | 
         
            +
                def __init__(self, t2i_model, channels_in, device=None):
         
     | 
| 427 | 
         
            +
                    super().__init__(device)
         
     | 
| 428 | 
         
            +
                    self.t2i_model = t2i_model
         
     | 
| 429 | 
         
            +
                    self.channels_in = channels_in
         
     | 
| 430 | 
         
            +
                    self.control_input = None
         
     | 
| 431 | 
         
            +
             
     | 
| 432 | 
         
            +
                def scale_image_to(self, width, height):
         
     | 
| 433 | 
         
            +
                    unshuffle_amount = self.t2i_model.unshuffle_amount
         
     | 
| 434 | 
         
            +
                    width = math.ceil(width / unshuffle_amount) * unshuffle_amount
         
     | 
| 435 | 
         
            +
                    height = math.ceil(height / unshuffle_amount) * unshuffle_amount
         
     | 
| 436 | 
         
            +
                    return width, height
         
     | 
| 437 | 
         
            +
             
     | 
| 438 | 
         
            +
                def get_control(self, x_noisy, t, cond, batched_number):
         
     | 
| 439 | 
         
            +
                    control_prev = None
         
     | 
| 440 | 
         
            +
                    if self.previous_controlnet is not None:
         
     | 
| 441 | 
         
            +
                        control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
         
     | 
| 442 | 
         
            +
             
     | 
| 443 | 
         
            +
                    if self.timestep_range is not None:
         
     | 
| 444 | 
         
            +
                        if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
         
     | 
| 445 | 
         
            +
                            if control_prev is not None:
         
     | 
| 446 | 
         
            +
                                return control_prev
         
     | 
| 447 | 
         
            +
                            else:
         
     | 
| 448 | 
         
            +
                                return None
         
     | 
| 449 | 
         
            +
             
     | 
| 450 | 
         
            +
                    if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
         
     | 
| 451 | 
         
            +
                        if self.cond_hint is not None:
         
     | 
| 452 | 
         
            +
                            del self.cond_hint
         
     | 
| 453 | 
         
            +
                        self.control_input = None
         
     | 
| 454 | 
         
            +
                        self.cond_hint = None
         
     | 
| 455 | 
         
            +
                        width, height = self.scale_image_to(x_noisy.shape[3] * 8, x_noisy.shape[2] * 8)
         
     | 
| 456 | 
         
            +
                        self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, width, height, 'nearest-exact', "center").float().to(self.device)
         
     | 
| 457 | 
         
            +
                        if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
         
     | 
| 458 | 
         
            +
                            self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
         
     | 
| 459 | 
         
            +
                    if x_noisy.shape[0] != self.cond_hint.shape[0]:
         
     | 
| 460 | 
         
            +
                        self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
         
     | 
| 461 | 
         
            +
                    if self.control_input is None:
         
     | 
| 462 | 
         
            +
                        self.t2i_model.to(x_noisy.dtype)
         
     | 
| 463 | 
         
            +
                        self.t2i_model.to(self.device)
         
     | 
| 464 | 
         
            +
                        self.control_input = self.t2i_model(self.cond_hint.to(x_noisy.dtype))
         
     | 
| 465 | 
         
            +
                        self.t2i_model.cpu()
         
     | 
| 466 | 
         
            +
             
     | 
| 467 | 
         
            +
                    control_input = list(map(lambda a: None if a is None else a.clone(), self.control_input))
         
     | 
| 468 | 
         
            +
                    mid = None
         
     | 
| 469 | 
         
            +
                    if self.t2i_model.xl == True:
         
     | 
| 470 | 
         
            +
                        mid = control_input[-1:]
         
     | 
| 471 | 
         
            +
                        control_input = control_input[:-1]
         
     | 
| 472 | 
         
            +
                    return self.control_merge(control_input, mid, control_prev, x_noisy.dtype)
         
     | 
| 473 | 
         
            +
             
     | 
| 474 | 
         
            +
                def copy(self):
         
     | 
| 475 | 
         
            +
                    c = T2IAdapter(self.t2i_model, self.channels_in)
         
     | 
| 476 | 
         
            +
                    self.copy_to(c)
         
     | 
| 477 | 
         
            +
                    return c
         
     | 
| 478 | 
         
            +
             
     | 
| 479 | 
         
            +
            def load_t2i_adapter(t2i_data):
         
     | 
| 480 | 
         
            +
                if 'adapter' in t2i_data:
         
     | 
| 481 | 
         
            +
                    t2i_data = t2i_data['adapter']
         
     | 
| 482 | 
         
            +
                if 'adapter.body.0.resnets.0.block1.weight' in t2i_data: #diffusers format
         
     | 
| 483 | 
         
            +
                    prefix_replace = {}
         
     | 
| 484 | 
         
            +
                    for i in range(4):
         
     | 
| 485 | 
         
            +
                        for j in range(2):
         
     | 
| 486 | 
         
            +
                            prefix_replace["adapter.body.{}.resnets.{}.".format(i, j)] = "body.{}.".format(i * 2 + j)
         
     | 
| 487 | 
         
            +
                        prefix_replace["adapter.body.{}.".format(i, j)] = "body.{}.".format(i * 2)
         
     | 
| 488 | 
         
            +
                    prefix_replace["adapter."] = ""
         
     | 
| 489 | 
         
            +
                    t2i_data = comfy.utils.state_dict_prefix_replace(t2i_data, prefix_replace)
         
     | 
| 490 | 
         
            +
                keys = t2i_data.keys()
         
     | 
| 491 | 
         
            +
             
     | 
| 492 | 
         
            +
                if "body.0.in_conv.weight" in keys:
         
     | 
| 493 | 
         
            +
                    cin = t2i_data['body.0.in_conv.weight'].shape[1]
         
     | 
| 494 | 
         
            +
                    model_ad = comfy.t2i_adapter.adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
         
     | 
| 495 | 
         
            +
                elif 'conv_in.weight' in keys:
         
     | 
| 496 | 
         
            +
                    cin = t2i_data['conv_in.weight'].shape[1]
         
     | 
| 497 | 
         
            +
                    channel = t2i_data['conv_in.weight'].shape[0]
         
     | 
| 498 | 
         
            +
                    ksize = t2i_data['body.0.block2.weight'].shape[2]
         
     | 
| 499 | 
         
            +
                    use_conv = False
         
     | 
| 500 | 
         
            +
                    down_opts = list(filter(lambda a: a.endswith("down_opt.op.weight"), keys))
         
     | 
| 501 | 
         
            +
                    if len(down_opts) > 0:
         
     | 
| 502 | 
         
            +
                        use_conv = True
         
     | 
| 503 | 
         
            +
                    xl = False
         
     | 
| 504 | 
         
            +
                    if cin == 256 or cin == 768:
         
     | 
| 505 | 
         
            +
                        xl = True
         
     | 
| 506 | 
         
            +
                    model_ad = comfy.t2i_adapter.adapter.Adapter(cin=cin, channels=[channel, channel*2, channel*4, channel*4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv, xl=xl)
         
     | 
| 507 | 
         
            +
                else:
         
     | 
| 508 | 
         
            +
                    return None
         
     | 
| 509 | 
         
            +
                missing, unexpected = model_ad.load_state_dict(t2i_data)
         
     | 
| 510 | 
         
            +
                if len(missing) > 0:
         
     | 
| 511 | 
         
            +
                    print("t2i missing", missing)
         
     | 
| 512 | 
         
            +
             
     | 
| 513 | 
         
            +
                if len(unexpected) > 0:
         
     | 
| 514 | 
         
            +
                    print("t2i unexpected", unexpected)
         
     | 
| 515 | 
         
            +
             
     | 
| 516 | 
         
            +
                return T2IAdapter(model_ad, model_ad.input_channels)
         
     | 
    	
        comfy/diffusers_convert.py
    ADDED
    
    | 
         @@ -0,0 +1,261 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import re
         
     | 
| 2 | 
         
            +
            import torch
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            # conversion code from https://github.com/huggingface/diffusers/blob/main/scripts/convert_diffusers_to_original_stable_diffusion.py
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            # =================#
         
     | 
| 7 | 
         
            +
            # UNet Conversion #
         
     | 
| 8 | 
         
            +
            # =================#
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            unet_conversion_map = [
         
     | 
| 11 | 
         
            +
                # (stable-diffusion, HF Diffusers)
         
     | 
| 12 | 
         
            +
                ("time_embed.0.weight", "time_embedding.linear_1.weight"),
         
     | 
| 13 | 
         
            +
                ("time_embed.0.bias", "time_embedding.linear_1.bias"),
         
     | 
| 14 | 
         
            +
                ("time_embed.2.weight", "time_embedding.linear_2.weight"),
         
     | 
| 15 | 
         
            +
                ("time_embed.2.bias", "time_embedding.linear_2.bias"),
         
     | 
| 16 | 
         
            +
                ("input_blocks.0.0.weight", "conv_in.weight"),
         
     | 
| 17 | 
         
            +
                ("input_blocks.0.0.bias", "conv_in.bias"),
         
     | 
| 18 | 
         
            +
                ("out.0.weight", "conv_norm_out.weight"),
         
     | 
| 19 | 
         
            +
                ("out.0.bias", "conv_norm_out.bias"),
         
     | 
| 20 | 
         
            +
                ("out.2.weight", "conv_out.weight"),
         
     | 
| 21 | 
         
            +
                ("out.2.bias", "conv_out.bias"),
         
     | 
| 22 | 
         
            +
            ]
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
            unet_conversion_map_resnet = [
         
     | 
| 25 | 
         
            +
                # (stable-diffusion, HF Diffusers)
         
     | 
| 26 | 
         
            +
                ("in_layers.0", "norm1"),
         
     | 
| 27 | 
         
            +
                ("in_layers.2", "conv1"),
         
     | 
| 28 | 
         
            +
                ("out_layers.0", "norm2"),
         
     | 
| 29 | 
         
            +
                ("out_layers.3", "conv2"),
         
     | 
| 30 | 
         
            +
                ("emb_layers.1", "time_emb_proj"),
         
     | 
| 31 | 
         
            +
                ("skip_connection", "conv_shortcut"),
         
     | 
| 32 | 
         
            +
            ]
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
            unet_conversion_map_layer = []
         
     | 
| 35 | 
         
            +
            # hardcoded number of downblocks and resnets/attentions...
         
     | 
| 36 | 
         
            +
            # would need smarter logic for other networks.
         
     | 
| 37 | 
         
            +
            for i in range(4):
         
     | 
| 38 | 
         
            +
                # loop over downblocks/upblocks
         
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
                for j in range(2):
         
     | 
| 41 | 
         
            +
                    # loop over resnets/attentions for downblocks
         
     | 
| 42 | 
         
            +
                    hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
         
     | 
| 43 | 
         
            +
                    sd_down_res_prefix = f"input_blocks.{3 * i + j + 1}.0."
         
     | 
| 44 | 
         
            +
                    unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
         
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
                    if i < 3:
         
     | 
| 47 | 
         
            +
                        # no attention layers in down_blocks.3
         
     | 
| 48 | 
         
            +
                        hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
         
     | 
| 49 | 
         
            +
                        sd_down_atn_prefix = f"input_blocks.{3 * i + j + 1}.1."
         
     | 
| 50 | 
         
            +
                        unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
                for j in range(3):
         
     | 
| 53 | 
         
            +
                    # loop over resnets/attentions for upblocks
         
     | 
| 54 | 
         
            +
                    hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
         
     | 
| 55 | 
         
            +
                    sd_up_res_prefix = f"output_blocks.{3 * i + j}.0."
         
     | 
| 56 | 
         
            +
                    unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
         
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
                    if i > 0:
         
     | 
| 59 | 
         
            +
                        # no attention layers in up_blocks.0
         
     | 
| 60 | 
         
            +
                        hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
         
     | 
| 61 | 
         
            +
                        sd_up_atn_prefix = f"output_blocks.{3 * i + j}.1."
         
     | 
| 62 | 
         
            +
                        unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
                if i < 3:
         
     | 
| 65 | 
         
            +
                    # no downsample in down_blocks.3
         
     | 
| 66 | 
         
            +
                    hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
         
     | 
| 67 | 
         
            +
                    sd_downsample_prefix = f"input_blocks.{3 * (i + 1)}.0.op."
         
     | 
| 68 | 
         
            +
                    unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
                    # no upsample in up_blocks.3
         
     | 
| 71 | 
         
            +
                    hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
         
     | 
| 72 | 
         
            +
                    sd_upsample_prefix = f"output_blocks.{3 * i + 2}.{1 if i == 0 else 2}."
         
     | 
| 73 | 
         
            +
                    unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
         
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
            hf_mid_atn_prefix = "mid_block.attentions.0."
         
     | 
| 76 | 
         
            +
            sd_mid_atn_prefix = "middle_block.1."
         
     | 
| 77 | 
         
            +
            unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
         
     | 
| 78 | 
         
            +
             
     | 
| 79 | 
         
            +
            for j in range(2):
         
     | 
| 80 | 
         
            +
                hf_mid_res_prefix = f"mid_block.resnets.{j}."
         
     | 
| 81 | 
         
            +
                sd_mid_res_prefix = f"middle_block.{2 * j}."
         
     | 
| 82 | 
         
            +
                unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
         
     | 
| 83 | 
         
            +
             
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
            def convert_unet_state_dict(unet_state_dict):
         
     | 
| 86 | 
         
            +
                # buyer beware: this is a *brittle* function,
         
     | 
| 87 | 
         
            +
                # and correct output requires that all of these pieces interact in
         
     | 
| 88 | 
         
            +
                # the exact order in which I have arranged them.
         
     | 
| 89 | 
         
            +
                mapping = {k: k for k in unet_state_dict.keys()}
         
     | 
| 90 | 
         
            +
                for sd_name, hf_name in unet_conversion_map:
         
     | 
| 91 | 
         
            +
                    mapping[hf_name] = sd_name
         
     | 
| 92 | 
         
            +
                for k, v in mapping.items():
         
     | 
| 93 | 
         
            +
                    if "resnets" in k:
         
     | 
| 94 | 
         
            +
                        for sd_part, hf_part in unet_conversion_map_resnet:
         
     | 
| 95 | 
         
            +
                            v = v.replace(hf_part, sd_part)
         
     | 
| 96 | 
         
            +
                        mapping[k] = v
         
     | 
| 97 | 
         
            +
                for k, v in mapping.items():
         
     | 
| 98 | 
         
            +
                    for sd_part, hf_part in unet_conversion_map_layer:
         
     | 
| 99 | 
         
            +
                        v = v.replace(hf_part, sd_part)
         
     | 
| 100 | 
         
            +
                    mapping[k] = v
         
     | 
| 101 | 
         
            +
                new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()}
         
     | 
| 102 | 
         
            +
                return new_state_dict
         
     | 
| 103 | 
         
            +
             
     | 
| 104 | 
         
            +
             
     | 
| 105 | 
         
            +
            # ================#
         
     | 
| 106 | 
         
            +
            # VAE Conversion #
         
     | 
| 107 | 
         
            +
            # ================#
         
     | 
| 108 | 
         
            +
             
     | 
| 109 | 
         
            +
            vae_conversion_map = [
         
     | 
| 110 | 
         
            +
                # (stable-diffusion, HF Diffusers)
         
     | 
| 111 | 
         
            +
                ("nin_shortcut", "conv_shortcut"),
         
     | 
| 112 | 
         
            +
                ("norm_out", "conv_norm_out"),
         
     | 
| 113 | 
         
            +
                ("mid.attn_1.", "mid_block.attentions.0."),
         
     | 
| 114 | 
         
            +
            ]
         
     | 
| 115 | 
         
            +
             
     | 
| 116 | 
         
            +
            for i in range(4):
         
     | 
| 117 | 
         
            +
                # down_blocks have two resnets
         
     | 
| 118 | 
         
            +
                for j in range(2):
         
     | 
| 119 | 
         
            +
                    hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}."
         
     | 
| 120 | 
         
            +
                    sd_down_prefix = f"encoder.down.{i}.block.{j}."
         
     | 
| 121 | 
         
            +
                    vae_conversion_map.append((sd_down_prefix, hf_down_prefix))
         
     | 
| 122 | 
         
            +
             
     | 
| 123 | 
         
            +
                if i < 3:
         
     | 
| 124 | 
         
            +
                    hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0."
         
     | 
| 125 | 
         
            +
                    sd_downsample_prefix = f"down.{i}.downsample."
         
     | 
| 126 | 
         
            +
                    vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))
         
     | 
| 127 | 
         
            +
             
     | 
| 128 | 
         
            +
                    hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
         
     | 
| 129 | 
         
            +
                    sd_upsample_prefix = f"up.{3 - i}.upsample."
         
     | 
| 130 | 
         
            +
                    vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))
         
     | 
| 131 | 
         
            +
             
     | 
| 132 | 
         
            +
                # up_blocks have three resnets
         
     | 
| 133 | 
         
            +
                # also, up blocks in hf are numbered in reverse from sd
         
     | 
| 134 | 
         
            +
                for j in range(3):
         
     | 
| 135 | 
         
            +
                    hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}."
         
     | 
| 136 | 
         
            +
                    sd_up_prefix = f"decoder.up.{3 - i}.block.{j}."
         
     | 
| 137 | 
         
            +
                    vae_conversion_map.append((sd_up_prefix, hf_up_prefix))
         
     | 
| 138 | 
         
            +
             
     | 
| 139 | 
         
            +
            # this part accounts for mid blocks in both the encoder and the decoder
         
     | 
| 140 | 
         
            +
            for i in range(2):
         
     | 
| 141 | 
         
            +
                hf_mid_res_prefix = f"mid_block.resnets.{i}."
         
     | 
| 142 | 
         
            +
                sd_mid_res_prefix = f"mid.block_{i + 1}."
         
     | 
| 143 | 
         
            +
                vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))
         
     | 
| 144 | 
         
            +
             
     | 
| 145 | 
         
            +
            vae_conversion_map_attn = [
         
     | 
| 146 | 
         
            +
                # (stable-diffusion, HF Diffusers)
         
     | 
| 147 | 
         
            +
                ("norm.", "group_norm."),
         
     | 
| 148 | 
         
            +
                ("q.", "query."),
         
     | 
| 149 | 
         
            +
                ("k.", "key."),
         
     | 
| 150 | 
         
            +
                ("v.", "value."),
         
     | 
| 151 | 
         
            +
                ("q.", "to_q."),
         
     | 
| 152 | 
         
            +
                ("k.", "to_k."),
         
     | 
| 153 | 
         
            +
                ("v.", "to_v."),
         
     | 
| 154 | 
         
            +
                ("proj_out.", "to_out.0."),
         
     | 
| 155 | 
         
            +
                ("proj_out.", "proj_attn."),
         
     | 
| 156 | 
         
            +
            ]
         
     | 
| 157 | 
         
            +
             
     | 
| 158 | 
         
            +
             
     | 
| 159 | 
         
            +
            def reshape_weight_for_sd(w):
         
     | 
| 160 | 
         
            +
                # convert HF linear weights to SD conv2d weights
         
     | 
| 161 | 
         
            +
                return w.reshape(*w.shape, 1, 1)
         
     | 
| 162 | 
         
            +
             
     | 
| 163 | 
         
            +
             
     | 
| 164 | 
         
            +
            def convert_vae_state_dict(vae_state_dict):
         
     | 
| 165 | 
         
            +
                mapping = {k: k for k in vae_state_dict.keys()}
         
     | 
| 166 | 
         
            +
                for k, v in mapping.items():
         
     | 
| 167 | 
         
            +
                    for sd_part, hf_part in vae_conversion_map:
         
     | 
| 168 | 
         
            +
                        v = v.replace(hf_part, sd_part)
         
     | 
| 169 | 
         
            +
                    mapping[k] = v
         
     | 
| 170 | 
         
            +
                for k, v in mapping.items():
         
     | 
| 171 | 
         
            +
                    if "attentions" in k:
         
     | 
| 172 | 
         
            +
                        for sd_part, hf_part in vae_conversion_map_attn:
         
     | 
| 173 | 
         
            +
                            v = v.replace(hf_part, sd_part)
         
     | 
| 174 | 
         
            +
                        mapping[k] = v
         
     | 
| 175 | 
         
            +
                new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
         
     | 
| 176 | 
         
            +
                weights_to_convert = ["q", "k", "v", "proj_out"]
         
     | 
| 177 | 
         
            +
                for k, v in new_state_dict.items():
         
     | 
| 178 | 
         
            +
                    for weight_name in weights_to_convert:
         
     | 
| 179 | 
         
            +
                        if f"mid.attn_1.{weight_name}.weight" in k:
         
     | 
| 180 | 
         
            +
                            print(f"Reshaping {k} for SD format")
         
     | 
| 181 | 
         
            +
                            new_state_dict[k] = reshape_weight_for_sd(v)
         
     | 
| 182 | 
         
            +
                return new_state_dict
         
     | 
| 183 | 
         
            +
             
     | 
| 184 | 
         
            +
             
     | 
| 185 | 
         
            +
            # =========================#
         
     | 
| 186 | 
         
            +
            # Text Encoder Conversion #
         
     | 
| 187 | 
         
            +
            # =========================#
         
     | 
| 188 | 
         
            +
             
     | 
| 189 | 
         
            +
             
     | 
| 190 | 
         
            +
            textenc_conversion_lst = [
         
     | 
| 191 | 
         
            +
                # (stable-diffusion, HF Diffusers)
         
     | 
| 192 | 
         
            +
                ("resblocks.", "text_model.encoder.layers."),
         
     | 
| 193 | 
         
            +
                ("ln_1", "layer_norm1"),
         
     | 
| 194 | 
         
            +
                ("ln_2", "layer_norm2"),
         
     | 
| 195 | 
         
            +
                (".c_fc.", ".fc1."),
         
     | 
| 196 | 
         
            +
                (".c_proj.", ".fc2."),
         
     | 
| 197 | 
         
            +
                (".attn", ".self_attn"),
         
     | 
| 198 | 
         
            +
                ("ln_final.", "transformer.text_model.final_layer_norm."),
         
     | 
| 199 | 
         
            +
                ("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"),
         
     | 
| 200 | 
         
            +
                ("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"),
         
     | 
| 201 | 
         
            +
            ]
         
     | 
| 202 | 
         
            +
            protected = {re.escape(x[1]): x[0] for x in textenc_conversion_lst}
         
     | 
| 203 | 
         
            +
            textenc_pattern = re.compile("|".join(protected.keys()))
         
     | 
| 204 | 
         
            +
             
     | 
| 205 | 
         
            +
            # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp
         
     | 
| 206 | 
         
            +
            code2idx = {"q": 0, "k": 1, "v": 2}
         
     | 
| 207 | 
         
            +
             
     | 
| 208 | 
         
            +
             
     | 
| 209 | 
         
            +
            def convert_text_enc_state_dict_v20(text_enc_dict, prefix=""):
         
     | 
| 210 | 
         
            +
                new_state_dict = {}
         
     | 
| 211 | 
         
            +
                capture_qkv_weight = {}
         
     | 
| 212 | 
         
            +
                capture_qkv_bias = {}
         
     | 
| 213 | 
         
            +
                for k, v in text_enc_dict.items():
         
     | 
| 214 | 
         
            +
                    if not k.startswith(prefix):
         
     | 
| 215 | 
         
            +
                        continue
         
     | 
| 216 | 
         
            +
                    if (
         
     | 
| 217 | 
         
            +
                            k.endswith(".self_attn.q_proj.weight")
         
     | 
| 218 | 
         
            +
                            or k.endswith(".self_attn.k_proj.weight")
         
     | 
| 219 | 
         
            +
                            or k.endswith(".self_attn.v_proj.weight")
         
     | 
| 220 | 
         
            +
                    ):
         
     | 
| 221 | 
         
            +
                        k_pre = k[: -len(".q_proj.weight")]
         
     | 
| 222 | 
         
            +
                        k_code = k[-len("q_proj.weight")]
         
     | 
| 223 | 
         
            +
                        if k_pre not in capture_qkv_weight:
         
     | 
| 224 | 
         
            +
                            capture_qkv_weight[k_pre] = [None, None, None]
         
     | 
| 225 | 
         
            +
                        capture_qkv_weight[k_pre][code2idx[k_code]] = v
         
     | 
| 226 | 
         
            +
                        continue
         
     | 
| 227 | 
         
            +
             
     | 
| 228 | 
         
            +
                    if (
         
     | 
| 229 | 
         
            +
                            k.endswith(".self_attn.q_proj.bias")
         
     | 
| 230 | 
         
            +
                            or k.endswith(".self_attn.k_proj.bias")
         
     | 
| 231 | 
         
            +
                            or k.endswith(".self_attn.v_proj.bias")
         
     | 
| 232 | 
         
            +
                    ):
         
     | 
| 233 | 
         
            +
                        k_pre = k[: -len(".q_proj.bias")]
         
     | 
| 234 | 
         
            +
                        k_code = k[-len("q_proj.bias")]
         
     | 
| 235 | 
         
            +
                        if k_pre not in capture_qkv_bias:
         
     | 
| 236 | 
         
            +
                            capture_qkv_bias[k_pre] = [None, None, None]
         
     | 
| 237 | 
         
            +
                        capture_qkv_bias[k_pre][code2idx[k_code]] = v
         
     | 
| 238 | 
         
            +
                        continue
         
     | 
| 239 | 
         
            +
             
     | 
| 240 | 
         
            +
                    relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k)
         
     | 
| 241 | 
         
            +
                    new_state_dict[relabelled_key] = v
         
     | 
| 242 | 
         
            +
             
     | 
| 243 | 
         
            +
                for k_pre, tensors in capture_qkv_weight.items():
         
     | 
| 244 | 
         
            +
                    if None in tensors:
         
     | 
| 245 | 
         
            +
                        raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
         
     | 
| 246 | 
         
            +
                    relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
         
     | 
| 247 | 
         
            +
                    new_state_dict[relabelled_key + ".in_proj_weight"] = torch.cat(tensors)
         
     | 
| 248 | 
         
            +
             
     | 
| 249 | 
         
            +
                for k_pre, tensors in capture_qkv_bias.items():
         
     | 
| 250 | 
         
            +
                    if None in tensors:
         
     | 
| 251 | 
         
            +
                        raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
         
     | 
| 252 | 
         
            +
                    relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
         
     | 
| 253 | 
         
            +
                    new_state_dict[relabelled_key + ".in_proj_bias"] = torch.cat(tensors)
         
     | 
| 254 | 
         
            +
             
     | 
| 255 | 
         
            +
                return new_state_dict
         
     | 
| 256 | 
         
            +
             
     | 
| 257 | 
         
            +
             
     | 
| 258 | 
         
            +
            def convert_text_enc_state_dict(text_enc_dict):
         
     | 
| 259 | 
         
            +
                return text_enc_dict
         
     | 
| 260 | 
         
            +
             
     | 
| 261 | 
         
            +
             
     | 
    	
        comfy/diffusers_load.py
    ADDED
    
    | 
         @@ -0,0 +1,36 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import os
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
            import comfy.sd
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            def first_file(path, filenames):
         
     | 
| 6 | 
         
            +
                for f in filenames:
         
     | 
| 7 | 
         
            +
                    p = os.path.join(path, f)
         
     | 
| 8 | 
         
            +
                    if os.path.exists(p):
         
     | 
| 9 | 
         
            +
                        return p
         
     | 
| 10 | 
         
            +
                return None
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
            def load_diffusers(model_path, output_vae=True, output_clip=True, embedding_directory=None):
         
     | 
| 13 | 
         
            +
                diffusion_model_names = ["diffusion_pytorch_model.fp16.safetensors", "diffusion_pytorch_model.safetensors", "diffusion_pytorch_model.fp16.bin", "diffusion_pytorch_model.bin"]
         
     | 
| 14 | 
         
            +
                unet_path = first_file(os.path.join(model_path, "unet"), diffusion_model_names)
         
     | 
| 15 | 
         
            +
                vae_path = first_file(os.path.join(model_path, "vae"), diffusion_model_names)
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
                text_encoder_model_names = ["model.fp16.safetensors", "model.safetensors", "pytorch_model.fp16.bin", "pytorch_model.bin"]
         
     | 
| 18 | 
         
            +
                text_encoder1_path = first_file(os.path.join(model_path, "text_encoder"), text_encoder_model_names)
         
     | 
| 19 | 
         
            +
                text_encoder2_path = first_file(os.path.join(model_path, "text_encoder_2"), text_encoder_model_names)
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
                text_encoder_paths = [text_encoder1_path]
         
     | 
| 22 | 
         
            +
                if text_encoder2_path is not None:
         
     | 
| 23 | 
         
            +
                    text_encoder_paths.append(text_encoder2_path)
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
                unet = comfy.sd.load_unet(unet_path)
         
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
                clip = None
         
     | 
| 28 | 
         
            +
                if output_clip:
         
     | 
| 29 | 
         
            +
                    clip = comfy.sd.load_clip(text_encoder_paths, embedding_directory=embedding_directory)
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
                vae = None
         
     | 
| 32 | 
         
            +
                if output_vae:
         
     | 
| 33 | 
         
            +
                    sd = comfy.utils.load_torch_file(vae_path)
         
     | 
| 34 | 
         
            +
                    vae = comfy.sd.VAE(sd=sd)
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
                return (unet, clip, vae)
         
     | 
    	
        comfy/extra_samplers/uni_pc.py
    ADDED
    
    | 
         @@ -0,0 +1,894 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            #code taken from: https://github.com/wl-zhao/UniPC and modified
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
            import torch
         
     | 
| 4 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 5 | 
         
            +
            import math
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
            from tqdm.auto import trange, tqdm
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            class NoiseScheduleVP:
         
     | 
| 11 | 
         
            +
                def __init__(
         
     | 
| 12 | 
         
            +
                        self,
         
     | 
| 13 | 
         
            +
                        schedule='discrete',
         
     | 
| 14 | 
         
            +
                        betas=None,
         
     | 
| 15 | 
         
            +
                        alphas_cumprod=None,
         
     | 
| 16 | 
         
            +
                        continuous_beta_0=0.1,
         
     | 
| 17 | 
         
            +
                        continuous_beta_1=20.,
         
     | 
| 18 | 
         
            +
                    ):
         
     | 
| 19 | 
         
            +
                    """Create a wrapper class for the forward SDE (VP type).
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
                    ***
         
     | 
| 22 | 
         
            +
                    Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
         
     | 
| 23 | 
         
            +
                            We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
         
     | 
| 24 | 
         
            +
                    ***
         
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
                    The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
         
     | 
| 27 | 
         
            +
                    We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
         
     | 
| 28 | 
         
            +
                    Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
                        log_alpha_t = self.marginal_log_mean_coeff(t)
         
     | 
| 31 | 
         
            +
                        sigma_t = self.marginal_std(t)
         
     | 
| 32 | 
         
            +
                        lambda_t = self.marginal_lambda(t)
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
                    Moreover, as lambda(t) is an invertible function, we also support its inverse function:
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
                        t = self.inverse_lambda(lambda_t)
         
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
                    ===============================================================
         
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
                    We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
         
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
                    1. For discrete-time DPMs:
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
                        For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
         
     | 
| 45 | 
         
            +
                            t_i = (i + 1) / N
         
     | 
| 46 | 
         
            +
                        e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
         
     | 
| 47 | 
         
            +
                        We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
         
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
                        Args:
         
     | 
| 50 | 
         
            +
                            betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
         
     | 
| 51 | 
         
            +
                            alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
         
     | 
| 52 | 
         
            +
             
     | 
| 53 | 
         
            +
                        Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
                        **Important**:  Please pay special attention for the args for `alphas_cumprod`:
         
     | 
| 56 | 
         
            +
                            The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
         
     | 
| 57 | 
         
            +
                                q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
         
     | 
| 58 | 
         
            +
                            Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
         
     | 
| 59 | 
         
            +
                                alpha_{t_n} = \sqrt{\hat{alpha_n}},
         
     | 
| 60 | 
         
            +
                            and
         
     | 
| 61 | 
         
            +
                                log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
         
     | 
| 62 | 
         
            +
             
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
                    2. For continuous-time DPMs:
         
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
                        We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
         
     | 
| 67 | 
         
            +
                        schedule are the default settings in DDPM and improved-DDPM:
         
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
                        Args:
         
     | 
| 70 | 
         
            +
                            beta_min: A `float` number. The smallest beta for the linear schedule.
         
     | 
| 71 | 
         
            +
                            beta_max: A `float` number. The largest beta for the linear schedule.
         
     | 
| 72 | 
         
            +
                            cosine_s: A `float` number. The hyperparameter in the cosine schedule.
         
     | 
| 73 | 
         
            +
                            cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
         
     | 
| 74 | 
         
            +
                            T: A `float` number. The ending time of the forward process.
         
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
                    ===============================================================
         
     | 
| 77 | 
         
            +
             
     | 
| 78 | 
         
            +
                    Args:
         
     | 
| 79 | 
         
            +
                        schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
         
     | 
| 80 | 
         
            +
                                'linear' or 'cosine' for continuous-time DPMs.
         
     | 
| 81 | 
         
            +
                    Returns:
         
     | 
| 82 | 
         
            +
                        A wrapper object of the forward SDE (VP type).
         
     | 
| 83 | 
         
            +
                    
         
     | 
| 84 | 
         
            +
                    ===============================================================
         
     | 
| 85 | 
         
            +
             
     | 
| 86 | 
         
            +
                    Example:
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
                    # For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
         
     | 
| 89 | 
         
            +
                    >>> ns = NoiseScheduleVP('discrete', betas=betas)
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
                    # For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
         
     | 
| 92 | 
         
            +
                    >>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
         
     | 
| 93 | 
         
            +
             
     | 
| 94 | 
         
            +
                    # For continuous-time DPMs (VPSDE), linear schedule:
         
     | 
| 95 | 
         
            +
                    >>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
         
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
                    """
         
     | 
| 98 | 
         
            +
             
     | 
| 99 | 
         
            +
                    if schedule not in ['discrete', 'linear', 'cosine']:
         
     | 
| 100 | 
         
            +
                        raise ValueError("Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(schedule))
         
     | 
| 101 | 
         
            +
             
     | 
| 102 | 
         
            +
                    self.schedule = schedule
         
     | 
| 103 | 
         
            +
                    if schedule == 'discrete':
         
     | 
| 104 | 
         
            +
                        if betas is not None:
         
     | 
| 105 | 
         
            +
                            log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
         
     | 
| 106 | 
         
            +
                        else:
         
     | 
| 107 | 
         
            +
                            assert alphas_cumprod is not None
         
     | 
| 108 | 
         
            +
                            log_alphas = 0.5 * torch.log(alphas_cumprod)
         
     | 
| 109 | 
         
            +
                        self.total_N = len(log_alphas)
         
     | 
| 110 | 
         
            +
                        self.T = 1.
         
     | 
| 111 | 
         
            +
                        self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
         
     | 
| 112 | 
         
            +
                        self.log_alpha_array = log_alphas.reshape((1, -1,))
         
     | 
| 113 | 
         
            +
                    else:
         
     | 
| 114 | 
         
            +
                        self.total_N = 1000
         
     | 
| 115 | 
         
            +
                        self.beta_0 = continuous_beta_0
         
     | 
| 116 | 
         
            +
                        self.beta_1 = continuous_beta_1
         
     | 
| 117 | 
         
            +
                        self.cosine_s = 0.008
         
     | 
| 118 | 
         
            +
                        self.cosine_beta_max = 999.
         
     | 
| 119 | 
         
            +
                        self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
         
     | 
| 120 | 
         
            +
                        self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
         
     | 
| 121 | 
         
            +
                        self.schedule = schedule
         
     | 
| 122 | 
         
            +
                        if schedule == 'cosine':
         
     | 
| 123 | 
         
            +
                            # For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
         
     | 
| 124 | 
         
            +
                            # Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
         
     | 
| 125 | 
         
            +
                            self.T = 0.9946
         
     | 
| 126 | 
         
            +
                        else:
         
     | 
| 127 | 
         
            +
                            self.T = 1.
         
     | 
| 128 | 
         
            +
             
     | 
| 129 | 
         
            +
                def marginal_log_mean_coeff(self, t):
         
     | 
| 130 | 
         
            +
                    """
         
     | 
| 131 | 
         
            +
                    Compute log(alpha_t) of a given continuous-time label t in [0, T].
         
     | 
| 132 | 
         
            +
                    """
         
     | 
| 133 | 
         
            +
                    if self.schedule == 'discrete':
         
     | 
| 134 | 
         
            +
                        return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device)).reshape((-1))
         
     | 
| 135 | 
         
            +
                    elif self.schedule == 'linear':
         
     | 
| 136 | 
         
            +
                        return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
         
     | 
| 137 | 
         
            +
                    elif self.schedule == 'cosine':
         
     | 
| 138 | 
         
            +
                        log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
         
     | 
| 139 | 
         
            +
                        log_alpha_t =  log_alpha_fn(t) - self.cosine_log_alpha_0
         
     | 
| 140 | 
         
            +
                        return log_alpha_t
         
     | 
| 141 | 
         
            +
             
     | 
| 142 | 
         
            +
                def marginal_alpha(self, t):
         
     | 
| 143 | 
         
            +
                    """
         
     | 
| 144 | 
         
            +
                    Compute alpha_t of a given continuous-time label t in [0, T].
         
     | 
| 145 | 
         
            +
                    """
         
     | 
| 146 | 
         
            +
                    return torch.exp(self.marginal_log_mean_coeff(t))
         
     | 
| 147 | 
         
            +
             
     | 
| 148 | 
         
            +
                def marginal_std(self, t):
         
     | 
| 149 | 
         
            +
                    """
         
     | 
| 150 | 
         
            +
                    Compute sigma_t of a given continuous-time label t in [0, T].
         
     | 
| 151 | 
         
            +
                    """
         
     | 
| 152 | 
         
            +
                    return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
         
     | 
| 153 | 
         
            +
             
     | 
| 154 | 
         
            +
                def marginal_lambda(self, t):
         
     | 
| 155 | 
         
            +
                    """
         
     | 
| 156 | 
         
            +
                    Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
         
     | 
| 157 | 
         
            +
                    """
         
     | 
| 158 | 
         
            +
                    log_mean_coeff = self.marginal_log_mean_coeff(t)
         
     | 
| 159 | 
         
            +
                    log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
         
     | 
| 160 | 
         
            +
                    return log_mean_coeff - log_std
         
     | 
| 161 | 
         
            +
             
     | 
| 162 | 
         
            +
                def inverse_lambda(self, lamb):
         
     | 
| 163 | 
         
            +
                    """
         
     | 
| 164 | 
         
            +
                    Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
         
     | 
| 165 | 
         
            +
                    """
         
     | 
| 166 | 
         
            +
                    if self.schedule == 'linear':
         
     | 
| 167 | 
         
            +
                        tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
         
     | 
| 168 | 
         
            +
                        Delta = self.beta_0**2 + tmp
         
     | 
| 169 | 
         
            +
                        return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
         
     | 
| 170 | 
         
            +
                    elif self.schedule == 'discrete':
         
     | 
| 171 | 
         
            +
                        log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
         
     | 
| 172 | 
         
            +
                        t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), torch.flip(self.t_array.to(lamb.device), [1]))
         
     | 
| 173 | 
         
            +
                        return t.reshape((-1,))
         
     | 
| 174 | 
         
            +
                    else:
         
     | 
| 175 | 
         
            +
                        log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
         
     | 
| 176 | 
         
            +
                        t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
         
     | 
| 177 | 
         
            +
                        t = t_fn(log_alpha)
         
     | 
| 178 | 
         
            +
                        return t
         
     | 
| 179 | 
         
            +
             
     | 
| 180 | 
         
            +
             
     | 
| 181 | 
         
            +
            def model_wrapper(
         
     | 
| 182 | 
         
            +
                model,
         
     | 
| 183 | 
         
            +
                noise_schedule,
         
     | 
| 184 | 
         
            +
                model_type="noise",
         
     | 
| 185 | 
         
            +
                model_kwargs={},
         
     | 
| 186 | 
         
            +
                guidance_type="uncond",
         
     | 
| 187 | 
         
            +
                condition=None,
         
     | 
| 188 | 
         
            +
                unconditional_condition=None,
         
     | 
| 189 | 
         
            +
                guidance_scale=1.,
         
     | 
| 190 | 
         
            +
                classifier_fn=None,
         
     | 
| 191 | 
         
            +
                classifier_kwargs={},
         
     | 
| 192 | 
         
            +
            ):
         
     | 
| 193 | 
         
            +
                """Create a wrapper function for the noise prediction model.
         
     | 
| 194 | 
         
            +
             
     | 
| 195 | 
         
            +
                DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
         
     | 
| 196 | 
         
            +
                firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
         
     | 
| 197 | 
         
            +
             
     | 
| 198 | 
         
            +
                We support four types of the diffusion model by setting `model_type`:
         
     | 
| 199 | 
         
            +
             
     | 
| 200 | 
         
            +
                    1. "noise": noise prediction model. (Trained by predicting noise).
         
     | 
| 201 | 
         
            +
             
     | 
| 202 | 
         
            +
                    2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
         
     | 
| 203 | 
         
            +
             
     | 
| 204 | 
         
            +
                    3. "v": velocity prediction model. (Trained by predicting the velocity).
         
     | 
| 205 | 
         
            +
                        The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
         
     | 
| 206 | 
         
            +
             
     | 
| 207 | 
         
            +
                        [1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
         
     | 
| 208 | 
         
            +
                            arXiv preprint arXiv:2202.00512 (2022).
         
     | 
| 209 | 
         
            +
                        [2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
         
     | 
| 210 | 
         
            +
                            arXiv preprint arXiv:2210.02303 (2022).
         
     | 
| 211 | 
         
            +
                
         
     | 
| 212 | 
         
            +
                    4. "score": marginal score function. (Trained by denoising score matching).
         
     | 
| 213 | 
         
            +
                        Note that the score function and the noise prediction model follows a simple relationship:
         
     | 
| 214 | 
         
            +
                        ```
         
     | 
| 215 | 
         
            +
                            noise(x_t, t) = -sigma_t * score(x_t, t)
         
     | 
| 216 | 
         
            +
                        ```
         
     | 
| 217 | 
         
            +
             
     | 
| 218 | 
         
            +
                We support three types of guided sampling by DPMs by setting `guidance_type`:
         
     | 
| 219 | 
         
            +
                    1. "uncond": unconditional sampling by DPMs.
         
     | 
| 220 | 
         
            +
                        The input `model` has the following format:
         
     | 
| 221 | 
         
            +
                        ``
         
     | 
| 222 | 
         
            +
                            model(x, t_input, **model_kwargs) -> noise | x_start | v | score
         
     | 
| 223 | 
         
            +
                        ``
         
     | 
| 224 | 
         
            +
             
     | 
| 225 | 
         
            +
                    2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
         
     | 
| 226 | 
         
            +
                        The input `model` has the following format:
         
     | 
| 227 | 
         
            +
                        ``
         
     | 
| 228 | 
         
            +
                            model(x, t_input, **model_kwargs) -> noise | x_start | v | score
         
     | 
| 229 | 
         
            +
                        `` 
         
     | 
| 230 | 
         
            +
             
     | 
| 231 | 
         
            +
                        The input `classifier_fn` has the following format:
         
     | 
| 232 | 
         
            +
                        ``
         
     | 
| 233 | 
         
            +
                            classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
         
     | 
| 234 | 
         
            +
                        ``
         
     | 
| 235 | 
         
            +
             
     | 
| 236 | 
         
            +
                        [3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
         
     | 
| 237 | 
         
            +
                            in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
         
     | 
| 238 | 
         
            +
             
     | 
| 239 | 
         
            +
                    3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
         
     | 
| 240 | 
         
            +
                        The input `model` has the following format:
         
     | 
| 241 | 
         
            +
                        ``
         
     | 
| 242 | 
         
            +
                            model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
         
     | 
| 243 | 
         
            +
                        `` 
         
     | 
| 244 | 
         
            +
                        And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
         
     | 
| 245 | 
         
            +
             
     | 
| 246 | 
         
            +
                        [4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
         
     | 
| 247 | 
         
            +
                            arXiv preprint arXiv:2207.12598 (2022).
         
     | 
| 248 | 
         
            +
                    
         
     | 
| 249 | 
         
            +
             
     | 
| 250 | 
         
            +
                The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
         
     | 
| 251 | 
         
            +
                or continuous-time labels (i.e. epsilon to T).
         
     | 
| 252 | 
         
            +
             
     | 
| 253 | 
         
            +
                We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
         
     | 
| 254 | 
         
            +
                ``
         
     | 
| 255 | 
         
            +
                    def model_fn(x, t_continuous) -> noise:
         
     | 
| 256 | 
         
            +
                        t_input = get_model_input_time(t_continuous)
         
     | 
| 257 | 
         
            +
                        return noise_pred(model, x, t_input, **model_kwargs)         
         
     | 
| 258 | 
         
            +
                ``
         
     | 
| 259 | 
         
            +
                where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
         
     | 
| 260 | 
         
            +
             
     | 
| 261 | 
         
            +
                ===============================================================
         
     | 
| 262 | 
         
            +
             
     | 
| 263 | 
         
            +
                Args:
         
     | 
| 264 | 
         
            +
                    model: A diffusion model with the corresponding format described above.
         
     | 
| 265 | 
         
            +
                    noise_schedule: A noise schedule object, such as NoiseScheduleVP.
         
     | 
| 266 | 
         
            +
                    model_type: A `str`. The parameterization type of the diffusion model.
         
     | 
| 267 | 
         
            +
                                "noise" or "x_start" or "v" or "score".
         
     | 
| 268 | 
         
            +
                    model_kwargs: A `dict`. A dict for the other inputs of the model function.
         
     | 
| 269 | 
         
            +
                    guidance_type: A `str`. The type of the guidance for sampling.
         
     | 
| 270 | 
         
            +
                                "uncond" or "classifier" or "classifier-free".
         
     | 
| 271 | 
         
            +
                    condition: A pytorch tensor. The condition for the guided sampling.
         
     | 
| 272 | 
         
            +
                                Only used for "classifier" or "classifier-free" guidance type.
         
     | 
| 273 | 
         
            +
                    unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
         
     | 
| 274 | 
         
            +
                                Only used for "classifier-free" guidance type.
         
     | 
| 275 | 
         
            +
                    guidance_scale: A `float`. The scale for the guided sampling.
         
     | 
| 276 | 
         
            +
                    classifier_fn: A classifier function. Only used for the classifier guidance.
         
     | 
| 277 | 
         
            +
                    classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
         
     | 
| 278 | 
         
            +
                Returns:
         
     | 
| 279 | 
         
            +
                    A noise prediction model that accepts the noised data and the continuous time as the inputs.
         
     | 
| 280 | 
         
            +
                """
         
     | 
| 281 | 
         
            +
             
     | 
| 282 | 
         
            +
                def get_model_input_time(t_continuous):
         
     | 
| 283 | 
         
            +
                    """
         
     | 
| 284 | 
         
            +
                    Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
         
     | 
| 285 | 
         
            +
                    For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
         
     | 
| 286 | 
         
            +
                    For continuous-time DPMs, we just use `t_continuous`.
         
     | 
| 287 | 
         
            +
                    """
         
     | 
| 288 | 
         
            +
                    if noise_schedule.schedule == 'discrete':
         
     | 
| 289 | 
         
            +
                        return (t_continuous - 1. / noise_schedule.total_N) * 1000.
         
     | 
| 290 | 
         
            +
                    else:
         
     | 
| 291 | 
         
            +
                        return t_continuous
         
     | 
| 292 | 
         
            +
             
     | 
| 293 | 
         
            +
                def noise_pred_fn(x, t_continuous, cond=None):
         
     | 
| 294 | 
         
            +
                    if t_continuous.reshape((-1,)).shape[0] == 1:
         
     | 
| 295 | 
         
            +
                        t_continuous = t_continuous.expand((x.shape[0]))
         
     | 
| 296 | 
         
            +
                    t_input = get_model_input_time(t_continuous)
         
     | 
| 297 | 
         
            +
                    output = model(x, t_input, **model_kwargs)
         
     | 
| 298 | 
         
            +
                    if model_type == "noise":
         
     | 
| 299 | 
         
            +
                        return output
         
     | 
| 300 | 
         
            +
                    elif model_type == "x_start":
         
     | 
| 301 | 
         
            +
                        alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
         
     | 
| 302 | 
         
            +
                        dims = x.dim()
         
     | 
| 303 | 
         
            +
                        return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
         
     | 
| 304 | 
         
            +
                    elif model_type == "v":
         
     | 
| 305 | 
         
            +
                        alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
         
     | 
| 306 | 
         
            +
                        dims = x.dim()
         
     | 
| 307 | 
         
            +
                        return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
         
     | 
| 308 | 
         
            +
                    elif model_type == "score":
         
     | 
| 309 | 
         
            +
                        sigma_t = noise_schedule.marginal_std(t_continuous)
         
     | 
| 310 | 
         
            +
                        dims = x.dim()
         
     | 
| 311 | 
         
            +
                        return -expand_dims(sigma_t, dims) * output
         
     | 
| 312 | 
         
            +
             
     | 
| 313 | 
         
            +
                def cond_grad_fn(x, t_input):
         
     | 
| 314 | 
         
            +
                    """
         
     | 
| 315 | 
         
            +
                    Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
         
     | 
| 316 | 
         
            +
                    """
         
     | 
| 317 | 
         
            +
                    with torch.enable_grad():
         
     | 
| 318 | 
         
            +
                        x_in = x.detach().requires_grad_(True)
         
     | 
| 319 | 
         
            +
                        log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
         
     | 
| 320 | 
         
            +
                        return torch.autograd.grad(log_prob.sum(), x_in)[0]
         
     | 
| 321 | 
         
            +
             
     | 
| 322 | 
         
            +
                def model_fn(x, t_continuous):
         
     | 
| 323 | 
         
            +
                    """
         
     | 
| 324 | 
         
            +
                    The noise predicition model function that is used for DPM-Solver.
         
     | 
| 325 | 
         
            +
                    """
         
     | 
| 326 | 
         
            +
                    if t_continuous.reshape((-1,)).shape[0] == 1:
         
     | 
| 327 | 
         
            +
                        t_continuous = t_continuous.expand((x.shape[0]))
         
     | 
| 328 | 
         
            +
                    if guidance_type == "uncond":
         
     | 
| 329 | 
         
            +
                        return noise_pred_fn(x, t_continuous)
         
     | 
| 330 | 
         
            +
                    elif guidance_type == "classifier":
         
     | 
| 331 | 
         
            +
                        assert classifier_fn is not None
         
     | 
| 332 | 
         
            +
                        t_input = get_model_input_time(t_continuous)
         
     | 
| 333 | 
         
            +
                        cond_grad = cond_grad_fn(x, t_input)
         
     | 
| 334 | 
         
            +
                        sigma_t = noise_schedule.marginal_std(t_continuous)
         
     | 
| 335 | 
         
            +
                        noise = noise_pred_fn(x, t_continuous)
         
     | 
| 336 | 
         
            +
                        return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
         
     | 
| 337 | 
         
            +
                    elif guidance_type == "classifier-free":
         
     | 
| 338 | 
         
            +
                        if guidance_scale == 1. or unconditional_condition is None:
         
     | 
| 339 | 
         
            +
                            return noise_pred_fn(x, t_continuous, cond=condition)
         
     | 
| 340 | 
         
            +
                        else:
         
     | 
| 341 | 
         
            +
                            x_in = torch.cat([x] * 2)
         
     | 
| 342 | 
         
            +
                            t_in = torch.cat([t_continuous] * 2)
         
     | 
| 343 | 
         
            +
                            c_in = torch.cat([unconditional_condition, condition])
         
     | 
| 344 | 
         
            +
                            noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
         
     | 
| 345 | 
         
            +
                            return noise_uncond + guidance_scale * (noise - noise_uncond)
         
     | 
| 346 | 
         
            +
             
     | 
| 347 | 
         
            +
                assert model_type in ["noise", "x_start", "v"]
         
     | 
| 348 | 
         
            +
                assert guidance_type in ["uncond", "classifier", "classifier-free"]
         
     | 
| 349 | 
         
            +
                return model_fn
         
     | 
| 350 | 
         
            +
             
     | 
| 351 | 
         
            +
             
     | 
| 352 | 
         
            +
            class UniPC:
         
     | 
| 353 | 
         
            +
                def __init__(
         
     | 
| 354 | 
         
            +
                    self,
         
     | 
| 355 | 
         
            +
                    model_fn,
         
     | 
| 356 | 
         
            +
                    noise_schedule,
         
     | 
| 357 | 
         
            +
                    predict_x0=True,
         
     | 
| 358 | 
         
            +
                    thresholding=False,
         
     | 
| 359 | 
         
            +
                    max_val=1.,
         
     | 
| 360 | 
         
            +
                    variant='bh1',
         
     | 
| 361 | 
         
            +
                    noise_mask=None,
         
     | 
| 362 | 
         
            +
                    masked_image=None,
         
     | 
| 363 | 
         
            +
                    noise=None,
         
     | 
| 364 | 
         
            +
                ):
         
     | 
| 365 | 
         
            +
                    """Construct a UniPC. 
         
     | 
| 366 | 
         
            +
             
     | 
| 367 | 
         
            +
                    We support both data_prediction and noise_prediction.
         
     | 
| 368 | 
         
            +
                    """
         
     | 
| 369 | 
         
            +
                    self.model = model_fn
         
     | 
| 370 | 
         
            +
                    self.noise_schedule = noise_schedule
         
     | 
| 371 | 
         
            +
                    self.variant = variant
         
     | 
| 372 | 
         
            +
                    self.predict_x0 = predict_x0
         
     | 
| 373 | 
         
            +
                    self.thresholding = thresholding
         
     | 
| 374 | 
         
            +
                    self.max_val = max_val
         
     | 
| 375 | 
         
            +
                    self.noise_mask = noise_mask
         
     | 
| 376 | 
         
            +
                    self.masked_image = masked_image
         
     | 
| 377 | 
         
            +
                    self.noise = noise
         
     | 
| 378 | 
         
            +
             
     | 
| 379 | 
         
            +
                def dynamic_thresholding_fn(self, x0, t=None):
         
     | 
| 380 | 
         
            +
                    """
         
     | 
| 381 | 
         
            +
                    The dynamic thresholding method. 
         
     | 
| 382 | 
         
            +
                    """
         
     | 
| 383 | 
         
            +
                    dims = x0.dim()
         
     | 
| 384 | 
         
            +
                    p = self.dynamic_thresholding_ratio
         
     | 
| 385 | 
         
            +
                    s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
         
     | 
| 386 | 
         
            +
                    s = expand_dims(torch.maximum(s, self.thresholding_max_val * torch.ones_like(s).to(s.device)), dims)
         
     | 
| 387 | 
         
            +
                    x0 = torch.clamp(x0, -s, s) / s
         
     | 
| 388 | 
         
            +
                    return x0
         
     | 
| 389 | 
         
            +
             
     | 
| 390 | 
         
            +
                def noise_prediction_fn(self, x, t):
         
     | 
| 391 | 
         
            +
                    """
         
     | 
| 392 | 
         
            +
                    Return the noise prediction model.
         
     | 
| 393 | 
         
            +
                    """
         
     | 
| 394 | 
         
            +
                    if self.noise_mask is not None:
         
     | 
| 395 | 
         
            +
                        return self.model(x, t) * self.noise_mask
         
     | 
| 396 | 
         
            +
                    else:
         
     | 
| 397 | 
         
            +
                        return self.model(x, t)
         
     | 
| 398 | 
         
            +
             
     | 
| 399 | 
         
            +
                def data_prediction_fn(self, x, t):
         
     | 
| 400 | 
         
            +
                    """
         
     | 
| 401 | 
         
            +
                    Return the data prediction model (with thresholding).
         
     | 
| 402 | 
         
            +
                    """
         
     | 
| 403 | 
         
            +
                    noise = self.noise_prediction_fn(x, t)
         
     | 
| 404 | 
         
            +
                    dims = x.dim()
         
     | 
| 405 | 
         
            +
                    alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
         
     | 
| 406 | 
         
            +
                    x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
         
     | 
| 407 | 
         
            +
                    if self.thresholding:
         
     | 
| 408 | 
         
            +
                        p = 0.995   # A hyperparameter in the paper of "Imagen" [1].
         
     | 
| 409 | 
         
            +
                        s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
         
     | 
| 410 | 
         
            +
                        s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
         
     | 
| 411 | 
         
            +
                        x0 = torch.clamp(x0, -s, s) / s
         
     | 
| 412 | 
         
            +
                    if self.noise_mask is not None:
         
     | 
| 413 | 
         
            +
                        x0 = x0 * self.noise_mask + (1. - self.noise_mask) * self.masked_image
         
     | 
| 414 | 
         
            +
                    return x0
         
     | 
| 415 | 
         
            +
             
     | 
| 416 | 
         
            +
                def model_fn(self, x, t):
         
     | 
| 417 | 
         
            +
                    """
         
     | 
| 418 | 
         
            +
                    Convert the model to the noise prediction model or the data prediction model. 
         
     | 
| 419 | 
         
            +
                    """
         
     | 
| 420 | 
         
            +
                    if self.predict_x0:
         
     | 
| 421 | 
         
            +
                        return self.data_prediction_fn(x, t)
         
     | 
| 422 | 
         
            +
                    else:
         
     | 
| 423 | 
         
            +
                        return self.noise_prediction_fn(x, t)
         
     | 
| 424 | 
         
            +
             
     | 
| 425 | 
         
            +
                def get_time_steps(self, skip_type, t_T, t_0, N, device):
         
     | 
| 426 | 
         
            +
                    """Compute the intermediate time steps for sampling.
         
     | 
| 427 | 
         
            +
                    """
         
     | 
| 428 | 
         
            +
                    if skip_type == 'logSNR':
         
     | 
| 429 | 
         
            +
                        lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
         
     | 
| 430 | 
         
            +
                        lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
         
     | 
| 431 | 
         
            +
                        logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
         
     | 
| 432 | 
         
            +
                        return self.noise_schedule.inverse_lambda(logSNR_steps)
         
     | 
| 433 | 
         
            +
                    elif skip_type == 'time_uniform':
         
     | 
| 434 | 
         
            +
                        return torch.linspace(t_T, t_0, N + 1).to(device)
         
     | 
| 435 | 
         
            +
                    elif skip_type == 'time_quadratic':
         
     | 
| 436 | 
         
            +
                        t_order = 2
         
     | 
| 437 | 
         
            +
                        t = torch.linspace(t_T**(1. / t_order), t_0**(1. / t_order), N + 1).pow(t_order).to(device)
         
     | 
| 438 | 
         
            +
                        return t
         
     | 
| 439 | 
         
            +
                    else:
         
     | 
| 440 | 
         
            +
                        raise ValueError("Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
         
     | 
| 441 | 
         
            +
             
     | 
| 442 | 
         
            +
                def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
         
     | 
| 443 | 
         
            +
                    """
         
     | 
| 444 | 
         
            +
                    Get the order of each step for sampling by the singlestep DPM-Solver.
         
     | 
| 445 | 
         
            +
                    """
         
     | 
| 446 | 
         
            +
                    if order == 3:
         
     | 
| 447 | 
         
            +
                        K = steps // 3 + 1
         
     | 
| 448 | 
         
            +
                        if steps % 3 == 0:
         
     | 
| 449 | 
         
            +
                            orders = [3,] * (K - 2) + [2, 1]
         
     | 
| 450 | 
         
            +
                        elif steps % 3 == 1:
         
     | 
| 451 | 
         
            +
                            orders = [3,] * (K - 1) + [1]
         
     | 
| 452 | 
         
            +
                        else:
         
     | 
| 453 | 
         
            +
                            orders = [3,] * (K - 1) + [2]
         
     | 
| 454 | 
         
            +
                    elif order == 2:
         
     | 
| 455 | 
         
            +
                        if steps % 2 == 0:
         
     | 
| 456 | 
         
            +
                            K = steps // 2
         
     | 
| 457 | 
         
            +
                            orders = [2,] * K
         
     | 
| 458 | 
         
            +
                        else:
         
     | 
| 459 | 
         
            +
                            K = steps // 2 + 1
         
     | 
| 460 | 
         
            +
                            orders = [2,] * (K - 1) + [1]
         
     | 
| 461 | 
         
            +
                    elif order == 1:
         
     | 
| 462 | 
         
            +
                        K = steps
         
     | 
| 463 | 
         
            +
                        orders = [1,] * steps
         
     | 
| 464 | 
         
            +
                    else:
         
     | 
| 465 | 
         
            +
                        raise ValueError("'order' must be '1' or '2' or '3'.")
         
     | 
| 466 | 
         
            +
                    if skip_type == 'logSNR':
         
     | 
| 467 | 
         
            +
                        # To reproduce the results in DPM-Solver paper
         
     | 
| 468 | 
         
            +
                        timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
         
     | 
| 469 | 
         
            +
                    else:
         
     | 
| 470 | 
         
            +
                        timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[torch.cumsum(torch.tensor([0,] + orders), 0).to(device)]
         
     | 
| 471 | 
         
            +
                    return timesteps_outer, orders
         
     | 
| 472 | 
         
            +
             
     | 
| 473 | 
         
            +
                def denoise_to_zero_fn(self, x, s):
         
     | 
| 474 | 
         
            +
                    """
         
     | 
| 475 | 
         
            +
                    Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization. 
         
     | 
| 476 | 
         
            +
                    """
         
     | 
| 477 | 
         
            +
                    return self.data_prediction_fn(x, s)
         
     | 
| 478 | 
         
            +
             
     | 
| 479 | 
         
            +
                def multistep_uni_pc_update(self, x, model_prev_list, t_prev_list, t, order, **kwargs):
         
     | 
| 480 | 
         
            +
                    if len(t.shape) == 0:
         
     | 
| 481 | 
         
            +
                        t = t.view(-1)
         
     | 
| 482 | 
         
            +
                    if 'bh' in self.variant:
         
     | 
| 483 | 
         
            +
                        return self.multistep_uni_pc_bh_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
         
     | 
| 484 | 
         
            +
                    else:
         
     | 
| 485 | 
         
            +
                        assert self.variant == 'vary_coeff'
         
     | 
| 486 | 
         
            +
                        return self.multistep_uni_pc_vary_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
         
     | 
| 487 | 
         
            +
             
     | 
| 488 | 
         
            +
                def multistep_uni_pc_vary_update(self, x, model_prev_list, t_prev_list, t, order, use_corrector=True):
         
     | 
| 489 | 
         
            +
                    print(f'using unified predictor-corrector with order {order} (solver type: vary coeff)')
         
     | 
| 490 | 
         
            +
                    ns = self.noise_schedule
         
     | 
| 491 | 
         
            +
                    assert order <= len(model_prev_list)
         
     | 
| 492 | 
         
            +
             
     | 
| 493 | 
         
            +
                    # first compute rks
         
     | 
| 494 | 
         
            +
                    t_prev_0 = t_prev_list[-1]
         
     | 
| 495 | 
         
            +
                    lambda_prev_0 = ns.marginal_lambda(t_prev_0)
         
     | 
| 496 | 
         
            +
                    lambda_t = ns.marginal_lambda(t)
         
     | 
| 497 | 
         
            +
                    model_prev_0 = model_prev_list[-1]
         
     | 
| 498 | 
         
            +
                    sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
         
     | 
| 499 | 
         
            +
                    log_alpha_t = ns.marginal_log_mean_coeff(t)
         
     | 
| 500 | 
         
            +
                    alpha_t = torch.exp(log_alpha_t)
         
     | 
| 501 | 
         
            +
             
     | 
| 502 | 
         
            +
                    h = lambda_t - lambda_prev_0
         
     | 
| 503 | 
         
            +
             
     | 
| 504 | 
         
            +
                    rks = []
         
     | 
| 505 | 
         
            +
                    D1s = []
         
     | 
| 506 | 
         
            +
                    for i in range(1, order):
         
     | 
| 507 | 
         
            +
                        t_prev_i = t_prev_list[-(i + 1)]
         
     | 
| 508 | 
         
            +
                        model_prev_i = model_prev_list[-(i + 1)]
         
     | 
| 509 | 
         
            +
                        lambda_prev_i = ns.marginal_lambda(t_prev_i)
         
     | 
| 510 | 
         
            +
                        rk = (lambda_prev_i - lambda_prev_0) / h
         
     | 
| 511 | 
         
            +
                        rks.append(rk)
         
     | 
| 512 | 
         
            +
                        D1s.append((model_prev_i - model_prev_0) / rk)
         
     | 
| 513 | 
         
            +
             
     | 
| 514 | 
         
            +
                    rks.append(1.)
         
     | 
| 515 | 
         
            +
                    rks = torch.tensor(rks, device=x.device)
         
     | 
| 516 | 
         
            +
             
     | 
| 517 | 
         
            +
                    K = len(rks)
         
     | 
| 518 | 
         
            +
                    # build C matrix
         
     | 
| 519 | 
         
            +
                    C = []
         
     | 
| 520 | 
         
            +
             
     | 
| 521 | 
         
            +
                    col = torch.ones_like(rks)
         
     | 
| 522 | 
         
            +
                    for k in range(1, K + 1):
         
     | 
| 523 | 
         
            +
                        C.append(col)
         
     | 
| 524 | 
         
            +
                        col = col * rks / (k + 1) 
         
     | 
| 525 | 
         
            +
                    C = torch.stack(C, dim=1)
         
     | 
| 526 | 
         
            +
             
     | 
| 527 | 
         
            +
                    if len(D1s) > 0:
         
     | 
| 528 | 
         
            +
                        D1s = torch.stack(D1s, dim=1) # (B, K)
         
     | 
| 529 | 
         
            +
                        C_inv_p = torch.linalg.inv(C[:-1, :-1])
         
     | 
| 530 | 
         
            +
                        A_p = C_inv_p
         
     | 
| 531 | 
         
            +
             
     | 
| 532 | 
         
            +
                    if use_corrector:
         
     | 
| 533 | 
         
            +
                        print('using corrector')
         
     | 
| 534 | 
         
            +
                        C_inv = torch.linalg.inv(C)
         
     | 
| 535 | 
         
            +
                        A_c = C_inv
         
     | 
| 536 | 
         
            +
             
     | 
| 537 | 
         
            +
                    hh = -h if self.predict_x0 else h
         
     | 
| 538 | 
         
            +
                    h_phi_1 = torch.expm1(hh)
         
     | 
| 539 | 
         
            +
                    h_phi_ks = []
         
     | 
| 540 | 
         
            +
                    factorial_k = 1
         
     | 
| 541 | 
         
            +
                    h_phi_k = h_phi_1
         
     | 
| 542 | 
         
            +
                    for k in range(1, K + 2):
         
     | 
| 543 | 
         
            +
                        h_phi_ks.append(h_phi_k)
         
     | 
| 544 | 
         
            +
                        h_phi_k = h_phi_k / hh - 1 / factorial_k
         
     | 
| 545 | 
         
            +
                        factorial_k *= (k + 1)
         
     | 
| 546 | 
         
            +
             
     | 
| 547 | 
         
            +
                    model_t = None
         
     | 
| 548 | 
         
            +
                    if self.predict_x0:
         
     | 
| 549 | 
         
            +
                        x_t_ = (
         
     | 
| 550 | 
         
            +
                            sigma_t / sigma_prev_0 * x
         
     | 
| 551 | 
         
            +
                            - alpha_t * h_phi_1 * model_prev_0
         
     | 
| 552 | 
         
            +
                        )
         
     | 
| 553 | 
         
            +
                        # now predictor
         
     | 
| 554 | 
         
            +
                        x_t = x_t_
         
     | 
| 555 | 
         
            +
                        if len(D1s) > 0:
         
     | 
| 556 | 
         
            +
                            # compute the residuals for predictor
         
     | 
| 557 | 
         
            +
                            for k in range(K - 1):
         
     | 
| 558 | 
         
            +
                                x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k])
         
     | 
| 559 | 
         
            +
                        # now corrector
         
     | 
| 560 | 
         
            +
                        if use_corrector:
         
     | 
| 561 | 
         
            +
                            model_t = self.model_fn(x_t, t)
         
     | 
| 562 | 
         
            +
                            D1_t = (model_t - model_prev_0)
         
     | 
| 563 | 
         
            +
                            x_t = x_t_
         
     | 
| 564 | 
         
            +
                            k = 0
         
     | 
| 565 | 
         
            +
                            for k in range(K - 1):
         
     | 
| 566 | 
         
            +
                                x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1])
         
     | 
| 567 | 
         
            +
                            x_t = x_t - alpha_t * h_phi_ks[K] * (D1_t * A_c[k][-1])
         
     | 
| 568 | 
         
            +
                    else:
         
     | 
| 569 | 
         
            +
                        log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
         
     | 
| 570 | 
         
            +
                        x_t_ = (
         
     | 
| 571 | 
         
            +
                            (torch.exp(log_alpha_t - log_alpha_prev_0)) * x
         
     | 
| 572 | 
         
            +
                            - (sigma_t * h_phi_1) * model_prev_0
         
     | 
| 573 | 
         
            +
                        )
         
     | 
| 574 | 
         
            +
                        # now predictor
         
     | 
| 575 | 
         
            +
                        x_t = x_t_
         
     | 
| 576 | 
         
            +
                        if len(D1s) > 0:
         
     | 
| 577 | 
         
            +
                            # compute the residuals for predictor
         
     | 
| 578 | 
         
            +
                            for k in range(K - 1):
         
     | 
| 579 | 
         
            +
                                x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k])
         
     | 
| 580 | 
         
            +
                        # now corrector
         
     | 
| 581 | 
         
            +
                        if use_corrector:
         
     | 
| 582 | 
         
            +
                            model_t = self.model_fn(x_t, t)
         
     | 
| 583 | 
         
            +
                            D1_t = (model_t - model_prev_0)
         
     | 
| 584 | 
         
            +
                            x_t = x_t_
         
     | 
| 585 | 
         
            +
                            k = 0
         
     | 
| 586 | 
         
            +
                            for k in range(K - 1):
         
     | 
| 587 | 
         
            +
                                x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1])
         
     | 
| 588 | 
         
            +
                            x_t = x_t - sigma_t * h_phi_ks[K] * (D1_t * A_c[k][-1])
         
     | 
| 589 | 
         
            +
                    return x_t, model_t
         
     | 
| 590 | 
         
            +
             
     | 
| 591 | 
         
            +
                def multistep_uni_pc_bh_update(self, x, model_prev_list, t_prev_list, t, order, x_t=None, use_corrector=True):
         
     | 
| 592 | 
         
            +
                    # print(f'using unified predictor-corrector with order {order} (solver type: B(h))')
         
     | 
| 593 | 
         
            +
                    ns = self.noise_schedule
         
     | 
| 594 | 
         
            +
                    assert order <= len(model_prev_list)
         
     | 
| 595 | 
         
            +
                    dims = x.dim()
         
     | 
| 596 | 
         
            +
             
     | 
| 597 | 
         
            +
                    # first compute rks
         
     | 
| 598 | 
         
            +
                    t_prev_0 = t_prev_list[-1]
         
     | 
| 599 | 
         
            +
                    lambda_prev_0 = ns.marginal_lambda(t_prev_0)
         
     | 
| 600 | 
         
            +
                    lambda_t = ns.marginal_lambda(t)
         
     | 
| 601 | 
         
            +
                    model_prev_0 = model_prev_list[-1]
         
     | 
| 602 | 
         
            +
                    sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
         
     | 
| 603 | 
         
            +
                    log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
         
     | 
| 604 | 
         
            +
                    alpha_t = torch.exp(log_alpha_t)
         
     | 
| 605 | 
         
            +
             
     | 
| 606 | 
         
            +
                    h = lambda_t - lambda_prev_0
         
     | 
| 607 | 
         
            +
             
     | 
| 608 | 
         
            +
                    rks = []
         
     | 
| 609 | 
         
            +
                    D1s = []
         
     | 
| 610 | 
         
            +
                    for i in range(1, order):
         
     | 
| 611 | 
         
            +
                        t_prev_i = t_prev_list[-(i + 1)]
         
     | 
| 612 | 
         
            +
                        model_prev_i = model_prev_list[-(i + 1)]
         
     | 
| 613 | 
         
            +
                        lambda_prev_i = ns.marginal_lambda(t_prev_i)
         
     | 
| 614 | 
         
            +
                        rk = ((lambda_prev_i - lambda_prev_0) / h)[0]
         
     | 
| 615 | 
         
            +
                        rks.append(rk)
         
     | 
| 616 | 
         
            +
                        D1s.append((model_prev_i - model_prev_0) / rk)
         
     | 
| 617 | 
         
            +
             
     | 
| 618 | 
         
            +
                    rks.append(1.)
         
     | 
| 619 | 
         
            +
                    rks = torch.tensor(rks, device=x.device)
         
     | 
| 620 | 
         
            +
             
     | 
| 621 | 
         
            +
                    R = []
         
     | 
| 622 | 
         
            +
                    b = []
         
     | 
| 623 | 
         
            +
             
     | 
| 624 | 
         
            +
                    hh = -h[0] if self.predict_x0 else h[0]
         
     | 
| 625 | 
         
            +
                    h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1
         
     | 
| 626 | 
         
            +
                    h_phi_k = h_phi_1 / hh - 1
         
     | 
| 627 | 
         
            +
             
     | 
| 628 | 
         
            +
                    factorial_i = 1
         
     | 
| 629 | 
         
            +
             
     | 
| 630 | 
         
            +
                    if self.variant == 'bh1':
         
     | 
| 631 | 
         
            +
                        B_h = hh
         
     | 
| 632 | 
         
            +
                    elif self.variant == 'bh2':
         
     | 
| 633 | 
         
            +
                        B_h = torch.expm1(hh)
         
     | 
| 634 | 
         
            +
                    else:
         
     | 
| 635 | 
         
            +
                        raise NotImplementedError()
         
     | 
| 636 | 
         
            +
                        
         
     | 
| 637 | 
         
            +
                    for i in range(1, order + 1):
         
     | 
| 638 | 
         
            +
                        R.append(torch.pow(rks, i - 1))
         
     | 
| 639 | 
         
            +
                        b.append(h_phi_k * factorial_i / B_h)
         
     | 
| 640 | 
         
            +
                        factorial_i *= (i + 1)
         
     | 
| 641 | 
         
            +
                        h_phi_k = h_phi_k / hh - 1 / factorial_i 
         
     | 
| 642 | 
         
            +
             
     | 
| 643 | 
         
            +
                    R = torch.stack(R)
         
     | 
| 644 | 
         
            +
                    b = torch.tensor(b, device=x.device)
         
     | 
| 645 | 
         
            +
             
     | 
| 646 | 
         
            +
                    # now predictor
         
     | 
| 647 | 
         
            +
                    use_predictor = len(D1s) > 0 and x_t is None
         
     | 
| 648 | 
         
            +
                    if len(D1s) > 0:
         
     | 
| 649 | 
         
            +
                        D1s = torch.stack(D1s, dim=1) # (B, K)
         
     | 
| 650 | 
         
            +
                        if x_t is None:
         
     | 
| 651 | 
         
            +
                            # for order 2, we use a simplified version
         
     | 
| 652 | 
         
            +
                            if order == 2:
         
     | 
| 653 | 
         
            +
                                rhos_p = torch.tensor([0.5], device=b.device)
         
     | 
| 654 | 
         
            +
                            else:
         
     | 
| 655 | 
         
            +
                                rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1])
         
     | 
| 656 | 
         
            +
                    else:
         
     | 
| 657 | 
         
            +
                        D1s = None
         
     | 
| 658 | 
         
            +
             
     | 
| 659 | 
         
            +
                    if use_corrector:
         
     | 
| 660 | 
         
            +
                        # print('using corrector')
         
     | 
| 661 | 
         
            +
                        # for order 1, we use a simplified version
         
     | 
| 662 | 
         
            +
                        if order == 1:
         
     | 
| 663 | 
         
            +
                            rhos_c = torch.tensor([0.5], device=b.device)
         
     | 
| 664 | 
         
            +
                        else:
         
     | 
| 665 | 
         
            +
                            rhos_c = torch.linalg.solve(R, b)
         
     | 
| 666 | 
         
            +
             
     | 
| 667 | 
         
            +
                    model_t = None
         
     | 
| 668 | 
         
            +
                    if self.predict_x0:
         
     | 
| 669 | 
         
            +
                        x_t_ = (
         
     | 
| 670 | 
         
            +
                            expand_dims(sigma_t / sigma_prev_0, dims) * x
         
     | 
| 671 | 
         
            +
                            - expand_dims(alpha_t * h_phi_1, dims)* model_prev_0
         
     | 
| 672 | 
         
            +
                        )
         
     | 
| 673 | 
         
            +
             
     | 
| 674 | 
         
            +
                        if x_t is None:
         
     | 
| 675 | 
         
            +
                            if use_predictor:
         
     | 
| 676 | 
         
            +
                                pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s)
         
     | 
| 677 | 
         
            +
                            else:
         
     | 
| 678 | 
         
            +
                                pred_res = 0
         
     | 
| 679 | 
         
            +
                            x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * pred_res
         
     | 
| 680 | 
         
            +
             
     | 
| 681 | 
         
            +
                        if use_corrector:
         
     | 
| 682 | 
         
            +
                            model_t = self.model_fn(x_t, t)
         
     | 
| 683 | 
         
            +
                            if D1s is not None:
         
     | 
| 684 | 
         
            +
                                corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
         
     | 
| 685 | 
         
            +
                            else:
         
     | 
| 686 | 
         
            +
                                corr_res = 0
         
     | 
| 687 | 
         
            +
                            D1_t = (model_t - model_prev_0)
         
     | 
| 688 | 
         
            +
                            x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t)
         
     | 
| 689 | 
         
            +
                    else:
         
     | 
| 690 | 
         
            +
                        x_t_ = (
         
     | 
| 691 | 
         
            +
                            expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
         
     | 
| 692 | 
         
            +
                            - expand_dims(sigma_t * h_phi_1, dims) * model_prev_0
         
     | 
| 693 | 
         
            +
                        )
         
     | 
| 694 | 
         
            +
                        if x_t is None:
         
     | 
| 695 | 
         
            +
                            if use_predictor:
         
     | 
| 696 | 
         
            +
                                pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s)
         
     | 
| 697 | 
         
            +
                            else:
         
     | 
| 698 | 
         
            +
                                pred_res = 0
         
     | 
| 699 | 
         
            +
                            x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * pred_res
         
     | 
| 700 | 
         
            +
             
     | 
| 701 | 
         
            +
                        if use_corrector:
         
     | 
| 702 | 
         
            +
                            model_t = self.model_fn(x_t, t)
         
     | 
| 703 | 
         
            +
                            if D1s is not None:
         
     | 
| 704 | 
         
            +
                                corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
         
     | 
| 705 | 
         
            +
                            else:
         
     | 
| 706 | 
         
            +
                                corr_res = 0
         
     | 
| 707 | 
         
            +
                            D1_t = (model_t - model_prev_0)
         
     | 
| 708 | 
         
            +
                            x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t)
         
     | 
| 709 | 
         
            +
                    return x_t, model_t
         
     | 
| 710 | 
         
            +
             
     | 
| 711 | 
         
            +
             
     | 
| 712 | 
         
            +
                def sample(self, x, timesteps, t_start=None, t_end=None, order=3, skip_type='time_uniform',
         
     | 
| 713 | 
         
            +
                    method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
         
     | 
| 714 | 
         
            +
                    atol=0.0078, rtol=0.05, corrector=False, callback=None, disable_pbar=False
         
     | 
| 715 | 
         
            +
                ):
         
     | 
| 716 | 
         
            +
                    # t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
         
     | 
| 717 | 
         
            +
                    # t_T = self.noise_schedule.T if t_start is None else t_start
         
     | 
| 718 | 
         
            +
                    device = x.device
         
     | 
| 719 | 
         
            +
                    steps = len(timesteps) - 1
         
     | 
| 720 | 
         
            +
                    if method == 'multistep':
         
     | 
| 721 | 
         
            +
                        assert steps >= order
         
     | 
| 722 | 
         
            +
                        # timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
         
     | 
| 723 | 
         
            +
                        assert timesteps.shape[0] - 1 == steps
         
     | 
| 724 | 
         
            +
                        # with torch.no_grad():
         
     | 
| 725 | 
         
            +
                        for step_index in trange(steps, disable=disable_pbar):
         
     | 
| 726 | 
         
            +
                            if self.noise_mask is not None:
         
     | 
| 727 | 
         
            +
                                x = x * self.noise_mask + (1. - self.noise_mask) * (self.masked_image * self.noise_schedule.marginal_alpha(timesteps[step_index]) + self.noise * self.noise_schedule.marginal_std(timesteps[step_index]))
         
     | 
| 728 | 
         
            +
                            if step_index == 0:
         
     | 
| 729 | 
         
            +
                                vec_t = timesteps[0].expand((x.shape[0]))
         
     | 
| 730 | 
         
            +
                                model_prev_list = [self.model_fn(x, vec_t)]
         
     | 
| 731 | 
         
            +
                                t_prev_list = [vec_t]
         
     | 
| 732 | 
         
            +
                            elif step_index < order:
         
     | 
| 733 | 
         
            +
                                init_order = step_index
         
     | 
| 734 | 
         
            +
                            # Init the first `order` values by lower order multistep DPM-Solver.
         
     | 
| 735 | 
         
            +
                            # for init_order in range(1, order):
         
     | 
| 736 | 
         
            +
                                vec_t = timesteps[init_order].expand(x.shape[0])
         
     | 
| 737 | 
         
            +
                                x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, init_order, use_corrector=True)
         
     | 
| 738 | 
         
            +
                                if model_x is None:
         
     | 
| 739 | 
         
            +
                                    model_x = self.model_fn(x, vec_t)
         
     | 
| 740 | 
         
            +
                                model_prev_list.append(model_x)
         
     | 
| 741 | 
         
            +
                                t_prev_list.append(vec_t)
         
     | 
| 742 | 
         
            +
                            else:
         
     | 
| 743 | 
         
            +
                                extra_final_step = 0
         
     | 
| 744 | 
         
            +
                                if step_index == (steps - 1):
         
     | 
| 745 | 
         
            +
                                    extra_final_step = 1
         
     | 
| 746 | 
         
            +
                                for step in range(step_index, step_index + 1 + extra_final_step):
         
     | 
| 747 | 
         
            +
                                    vec_t = timesteps[step].expand(x.shape[0])
         
     | 
| 748 | 
         
            +
                                    if lower_order_final:
         
     | 
| 749 | 
         
            +
                                        step_order = min(order, steps + 1 - step)
         
     | 
| 750 | 
         
            +
                                    else:
         
     | 
| 751 | 
         
            +
                                        step_order = order
         
     | 
| 752 | 
         
            +
                                    # print('this step order:', step_order)
         
     | 
| 753 | 
         
            +
                                    if step == steps:
         
     | 
| 754 | 
         
            +
                                        # print('do not run corrector at the last step')
         
     | 
| 755 | 
         
            +
                                        use_corrector = False
         
     | 
| 756 | 
         
            +
                                    else:
         
     | 
| 757 | 
         
            +
                                        use_corrector = True
         
     | 
| 758 | 
         
            +
                                    x, model_x =  self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, step_order, use_corrector=use_corrector)
         
     | 
| 759 | 
         
            +
                                    for i in range(order - 1):
         
     | 
| 760 | 
         
            +
                                        t_prev_list[i] = t_prev_list[i + 1]
         
     | 
| 761 | 
         
            +
                                        model_prev_list[i] = model_prev_list[i + 1]
         
     | 
| 762 | 
         
            +
                                    t_prev_list[-1] = vec_t
         
     | 
| 763 | 
         
            +
                                    # We do not need to evaluate the final model value.
         
     | 
| 764 | 
         
            +
                                    if step < steps:
         
     | 
| 765 | 
         
            +
                                        if model_x is None:
         
     | 
| 766 | 
         
            +
                                            model_x = self.model_fn(x, vec_t)
         
     | 
| 767 | 
         
            +
                                        model_prev_list[-1] = model_x
         
     | 
| 768 | 
         
            +
                            if callback is not None:
         
     | 
| 769 | 
         
            +
                                callback(step_index, model_prev_list[-1], x, steps)
         
     | 
| 770 | 
         
            +
                    else:
         
     | 
| 771 | 
         
            +
                        raise NotImplementedError()
         
     | 
| 772 | 
         
            +
                    # if denoise_to_zero:
         
     | 
| 773 | 
         
            +
                    #     x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
         
     | 
| 774 | 
         
            +
                    return x
         
     | 
| 775 | 
         
            +
             
     | 
| 776 | 
         
            +
             
     | 
| 777 | 
         
            +
            #############################################################
         
     | 
| 778 | 
         
            +
            # other utility functions
         
     | 
| 779 | 
         
            +
            #############################################################
         
     | 
| 780 | 
         
            +
             
     | 
| 781 | 
         
            +
            def interpolate_fn(x, xp, yp):
         
     | 
| 782 | 
         
            +
                """
         
     | 
| 783 | 
         
            +
                A piecewise linear function y = f(x), using xp and yp as keypoints.
         
     | 
| 784 | 
         
            +
                We implement f(x) in a differentiable way (i.e. applicable for autograd).
         
     | 
| 785 | 
         
            +
                The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
         
     | 
| 786 | 
         
            +
             
     | 
| 787 | 
         
            +
                Args:
         
     | 
| 788 | 
         
            +
                    x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
         
     | 
| 789 | 
         
            +
                    xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
         
     | 
| 790 | 
         
            +
                    yp: PyTorch tensor with shape [C, K].
         
     | 
| 791 | 
         
            +
                Returns:
         
     | 
| 792 | 
         
            +
                    The function values f(x), with shape [N, C].
         
     | 
| 793 | 
         
            +
                """
         
     | 
| 794 | 
         
            +
                N, K = x.shape[0], xp.shape[1]
         
     | 
| 795 | 
         
            +
                all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
         
     | 
| 796 | 
         
            +
                sorted_all_x, x_indices = torch.sort(all_x, dim=2)
         
     | 
| 797 | 
         
            +
                x_idx = torch.argmin(x_indices, dim=2)
         
     | 
| 798 | 
         
            +
                cand_start_idx = x_idx - 1
         
     | 
| 799 | 
         
            +
                start_idx = torch.where(
         
     | 
| 800 | 
         
            +
                    torch.eq(x_idx, 0),
         
     | 
| 801 | 
         
            +
                    torch.tensor(1, device=x.device),
         
     | 
| 802 | 
         
            +
                    torch.where(
         
     | 
| 803 | 
         
            +
                        torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
         
     | 
| 804 | 
         
            +
                    ),
         
     | 
| 805 | 
         
            +
                )
         
     | 
| 806 | 
         
            +
                end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
         
     | 
| 807 | 
         
            +
                start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
         
     | 
| 808 | 
         
            +
                end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
         
     | 
| 809 | 
         
            +
                start_idx2 = torch.where(
         
     | 
| 810 | 
         
            +
                    torch.eq(x_idx, 0),
         
     | 
| 811 | 
         
            +
                    torch.tensor(0, device=x.device),
         
     | 
| 812 | 
         
            +
                    torch.where(
         
     | 
| 813 | 
         
            +
                        torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
         
     | 
| 814 | 
         
            +
                    ),
         
     | 
| 815 | 
         
            +
                )
         
     | 
| 816 | 
         
            +
                y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
         
     | 
| 817 | 
         
            +
                start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
         
     | 
| 818 | 
         
            +
                end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
         
     | 
| 819 | 
         
            +
                cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
         
     | 
| 820 | 
         
            +
                return cand
         
     | 
| 821 | 
         
            +
             
     | 
| 822 | 
         
            +
             
     | 
| 823 | 
         
            +
            def expand_dims(v, dims):
         
     | 
| 824 | 
         
            +
                """
         
     | 
| 825 | 
         
            +
                Expand the tensor `v` to the dim `dims`.
         
     | 
| 826 | 
         
            +
             
     | 
| 827 | 
         
            +
                Args:
         
     | 
| 828 | 
         
            +
                    `v`: a PyTorch tensor with shape [N].
         
     | 
| 829 | 
         
            +
                    `dim`: a `int`.
         
     | 
| 830 | 
         
            +
                Returns:
         
     | 
| 831 | 
         
            +
                    a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
         
     | 
| 832 | 
         
            +
                """
         
     | 
| 833 | 
         
            +
                return v[(...,) + (None,)*(dims - 1)]
         
     | 
| 834 | 
         
            +
             
     | 
| 835 | 
         
            +
             
     | 
| 836 | 
         
            +
            class SigmaConvert:
         
     | 
| 837 | 
         
            +
                schedule = ""
         
     | 
| 838 | 
         
            +
                def marginal_log_mean_coeff(self, sigma):
         
     | 
| 839 | 
         
            +
                    return 0.5 * torch.log(1 / ((sigma * sigma) + 1))
         
     | 
| 840 | 
         
            +
             
     | 
| 841 | 
         
            +
                def marginal_alpha(self, t):
         
     | 
| 842 | 
         
            +
                    return torch.exp(self.marginal_log_mean_coeff(t))
         
     | 
| 843 | 
         
            +
             
     | 
| 844 | 
         
            +
                def marginal_std(self, t):
         
     | 
| 845 | 
         
            +
                    return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
         
     | 
| 846 | 
         
            +
             
     | 
| 847 | 
         
            +
                def marginal_lambda(self, t):
         
     | 
| 848 | 
         
            +
                    """
         
     | 
| 849 | 
         
            +
                    Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
         
     | 
| 850 | 
         
            +
                    """
         
     | 
| 851 | 
         
            +
                    log_mean_coeff = self.marginal_log_mean_coeff(t)
         
     | 
| 852 | 
         
            +
                    log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
         
     | 
| 853 | 
         
            +
                    return log_mean_coeff - log_std
         
     | 
| 854 | 
         
            +
             
     | 
| 855 | 
         
            +
            def predict_eps_sigma(model, input, sigma_in, **kwargs):
         
     | 
| 856 | 
         
            +
                sigma = sigma_in.view(sigma_in.shape[:1] + (1,) * (input.ndim - 1))
         
     | 
| 857 | 
         
            +
                input = input * ((sigma ** 2 + 1.0) ** 0.5)
         
     | 
| 858 | 
         
            +
                return  (input - model(input, sigma_in, **kwargs)) / sigma
         
     | 
| 859 | 
         
            +
             
     | 
| 860 | 
         
            +
             
     | 
| 861 | 
         
            +
            def sample_unipc(model, noise, image, sigmas, max_denoise, extra_args=None, callback=None, disable=False, noise_mask=None, variant='bh1'):
         
     | 
| 862 | 
         
            +
                    timesteps = sigmas.clone()
         
     | 
| 863 | 
         
            +
                    if sigmas[-1] == 0:
         
     | 
| 864 | 
         
            +
                        timesteps = sigmas[:]
         
     | 
| 865 | 
         
            +
                        timesteps[-1] = 0.001
         
     | 
| 866 | 
         
            +
                    else:
         
     | 
| 867 | 
         
            +
                        timesteps = sigmas.clone()
         
     | 
| 868 | 
         
            +
                    ns = SigmaConvert()
         
     | 
| 869 | 
         
            +
             
     | 
| 870 | 
         
            +
                    if image is not None:
         
     | 
| 871 | 
         
            +
                        img = image * ns.marginal_alpha(timesteps[0])
         
     | 
| 872 | 
         
            +
                        if max_denoise:
         
     | 
| 873 | 
         
            +
                            noise_mult = 1.0
         
     | 
| 874 | 
         
            +
                        else:
         
     | 
| 875 | 
         
            +
                            noise_mult = ns.marginal_std(timesteps[0])
         
     | 
| 876 | 
         
            +
                        img += noise * noise_mult
         
     | 
| 877 | 
         
            +
                    else:
         
     | 
| 878 | 
         
            +
                        img = noise
         
     | 
| 879 | 
         
            +
             
     | 
| 880 | 
         
            +
                    model_type = "noise"
         
     | 
| 881 | 
         
            +
             
     | 
| 882 | 
         
            +
                    model_fn = model_wrapper(
         
     | 
| 883 | 
         
            +
                        lambda input, sigma, **kwargs: predict_eps_sigma(model, input, sigma, **kwargs),
         
     | 
| 884 | 
         
            +
                        ns,
         
     | 
| 885 | 
         
            +
                        model_type=model_type,
         
     | 
| 886 | 
         
            +
                        guidance_type="uncond",
         
     | 
| 887 | 
         
            +
                        model_kwargs=extra_args,
         
     | 
| 888 | 
         
            +
                    )
         
     | 
| 889 | 
         
            +
             
     | 
| 890 | 
         
            +
                    order = min(3, len(timesteps) - 2)
         
     | 
| 891 | 
         
            +
                    uni_pc = UniPC(model_fn, ns, predict_x0=True, thresholding=False, noise_mask=noise_mask, masked_image=image, noise=noise, variant=variant)
         
     | 
| 892 | 
         
            +
                    x = uni_pc.sample(img, timesteps=timesteps, skip_type="time_uniform", method="multistep", order=order, lower_order_final=True, callback=callback, disable_pbar=disable)
         
     | 
| 893 | 
         
            +
                    x /= ns.marginal_alpha(timesteps[-1])
         
     | 
| 894 | 
         
            +
                    return x
         
     | 
    	
        comfy/gligen.py
    ADDED
    
    | 
         @@ -0,0 +1,341 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            from torch import nn
         
     | 
| 3 | 
         
            +
            from .ldm.modules.attention import CrossAttention
         
     | 
| 4 | 
         
            +
            from inspect import isfunction
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
            def exists(val):
         
     | 
| 8 | 
         
            +
                return val is not None
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            def uniq(arr):
         
     | 
| 12 | 
         
            +
                return{el: True for el in arr}.keys()
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            def default(val, d):
         
     | 
| 16 | 
         
            +
                if exists(val):
         
     | 
| 17 | 
         
            +
                    return val
         
     | 
| 18 | 
         
            +
                return d() if isfunction(d) else d
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
            # feedforward
         
     | 
| 22 | 
         
            +
            class GEGLU(nn.Module):
         
     | 
| 23 | 
         
            +
                def __init__(self, dim_in, dim_out):
         
     | 
| 24 | 
         
            +
                    super().__init__()
         
     | 
| 25 | 
         
            +
                    self.proj = nn.Linear(dim_in, dim_out * 2)
         
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
                def forward(self, x):
         
     | 
| 28 | 
         
            +
                    x, gate = self.proj(x).chunk(2, dim=-1)
         
     | 
| 29 | 
         
            +
                    return x * torch.nn.functional.gelu(gate)
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
            class FeedForward(nn.Module):
         
     | 
| 33 | 
         
            +
                def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
         
     | 
| 34 | 
         
            +
                    super().__init__()
         
     | 
| 35 | 
         
            +
                    inner_dim = int(dim * mult)
         
     | 
| 36 | 
         
            +
                    dim_out = default(dim_out, dim)
         
     | 
| 37 | 
         
            +
                    project_in = nn.Sequential(
         
     | 
| 38 | 
         
            +
                        nn.Linear(dim, inner_dim),
         
     | 
| 39 | 
         
            +
                        nn.GELU()
         
     | 
| 40 | 
         
            +
                    ) if not glu else GEGLU(dim, inner_dim)
         
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
                    self.net = nn.Sequential(
         
     | 
| 43 | 
         
            +
                        project_in,
         
     | 
| 44 | 
         
            +
                        nn.Dropout(dropout),
         
     | 
| 45 | 
         
            +
                        nn.Linear(inner_dim, dim_out)
         
     | 
| 46 | 
         
            +
                    )
         
     | 
| 47 | 
         
            +
             
     | 
| 48 | 
         
            +
                def forward(self, x):
         
     | 
| 49 | 
         
            +
                    return self.net(x)
         
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
            class GatedCrossAttentionDense(nn.Module):
         
     | 
| 53 | 
         
            +
                def __init__(self, query_dim, context_dim, n_heads, d_head):
         
     | 
| 54 | 
         
            +
                    super().__init__()
         
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
                    self.attn = CrossAttention(
         
     | 
| 57 | 
         
            +
                        query_dim=query_dim,
         
     | 
| 58 | 
         
            +
                        context_dim=context_dim,
         
     | 
| 59 | 
         
            +
                        heads=n_heads,
         
     | 
| 60 | 
         
            +
                        dim_head=d_head)
         
     | 
| 61 | 
         
            +
                    self.ff = FeedForward(query_dim, glu=True)
         
     | 
| 62 | 
         
            +
             
     | 
| 63 | 
         
            +
                    self.norm1 = nn.LayerNorm(query_dim)
         
     | 
| 64 | 
         
            +
                    self.norm2 = nn.LayerNorm(query_dim)
         
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
                    self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)))
         
     | 
| 67 | 
         
            +
                    self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)))
         
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
                    # this can be useful: we can externally change magnitude of tanh(alpha)
         
     | 
| 70 | 
         
            +
                    # for example, when it is set to 0, then the entire model is same as
         
     | 
| 71 | 
         
            +
                    # original one
         
     | 
| 72 | 
         
            +
                    self.scale = 1
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
                def forward(self, x, objs):
         
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
                    x = x + self.scale * \
         
     | 
| 77 | 
         
            +
                        torch.tanh(self.alpha_attn) * self.attn(self.norm1(x), objs, objs)
         
     | 
| 78 | 
         
            +
                    x = x + self.scale * \
         
     | 
| 79 | 
         
            +
                        torch.tanh(self.alpha_dense) * self.ff(self.norm2(x))
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
                    return x
         
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
             
     | 
| 84 | 
         
            +
            class GatedSelfAttentionDense(nn.Module):
         
     | 
| 85 | 
         
            +
                def __init__(self, query_dim, context_dim, n_heads, d_head):
         
     | 
| 86 | 
         
            +
                    super().__init__()
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
                    # we need a linear projection since we need cat visual feature and obj
         
     | 
| 89 | 
         
            +
                    # feature
         
     | 
| 90 | 
         
            +
                    self.linear = nn.Linear(context_dim, query_dim)
         
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
                    self.attn = CrossAttention(
         
     | 
| 93 | 
         
            +
                        query_dim=query_dim,
         
     | 
| 94 | 
         
            +
                        context_dim=query_dim,
         
     | 
| 95 | 
         
            +
                        heads=n_heads,
         
     | 
| 96 | 
         
            +
                        dim_head=d_head)
         
     | 
| 97 | 
         
            +
                    self.ff = FeedForward(query_dim, glu=True)
         
     | 
| 98 | 
         
            +
             
     | 
| 99 | 
         
            +
                    self.norm1 = nn.LayerNorm(query_dim)
         
     | 
| 100 | 
         
            +
                    self.norm2 = nn.LayerNorm(query_dim)
         
     | 
| 101 | 
         
            +
             
     | 
| 102 | 
         
            +
                    self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)))
         
     | 
| 103 | 
         
            +
                    self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)))
         
     | 
| 104 | 
         
            +
             
     | 
| 105 | 
         
            +
                    # this can be useful: we can externally change magnitude of tanh(alpha)
         
     | 
| 106 | 
         
            +
                    # for example, when it is set to 0, then the entire model is same as
         
     | 
| 107 | 
         
            +
                    # original one
         
     | 
| 108 | 
         
            +
                    self.scale = 1
         
     | 
| 109 | 
         
            +
             
     | 
| 110 | 
         
            +
                def forward(self, x, objs):
         
     | 
| 111 | 
         
            +
             
     | 
| 112 | 
         
            +
                    N_visual = x.shape[1]
         
     | 
| 113 | 
         
            +
                    objs = self.linear(objs)
         
     | 
| 114 | 
         
            +
             
     | 
| 115 | 
         
            +
                    x = x + self.scale * torch.tanh(self.alpha_attn) * self.attn(
         
     | 
| 116 | 
         
            +
                        self.norm1(torch.cat([x, objs], dim=1)))[:, 0:N_visual, :]
         
     | 
| 117 | 
         
            +
                    x = x + self.scale * \
         
     | 
| 118 | 
         
            +
                        torch.tanh(self.alpha_dense) * self.ff(self.norm2(x))
         
     | 
| 119 | 
         
            +
             
     | 
| 120 | 
         
            +
                    return x
         
     | 
| 121 | 
         
            +
             
     | 
| 122 | 
         
            +
             
     | 
| 123 | 
         
            +
            class GatedSelfAttentionDense2(nn.Module):
         
     | 
| 124 | 
         
            +
                def __init__(self, query_dim, context_dim, n_heads, d_head):
         
     | 
| 125 | 
         
            +
                    super().__init__()
         
     | 
| 126 | 
         
            +
             
     | 
| 127 | 
         
            +
                    # we need a linear projection since we need cat visual feature and obj
         
     | 
| 128 | 
         
            +
                    # feature
         
     | 
| 129 | 
         
            +
                    self.linear = nn.Linear(context_dim, query_dim)
         
     | 
| 130 | 
         
            +
             
     | 
| 131 | 
         
            +
                    self.attn = CrossAttention(
         
     | 
| 132 | 
         
            +
                        query_dim=query_dim, context_dim=query_dim, dim_head=d_head)
         
     | 
| 133 | 
         
            +
                    self.ff = FeedForward(query_dim, glu=True)
         
     | 
| 134 | 
         
            +
             
     | 
| 135 | 
         
            +
                    self.norm1 = nn.LayerNorm(query_dim)
         
     | 
| 136 | 
         
            +
                    self.norm2 = nn.LayerNorm(query_dim)
         
     | 
| 137 | 
         
            +
             
     | 
| 138 | 
         
            +
                    self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)))
         
     | 
| 139 | 
         
            +
                    self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)))
         
     | 
| 140 | 
         
            +
             
     | 
| 141 | 
         
            +
                    # this can be useful: we can externally change magnitude of tanh(alpha)
         
     | 
| 142 | 
         
            +
                    # for example, when it is set to 0, then the entire model is same as
         
     | 
| 143 | 
         
            +
                    # original one
         
     | 
| 144 | 
         
            +
                    self.scale = 1
         
     | 
| 145 | 
         
            +
             
     | 
| 146 | 
         
            +
                def forward(self, x, objs):
         
     | 
| 147 | 
         
            +
             
     | 
| 148 | 
         
            +
                    B, N_visual, _ = x.shape
         
     | 
| 149 | 
         
            +
                    B, N_ground, _ = objs.shape
         
     | 
| 150 | 
         
            +
             
     | 
| 151 | 
         
            +
                    objs = self.linear(objs)
         
     | 
| 152 | 
         
            +
             
     | 
| 153 | 
         
            +
                    # sanity check
         
     | 
| 154 | 
         
            +
                    size_v = math.sqrt(N_visual)
         
     | 
| 155 | 
         
            +
                    size_g = math.sqrt(N_ground)
         
     | 
| 156 | 
         
            +
                    assert int(size_v) == size_v, "Visual tokens must be square rootable"
         
     | 
| 157 | 
         
            +
                    assert int(size_g) == size_g, "Grounding tokens must be square rootable"
         
     | 
| 158 | 
         
            +
                    size_v = int(size_v)
         
     | 
| 159 | 
         
            +
                    size_g = int(size_g)
         
     | 
| 160 | 
         
            +
             
     | 
| 161 | 
         
            +
                    # select grounding token and resize it to visual token size as residual
         
     | 
| 162 | 
         
            +
                    out = self.attn(self.norm1(torch.cat([x, objs], dim=1)))[
         
     | 
| 163 | 
         
            +
                        :, N_visual:, :]
         
     | 
| 164 | 
         
            +
                    out = out.permute(0, 2, 1).reshape(B, -1, size_g, size_g)
         
     | 
| 165 | 
         
            +
                    out = torch.nn.functional.interpolate(
         
     | 
| 166 | 
         
            +
                        out, (size_v, size_v), mode='bicubic')
         
     | 
| 167 | 
         
            +
                    residual = out.reshape(B, -1, N_visual).permute(0, 2, 1)
         
     | 
| 168 | 
         
            +
             
     | 
| 169 | 
         
            +
                    # add residual to visual feature
         
     | 
| 170 | 
         
            +
                    x = x + self.scale * torch.tanh(self.alpha_attn) * residual
         
     | 
| 171 | 
         
            +
                    x = x + self.scale * \
         
     | 
| 172 | 
         
            +
                        torch.tanh(self.alpha_dense) * self.ff(self.norm2(x))
         
     | 
| 173 | 
         
            +
             
     | 
| 174 | 
         
            +
                    return x
         
     | 
| 175 | 
         
            +
             
     | 
| 176 | 
         
            +
             
     | 
| 177 | 
         
            +
            class FourierEmbedder():
         
     | 
| 178 | 
         
            +
                def __init__(self, num_freqs=64, temperature=100):
         
     | 
| 179 | 
         
            +
             
     | 
| 180 | 
         
            +
                    self.num_freqs = num_freqs
         
     | 
| 181 | 
         
            +
                    self.temperature = temperature
         
     | 
| 182 | 
         
            +
                    self.freq_bands = temperature ** (torch.arange(num_freqs) / num_freqs)
         
     | 
| 183 | 
         
            +
             
     | 
| 184 | 
         
            +
                @torch.no_grad()
         
     | 
| 185 | 
         
            +
                def __call__(self, x, cat_dim=-1):
         
     | 
| 186 | 
         
            +
                    "x: arbitrary shape of tensor. dim: cat dim"
         
     | 
| 187 | 
         
            +
                    out = []
         
     | 
| 188 | 
         
            +
                    for freq in self.freq_bands:
         
     | 
| 189 | 
         
            +
                        out.append(torch.sin(freq * x))
         
     | 
| 190 | 
         
            +
                        out.append(torch.cos(freq * x))
         
     | 
| 191 | 
         
            +
                    return torch.cat(out, cat_dim)
         
     | 
| 192 | 
         
            +
             
     | 
| 193 | 
         
            +
             
     | 
| 194 | 
         
            +
            class PositionNet(nn.Module):
         
     | 
| 195 | 
         
            +
                def __init__(self, in_dim, out_dim, fourier_freqs=8):
         
     | 
| 196 | 
         
            +
                    super().__init__()
         
     | 
| 197 | 
         
            +
                    self.in_dim = in_dim
         
     | 
| 198 | 
         
            +
                    self.out_dim = out_dim
         
     | 
| 199 | 
         
            +
             
     | 
| 200 | 
         
            +
                    self.fourier_embedder = FourierEmbedder(num_freqs=fourier_freqs)
         
     | 
| 201 | 
         
            +
                    self.position_dim = fourier_freqs * 2 * 4  # 2 is sin&cos, 4 is xyxy
         
     | 
| 202 | 
         
            +
             
     | 
| 203 | 
         
            +
                    self.linears = nn.Sequential(
         
     | 
| 204 | 
         
            +
                        nn.Linear(self.in_dim + self.position_dim, 512),
         
     | 
| 205 | 
         
            +
                        nn.SiLU(),
         
     | 
| 206 | 
         
            +
                        nn.Linear(512, 512),
         
     | 
| 207 | 
         
            +
                        nn.SiLU(),
         
     | 
| 208 | 
         
            +
                        nn.Linear(512, out_dim),
         
     | 
| 209 | 
         
            +
                    )
         
     | 
| 210 | 
         
            +
             
     | 
| 211 | 
         
            +
                    self.null_positive_feature = torch.nn.Parameter(
         
     | 
| 212 | 
         
            +
                        torch.zeros([self.in_dim]))
         
     | 
| 213 | 
         
            +
                    self.null_position_feature = torch.nn.Parameter(
         
     | 
| 214 | 
         
            +
                        torch.zeros([self.position_dim]))
         
     | 
| 215 | 
         
            +
             
     | 
| 216 | 
         
            +
                def forward(self, boxes, masks, positive_embeddings):
         
     | 
| 217 | 
         
            +
                    B, N, _ = boxes.shape
         
     | 
| 218 | 
         
            +
                    dtype = self.linears[0].weight.dtype
         
     | 
| 219 | 
         
            +
                    masks = masks.unsqueeze(-1).to(dtype)
         
     | 
| 220 | 
         
            +
                    positive_embeddings = positive_embeddings.to(dtype)
         
     | 
| 221 | 
         
            +
             
     | 
| 222 | 
         
            +
                    # embedding position (it may includes padding as placeholder)
         
     | 
| 223 | 
         
            +
                    xyxy_embedding = self.fourier_embedder(boxes.to(dtype))  # B*N*4 --> B*N*C
         
     | 
| 224 | 
         
            +
             
     | 
| 225 | 
         
            +
                    # learnable null embedding
         
     | 
| 226 | 
         
            +
                    positive_null = self.null_positive_feature.view(1, 1, -1)
         
     | 
| 227 | 
         
            +
                    xyxy_null = self.null_position_feature.view(1, 1, -1)
         
     | 
| 228 | 
         
            +
             
     | 
| 229 | 
         
            +
                    # replace padding with learnable null embedding
         
     | 
| 230 | 
         
            +
                    positive_embeddings = positive_embeddings * \
         
     | 
| 231 | 
         
            +
                        masks + (1 - masks) * positive_null
         
     | 
| 232 | 
         
            +
                    xyxy_embedding = xyxy_embedding * masks + (1 - masks) * xyxy_null
         
     | 
| 233 | 
         
            +
             
     | 
| 234 | 
         
            +
                    objs = self.linears(
         
     | 
| 235 | 
         
            +
                        torch.cat([positive_embeddings, xyxy_embedding], dim=-1))
         
     | 
| 236 | 
         
            +
                    assert objs.shape == torch.Size([B, N, self.out_dim])
         
     | 
| 237 | 
         
            +
                    return objs
         
     | 
| 238 | 
         
            +
             
     | 
| 239 | 
         
            +
             
     | 
| 240 | 
         
            +
            class Gligen(nn.Module):
         
     | 
| 241 | 
         
            +
                def __init__(self, modules, position_net, key_dim):
         
     | 
| 242 | 
         
            +
                    super().__init__()
         
     | 
| 243 | 
         
            +
                    self.module_list = nn.ModuleList(modules)
         
     | 
| 244 | 
         
            +
                    self.position_net = position_net
         
     | 
| 245 | 
         
            +
                    self.key_dim = key_dim
         
     | 
| 246 | 
         
            +
                    self.max_objs = 30
         
     | 
| 247 | 
         
            +
                    self.current_device = torch.device("cpu")
         
     | 
| 248 | 
         
            +
             
     | 
| 249 | 
         
            +
                def _set_position(self, boxes, masks, positive_embeddings):
         
     | 
| 250 | 
         
            +
                    objs = self.position_net(boxes, masks, positive_embeddings)
         
     | 
| 251 | 
         
            +
                    def func(x, extra_options):
         
     | 
| 252 | 
         
            +
                        key = extra_options["transformer_index"]
         
     | 
| 253 | 
         
            +
                        module = self.module_list[key]
         
     | 
| 254 | 
         
            +
                        return module(x, objs)
         
     | 
| 255 | 
         
            +
                    return func
         
     | 
| 256 | 
         
            +
             
     | 
| 257 | 
         
            +
                def set_position(self, latent_image_shape, position_params, device):
         
     | 
| 258 | 
         
            +
                    batch, c, h, w = latent_image_shape
         
     | 
| 259 | 
         
            +
                    masks = torch.zeros([self.max_objs], device="cpu")
         
     | 
| 260 | 
         
            +
                    boxes = []
         
     | 
| 261 | 
         
            +
                    positive_embeddings = []
         
     | 
| 262 | 
         
            +
                    for p in position_params:
         
     | 
| 263 | 
         
            +
                        x1 = (p[4]) / w
         
     | 
| 264 | 
         
            +
                        y1 = (p[3]) / h
         
     | 
| 265 | 
         
            +
                        x2 = (p[4] + p[2]) / w
         
     | 
| 266 | 
         
            +
                        y2 = (p[3] + p[1]) / h
         
     | 
| 267 | 
         
            +
                        masks[len(boxes)] = 1.0
         
     | 
| 268 | 
         
            +
                        boxes += [torch.tensor((x1, y1, x2, y2)).unsqueeze(0)]
         
     | 
| 269 | 
         
            +
                        positive_embeddings += [p[0]]
         
     | 
| 270 | 
         
            +
                    append_boxes = []
         
     | 
| 271 | 
         
            +
                    append_conds = []
         
     | 
| 272 | 
         
            +
                    if len(boxes) < self.max_objs:
         
     | 
| 273 | 
         
            +
                        append_boxes = [torch.zeros(
         
     | 
| 274 | 
         
            +
                            [self.max_objs - len(boxes), 4], device="cpu")]
         
     | 
| 275 | 
         
            +
                        append_conds = [torch.zeros(
         
     | 
| 276 | 
         
            +
                            [self.max_objs - len(boxes), self.key_dim], device="cpu")]
         
     | 
| 277 | 
         
            +
             
     | 
| 278 | 
         
            +
                    box_out = torch.cat(
         
     | 
| 279 | 
         
            +
                        boxes + append_boxes).unsqueeze(0).repeat(batch, 1, 1)
         
     | 
| 280 | 
         
            +
                    masks = masks.unsqueeze(0).repeat(batch, 1)
         
     | 
| 281 | 
         
            +
                    conds = torch.cat(positive_embeddings +
         
     | 
| 282 | 
         
            +
                                      append_conds).unsqueeze(0).repeat(batch, 1, 1)
         
     | 
| 283 | 
         
            +
                    return self._set_position(
         
     | 
| 284 | 
         
            +
                        box_out.to(device),
         
     | 
| 285 | 
         
            +
                        masks.to(device),
         
     | 
| 286 | 
         
            +
                        conds.to(device))
         
     | 
| 287 | 
         
            +
             
     | 
| 288 | 
         
            +
                def set_empty(self, latent_image_shape, device):
         
     | 
| 289 | 
         
            +
                    batch, c, h, w = latent_image_shape
         
     | 
| 290 | 
         
            +
                    masks = torch.zeros([self.max_objs], device="cpu").repeat(batch, 1)
         
     | 
| 291 | 
         
            +
                    box_out = torch.zeros([self.max_objs, 4],
         
     | 
| 292 | 
         
            +
                                          device="cpu").repeat(batch, 1, 1)
         
     | 
| 293 | 
         
            +
                    conds = torch.zeros([self.max_objs, self.key_dim],
         
     | 
| 294 | 
         
            +
                                        device="cpu").repeat(batch, 1, 1)
         
     | 
| 295 | 
         
            +
                    return self._set_position(
         
     | 
| 296 | 
         
            +
                        box_out.to(device),
         
     | 
| 297 | 
         
            +
                        masks.to(device),
         
     | 
| 298 | 
         
            +
                        conds.to(device))
         
     | 
| 299 | 
         
            +
             
     | 
| 300 | 
         
            +
             
     | 
| 301 | 
         
            +
            def load_gligen(sd):
         
     | 
| 302 | 
         
            +
                sd_k = sd.keys()
         
     | 
| 303 | 
         
            +
                output_list = []
         
     | 
| 304 | 
         
            +
                key_dim = 768
         
     | 
| 305 | 
         
            +
                for a in ["input_blocks", "middle_block", "output_blocks"]:
         
     | 
| 306 | 
         
            +
                    for b in range(20):
         
     | 
| 307 | 
         
            +
                        k_temp = filter(lambda k: "{}.{}.".format(a, b)
         
     | 
| 308 | 
         
            +
                                        in k and ".fuser." in k, sd_k)
         
     | 
| 309 | 
         
            +
                        k_temp = map(lambda k: (k, k.split(".fuser.")[-1]), k_temp)
         
     | 
| 310 | 
         
            +
             
     | 
| 311 | 
         
            +
                        n_sd = {}
         
     | 
| 312 | 
         
            +
                        for k in k_temp:
         
     | 
| 313 | 
         
            +
                            n_sd[k[1]] = sd[k[0]]
         
     | 
| 314 | 
         
            +
                        if len(n_sd) > 0:
         
     | 
| 315 | 
         
            +
                            query_dim = n_sd["linear.weight"].shape[0]
         
     | 
| 316 | 
         
            +
                            key_dim = n_sd["linear.weight"].shape[1]
         
     | 
| 317 | 
         
            +
             
     | 
| 318 | 
         
            +
                            if key_dim == 768:  # SD1.x
         
     | 
| 319 | 
         
            +
                                n_heads = 8
         
     | 
| 320 | 
         
            +
                                d_head = query_dim // n_heads
         
     | 
| 321 | 
         
            +
                            else:
         
     | 
| 322 | 
         
            +
                                d_head = 64
         
     | 
| 323 | 
         
            +
                                n_heads = query_dim // d_head
         
     | 
| 324 | 
         
            +
             
     | 
| 325 | 
         
            +
                            gated = GatedSelfAttentionDense(
         
     | 
| 326 | 
         
            +
                                query_dim, key_dim, n_heads, d_head)
         
     | 
| 327 | 
         
            +
                            gated.load_state_dict(n_sd, strict=False)
         
     | 
| 328 | 
         
            +
                            output_list.append(gated)
         
     | 
| 329 | 
         
            +
             
     | 
| 330 | 
         
            +
                if "position_net.null_positive_feature" in sd_k:
         
     | 
| 331 | 
         
            +
                    in_dim = sd["position_net.null_positive_feature"].shape[0]
         
     | 
| 332 | 
         
            +
                    out_dim = sd["position_net.linears.4.weight"].shape[0]
         
     | 
| 333 | 
         
            +
             
     | 
| 334 | 
         
            +
                    class WeightsLoader(torch.nn.Module):
         
     | 
| 335 | 
         
            +
                        pass
         
     | 
| 336 | 
         
            +
                    w = WeightsLoader()
         
     | 
| 337 | 
         
            +
                    w.position_net = PositionNet(in_dim, out_dim)
         
     | 
| 338 | 
         
            +
                    w.load_state_dict(sd, strict=False)
         
     | 
| 339 | 
         
            +
             
     | 
| 340 | 
         
            +
                gligen = Gligen(output_list, w.position_net, key_dim)
         
     | 
| 341 | 
         
            +
                return gligen
         
     | 
    	
        comfy/k_diffusion/sampling.py
    ADDED
    
    | 
         @@ -0,0 +1,810 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import math
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
            from scipy import integrate
         
     | 
| 4 | 
         
            +
            import torch
         
     | 
| 5 | 
         
            +
            from torch import nn
         
     | 
| 6 | 
         
            +
            import torchsde
         
     | 
| 7 | 
         
            +
            from tqdm.auto import trange, tqdm
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            from . import utils
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
            def append_zero(x):
         
     | 
| 13 | 
         
            +
                return torch.cat([x, x.new_zeros([1])])
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
            def get_sigmas_karras(n, sigma_min, sigma_max, rho=7., device='cpu'):
         
     | 
| 17 | 
         
            +
                """Constructs the noise schedule of Karras et al. (2022)."""
         
     | 
| 18 | 
         
            +
                ramp = torch.linspace(0, 1, n, device=device)
         
     | 
| 19 | 
         
            +
                min_inv_rho = sigma_min ** (1 / rho)
         
     | 
| 20 | 
         
            +
                max_inv_rho = sigma_max ** (1 / rho)
         
     | 
| 21 | 
         
            +
                sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
         
     | 
| 22 | 
         
            +
                return append_zero(sigmas).to(device)
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
            def get_sigmas_exponential(n, sigma_min, sigma_max, device='cpu'):
         
     | 
| 26 | 
         
            +
                """Constructs an exponential noise schedule."""
         
     | 
| 27 | 
         
            +
                sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), n, device=device).exp()
         
     | 
| 28 | 
         
            +
                return append_zero(sigmas)
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
            def get_sigmas_polyexponential(n, sigma_min, sigma_max, rho=1., device='cpu'):
         
     | 
| 32 | 
         
            +
                """Constructs an polynomial in log sigma noise schedule."""
         
     | 
| 33 | 
         
            +
                ramp = torch.linspace(1, 0, n, device=device) ** rho
         
     | 
| 34 | 
         
            +
                sigmas = torch.exp(ramp * (math.log(sigma_max) - math.log(sigma_min)) + math.log(sigma_min))
         
     | 
| 35 | 
         
            +
                return append_zero(sigmas)
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
            def get_sigmas_vp(n, beta_d=19.9, beta_min=0.1, eps_s=1e-3, device='cpu'):
         
     | 
| 39 | 
         
            +
                """Constructs a continuous VP noise schedule."""
         
     | 
| 40 | 
         
            +
                t = torch.linspace(1, eps_s, n, device=device)
         
     | 
| 41 | 
         
            +
                sigmas = torch.sqrt(torch.exp(beta_d * t ** 2 / 2 + beta_min * t) - 1)
         
     | 
| 42 | 
         
            +
                return append_zero(sigmas)
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
            def to_d(x, sigma, denoised):
         
     | 
| 46 | 
         
            +
                """Converts a denoiser output to a Karras ODE derivative."""
         
     | 
| 47 | 
         
            +
                return (x - denoised) / utils.append_dims(sigma, x.ndim)
         
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
            def get_ancestral_step(sigma_from, sigma_to, eta=1.):
         
     | 
| 51 | 
         
            +
                """Calculates the noise level (sigma_down) to step down to and the amount
         
     | 
| 52 | 
         
            +
                of noise to add (sigma_up) when doing an ancestral sampling step."""
         
     | 
| 53 | 
         
            +
                if not eta:
         
     | 
| 54 | 
         
            +
                    return sigma_to, 0.
         
     | 
| 55 | 
         
            +
                sigma_up = min(sigma_to, eta * (sigma_to ** 2 * (sigma_from ** 2 - sigma_to ** 2) / sigma_from ** 2) ** 0.5)
         
     | 
| 56 | 
         
            +
                sigma_down = (sigma_to ** 2 - sigma_up ** 2) ** 0.5
         
     | 
| 57 | 
         
            +
                return sigma_down, sigma_up
         
     | 
| 58 | 
         
            +
             
     | 
| 59 | 
         
            +
             
     | 
| 60 | 
         
            +
            def default_noise_sampler(x):
         
     | 
| 61 | 
         
            +
                return lambda sigma, sigma_next: torch.randn_like(x)
         
     | 
| 62 | 
         
            +
             
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
            class BatchedBrownianTree:
         
     | 
| 65 | 
         
            +
                """A wrapper around torchsde.BrownianTree that enables batches of entropy."""
         
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
                def __init__(self, x, t0, t1, seed=None, **kwargs):
         
     | 
| 68 | 
         
            +
                    self.cpu_tree = True
         
     | 
| 69 | 
         
            +
                    if "cpu" in kwargs:
         
     | 
| 70 | 
         
            +
                        self.cpu_tree = kwargs.pop("cpu")
         
     | 
| 71 | 
         
            +
                    t0, t1, self.sign = self.sort(t0, t1)
         
     | 
| 72 | 
         
            +
                    w0 = kwargs.get('w0', torch.zeros_like(x))
         
     | 
| 73 | 
         
            +
                    if seed is None:
         
     | 
| 74 | 
         
            +
                        seed = torch.randint(0, 2 ** 63 - 1, []).item()
         
     | 
| 75 | 
         
            +
                    self.batched = True
         
     | 
| 76 | 
         
            +
                    try:
         
     | 
| 77 | 
         
            +
                        assert len(seed) == x.shape[0]
         
     | 
| 78 | 
         
            +
                        w0 = w0[0]
         
     | 
| 79 | 
         
            +
                    except TypeError:
         
     | 
| 80 | 
         
            +
                        seed = [seed]
         
     | 
| 81 | 
         
            +
                        self.batched = False
         
     | 
| 82 | 
         
            +
                    if self.cpu_tree:
         
     | 
| 83 | 
         
            +
                        self.trees = [torchsde.BrownianTree(t0.cpu(), w0.cpu(), t1.cpu(), entropy=s, **kwargs) for s in seed]
         
     | 
| 84 | 
         
            +
                    else:
         
     | 
| 85 | 
         
            +
                        self.trees = [torchsde.BrownianTree(t0, w0, t1, entropy=s, **kwargs) for s in seed]
         
     | 
| 86 | 
         
            +
             
     | 
| 87 | 
         
            +
                @staticmethod
         
     | 
| 88 | 
         
            +
                def sort(a, b):
         
     | 
| 89 | 
         
            +
                    return (a, b, 1) if a < b else (b, a, -1)
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
                def __call__(self, t0, t1):
         
     | 
| 92 | 
         
            +
                    t0, t1, sign = self.sort(t0, t1)
         
     | 
| 93 | 
         
            +
                    if self.cpu_tree:
         
     | 
| 94 | 
         
            +
                        w = torch.stack([tree(t0.cpu().float(), t1.cpu().float()).to(t0.dtype).to(t0.device) for tree in self.trees]) * (self.sign * sign)
         
     | 
| 95 | 
         
            +
                    else:
         
     | 
| 96 | 
         
            +
                        w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign)
         
     | 
| 97 | 
         
            +
             
     | 
| 98 | 
         
            +
                    return w if self.batched else w[0]
         
     | 
| 99 | 
         
            +
             
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
            class BrownianTreeNoiseSampler:
         
     | 
| 102 | 
         
            +
                """A noise sampler backed by a torchsde.BrownianTree.
         
     | 
| 103 | 
         
            +
             
     | 
| 104 | 
         
            +
                Args:
         
     | 
| 105 | 
         
            +
                    x (Tensor): The tensor whose shape, device and dtype to use to generate
         
     | 
| 106 | 
         
            +
                        random samples.
         
     | 
| 107 | 
         
            +
                    sigma_min (float): The low end of the valid interval.
         
     | 
| 108 | 
         
            +
                    sigma_max (float): The high end of the valid interval.
         
     | 
| 109 | 
         
            +
                    seed (int or List[int]): The random seed. If a list of seeds is
         
     | 
| 110 | 
         
            +
                        supplied instead of a single integer, then the noise sampler will
         
     | 
| 111 | 
         
            +
                        use one BrownianTree per batch item, each with its own seed.
         
     | 
| 112 | 
         
            +
                    transform (callable): A function that maps sigma to the sampler's
         
     | 
| 113 | 
         
            +
                        internal timestep.
         
     | 
| 114 | 
         
            +
                """
         
     | 
| 115 | 
         
            +
             
     | 
| 116 | 
         
            +
                def __init__(self, x, sigma_min, sigma_max, seed=None, transform=lambda x: x, cpu=False):
         
     | 
| 117 | 
         
            +
                    self.transform = transform
         
     | 
| 118 | 
         
            +
                    t0, t1 = self.transform(torch.as_tensor(sigma_min)), self.transform(torch.as_tensor(sigma_max))
         
     | 
| 119 | 
         
            +
                    self.tree = BatchedBrownianTree(x, t0, t1, seed, cpu=cpu)
         
     | 
| 120 | 
         
            +
             
     | 
| 121 | 
         
            +
                def __call__(self, sigma, sigma_next):
         
     | 
| 122 | 
         
            +
                    t0, t1 = self.transform(torch.as_tensor(sigma)), self.transform(torch.as_tensor(sigma_next))
         
     | 
| 123 | 
         
            +
                    return self.tree(t0, t1) / (t1 - t0).abs().sqrt()
         
     | 
| 124 | 
         
            +
             
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
            @torch.no_grad()
         
     | 
| 127 | 
         
            +
            def sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
         
     | 
| 128 | 
         
            +
                """Implements Algorithm 2 (Euler steps) from Karras et al. (2022)."""
         
     | 
| 129 | 
         
            +
                extra_args = {} if extra_args is None else extra_args
         
     | 
| 130 | 
         
            +
                s_in = x.new_ones([x.shape[0]])
         
     | 
| 131 | 
         
            +
                for i in trange(len(sigmas) - 1, disable=disable):
         
     | 
| 132 | 
         
            +
                    gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
         
     | 
| 133 | 
         
            +
                    sigma_hat = sigmas[i] * (gamma + 1)
         
     | 
| 134 | 
         
            +
                    if gamma > 0:
         
     | 
| 135 | 
         
            +
                        eps = torch.randn_like(x) * s_noise
         
     | 
| 136 | 
         
            +
                        x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
         
     | 
| 137 | 
         
            +
                    denoised = model(x, sigma_hat * s_in, **extra_args)
         
     | 
| 138 | 
         
            +
                    d = to_d(x, sigma_hat, denoised)
         
     | 
| 139 | 
         
            +
                    if callback is not None:
         
     | 
| 140 | 
         
            +
                        callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
         
     | 
| 141 | 
         
            +
                    dt = sigmas[i + 1] - sigma_hat
         
     | 
| 142 | 
         
            +
                    # Euler method
         
     | 
| 143 | 
         
            +
                    x = x + d * dt
         
     | 
| 144 | 
         
            +
                return x
         
     | 
| 145 | 
         
            +
             
     | 
| 146 | 
         
            +
             
     | 
| 147 | 
         
            +
            @torch.no_grad()
         
     | 
| 148 | 
         
            +
            def sample_euler_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
         
     | 
| 149 | 
         
            +
                """Ancestral sampling with Euler method steps."""
         
     | 
| 150 | 
         
            +
                extra_args = {} if extra_args is None else extra_args
         
     | 
| 151 | 
         
            +
                noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
         
     | 
| 152 | 
         
            +
                s_in = x.new_ones([x.shape[0]])
         
     | 
| 153 | 
         
            +
                for i in trange(len(sigmas) - 1, disable=disable):
         
     | 
| 154 | 
         
            +
                    denoised = model(x, sigmas[i] * s_in, **extra_args)
         
     | 
| 155 | 
         
            +
                    sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
         
     | 
| 156 | 
         
            +
                    if callback is not None:
         
     | 
| 157 | 
         
            +
                        callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
         
     | 
| 158 | 
         
            +
                    d = to_d(x, sigmas[i], denoised)
         
     | 
| 159 | 
         
            +
                    # Euler method
         
     | 
| 160 | 
         
            +
                    dt = sigma_down - sigmas[i]
         
     | 
| 161 | 
         
            +
                    x = x + d * dt
         
     | 
| 162 | 
         
            +
                    if sigmas[i + 1] > 0:
         
     | 
| 163 | 
         
            +
                        x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
         
     | 
| 164 | 
         
            +
                return x
         
     | 
| 165 | 
         
            +
             
     | 
| 166 | 
         
            +
             
     | 
| 167 | 
         
            +
            @torch.no_grad()
         
     | 
| 168 | 
         
            +
            def sample_heun(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
         
     | 
| 169 | 
         
            +
                """Implements Algorithm 2 (Heun steps) from Karras et al. (2022)."""
         
     | 
| 170 | 
         
            +
                extra_args = {} if extra_args is None else extra_args
         
     | 
| 171 | 
         
            +
                s_in = x.new_ones([x.shape[0]])
         
     | 
| 172 | 
         
            +
                for i in trange(len(sigmas) - 1, disable=disable):
         
     | 
| 173 | 
         
            +
                    gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
         
     | 
| 174 | 
         
            +
                    sigma_hat = sigmas[i] * (gamma + 1)
         
     | 
| 175 | 
         
            +
                    if gamma > 0:
         
     | 
| 176 | 
         
            +
                        eps = torch.randn_like(x) * s_noise
         
     | 
| 177 | 
         
            +
                        x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
         
     | 
| 178 | 
         
            +
                    denoised = model(x, sigma_hat * s_in, **extra_args)
         
     | 
| 179 | 
         
            +
                    d = to_d(x, sigma_hat, denoised)
         
     | 
| 180 | 
         
            +
                    if callback is not None:
         
     | 
| 181 | 
         
            +
                        callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
         
     | 
| 182 | 
         
            +
                    dt = sigmas[i + 1] - sigma_hat
         
     | 
| 183 | 
         
            +
                    if sigmas[i + 1] == 0:
         
     | 
| 184 | 
         
            +
                        # Euler method
         
     | 
| 185 | 
         
            +
                        x = x + d * dt
         
     | 
| 186 | 
         
            +
                    else:
         
     | 
| 187 | 
         
            +
                        # Heun's method
         
     | 
| 188 | 
         
            +
                        x_2 = x + d * dt
         
     | 
| 189 | 
         
            +
                        denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
         
     | 
| 190 | 
         
            +
                        d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
         
     | 
| 191 | 
         
            +
                        d_prime = (d + d_2) / 2
         
     | 
| 192 | 
         
            +
                        x = x + d_prime * dt
         
     | 
| 193 | 
         
            +
                return x
         
     | 
| 194 | 
         
            +
             
     | 
| 195 | 
         
            +
             
     | 
| 196 | 
         
            +
            @torch.no_grad()
         
     | 
| 197 | 
         
            +
            def sample_dpm_2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
         
     | 
| 198 | 
         
            +
                """A sampler inspired by DPM-Solver-2 and Algorithm 2 from Karras et al. (2022)."""
         
     | 
| 199 | 
         
            +
                extra_args = {} if extra_args is None else extra_args
         
     | 
| 200 | 
         
            +
                s_in = x.new_ones([x.shape[0]])
         
     | 
| 201 | 
         
            +
                for i in trange(len(sigmas) - 1, disable=disable):
         
     | 
| 202 | 
         
            +
                    gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
         
     | 
| 203 | 
         
            +
                    sigma_hat = sigmas[i] * (gamma + 1)
         
     | 
| 204 | 
         
            +
                    if gamma > 0:
         
     | 
| 205 | 
         
            +
                        eps = torch.randn_like(x) * s_noise
         
     | 
| 206 | 
         
            +
                        x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
         
     | 
| 207 | 
         
            +
                    denoised = model(x, sigma_hat * s_in, **extra_args)
         
     | 
| 208 | 
         
            +
                    d = to_d(x, sigma_hat, denoised)
         
     | 
| 209 | 
         
            +
                    if callback is not None:
         
     | 
| 210 | 
         
            +
                        callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
         
     | 
| 211 | 
         
            +
                    if sigmas[i + 1] == 0:
         
     | 
| 212 | 
         
            +
                        # Euler method
         
     | 
| 213 | 
         
            +
                        dt = sigmas[i + 1] - sigma_hat
         
     | 
| 214 | 
         
            +
                        x = x + d * dt
         
     | 
| 215 | 
         
            +
                    else:
         
     | 
| 216 | 
         
            +
                        # DPM-Solver-2
         
     | 
| 217 | 
         
            +
                        sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
         
     | 
| 218 | 
         
            +
                        dt_1 = sigma_mid - sigma_hat
         
     | 
| 219 | 
         
            +
                        dt_2 = sigmas[i + 1] - sigma_hat
         
     | 
| 220 | 
         
            +
                        x_2 = x + d * dt_1
         
     | 
| 221 | 
         
            +
                        denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
         
     | 
| 222 | 
         
            +
                        d_2 = to_d(x_2, sigma_mid, denoised_2)
         
     | 
| 223 | 
         
            +
                        x = x + d_2 * dt_2
         
     | 
| 224 | 
         
            +
                return x
         
     | 
| 225 | 
         
            +
             
     | 
| 226 | 
         
            +
             
     | 
| 227 | 
         
            +
            @torch.no_grad()
         
     | 
| 228 | 
         
            +
            def sample_dpm_2_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
         
     | 
| 229 | 
         
            +
                """Ancestral sampling with DPM-Solver second-order steps."""
         
     | 
| 230 | 
         
            +
                extra_args = {} if extra_args is None else extra_args
         
     | 
| 231 | 
         
            +
                noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
         
     | 
| 232 | 
         
            +
                s_in = x.new_ones([x.shape[0]])
         
     | 
| 233 | 
         
            +
                for i in trange(len(sigmas) - 1, disable=disable):
         
     | 
| 234 | 
         
            +
                    denoised = model(x, sigmas[i] * s_in, **extra_args)
         
     | 
| 235 | 
         
            +
                    sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
         
     | 
| 236 | 
         
            +
                    if callback is not None:
         
     | 
| 237 | 
         
            +
                        callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
         
     | 
| 238 | 
         
            +
                    d = to_d(x, sigmas[i], denoised)
         
     | 
| 239 | 
         
            +
                    if sigma_down == 0:
         
     | 
| 240 | 
         
            +
                        # Euler method
         
     | 
| 241 | 
         
            +
                        dt = sigma_down - sigmas[i]
         
     | 
| 242 | 
         
            +
                        x = x + d * dt
         
     | 
| 243 | 
         
            +
                    else:
         
     | 
| 244 | 
         
            +
                        # DPM-Solver-2
         
     | 
| 245 | 
         
            +
                        sigma_mid = sigmas[i].log().lerp(sigma_down.log(), 0.5).exp()
         
     | 
| 246 | 
         
            +
                        dt_1 = sigma_mid - sigmas[i]
         
     | 
| 247 | 
         
            +
                        dt_2 = sigma_down - sigmas[i]
         
     | 
| 248 | 
         
            +
                        x_2 = x + d * dt_1
         
     | 
| 249 | 
         
            +
                        denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
         
     | 
| 250 | 
         
            +
                        d_2 = to_d(x_2, sigma_mid, denoised_2)
         
     | 
| 251 | 
         
            +
                        x = x + d_2 * dt_2
         
     | 
| 252 | 
         
            +
                        x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
         
     | 
| 253 | 
         
            +
                return x
         
     | 
| 254 | 
         
            +
             
     | 
| 255 | 
         
            +
             
     | 
| 256 | 
         
            +
            def linear_multistep_coeff(order, t, i, j):
         
     | 
| 257 | 
         
            +
                if order - 1 > i:
         
     | 
| 258 | 
         
            +
                    raise ValueError(f'Order {order} too high for step {i}')
         
     | 
| 259 | 
         
            +
                def fn(tau):
         
     | 
| 260 | 
         
            +
                    prod = 1.
         
     | 
| 261 | 
         
            +
                    for k in range(order):
         
     | 
| 262 | 
         
            +
                        if j == k:
         
     | 
| 263 | 
         
            +
                            continue
         
     | 
| 264 | 
         
            +
                        prod *= (tau - t[i - k]) / (t[i - j] - t[i - k])
         
     | 
| 265 | 
         
            +
                    return prod
         
     | 
| 266 | 
         
            +
                return integrate.quad(fn, t[i], t[i + 1], epsrel=1e-4)[0]
         
     | 
| 267 | 
         
            +
             
     | 
| 268 | 
         
            +
             
     | 
| 269 | 
         
            +
            @torch.no_grad()
         
     | 
| 270 | 
         
            +
            def sample_lms(model, x, sigmas, extra_args=None, callback=None, disable=None, order=4):
         
     | 
| 271 | 
         
            +
                extra_args = {} if extra_args is None else extra_args
         
     | 
| 272 | 
         
            +
                s_in = x.new_ones([x.shape[0]])
         
     | 
| 273 | 
         
            +
                sigmas_cpu = sigmas.detach().cpu().numpy()
         
     | 
| 274 | 
         
            +
                ds = []
         
     | 
| 275 | 
         
            +
                for i in trange(len(sigmas) - 1, disable=disable):
         
     | 
| 276 | 
         
            +
                    denoised = model(x, sigmas[i] * s_in, **extra_args)
         
     | 
| 277 | 
         
            +
                    d = to_d(x, sigmas[i], denoised)
         
     | 
| 278 | 
         
            +
                    ds.append(d)
         
     | 
| 279 | 
         
            +
                    if len(ds) > order:
         
     | 
| 280 | 
         
            +
                        ds.pop(0)
         
     | 
| 281 | 
         
            +
                    if callback is not None:
         
     | 
| 282 | 
         
            +
                        callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
         
     | 
| 283 | 
         
            +
                    cur_order = min(i + 1, order)
         
     | 
| 284 | 
         
            +
                    coeffs = [linear_multistep_coeff(cur_order, sigmas_cpu, i, j) for j in range(cur_order)]
         
     | 
| 285 | 
         
            +
                    x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds)))
         
     | 
| 286 | 
         
            +
                return x
         
     | 
| 287 | 
         
            +
             
     | 
| 288 | 
         
            +
             
     | 
| 289 | 
         
            +
            class PIDStepSizeController:
         
     | 
| 290 | 
         
            +
                """A PID controller for ODE adaptive step size control."""
         
     | 
| 291 | 
         
            +
                def __init__(self, h, pcoeff, icoeff, dcoeff, order=1, accept_safety=0.81, eps=1e-8):
         
     | 
| 292 | 
         
            +
                    self.h = h
         
     | 
| 293 | 
         
            +
                    self.b1 = (pcoeff + icoeff + dcoeff) / order
         
     | 
| 294 | 
         
            +
                    self.b2 = -(pcoeff + 2 * dcoeff) / order
         
     | 
| 295 | 
         
            +
                    self.b3 = dcoeff / order
         
     | 
| 296 | 
         
            +
                    self.accept_safety = accept_safety
         
     | 
| 297 | 
         
            +
                    self.eps = eps
         
     | 
| 298 | 
         
            +
                    self.errs = []
         
     | 
| 299 | 
         
            +
             
     | 
| 300 | 
         
            +
                def limiter(self, x):
         
     | 
| 301 | 
         
            +
                    return 1 + math.atan(x - 1)
         
     | 
| 302 | 
         
            +
             
     | 
| 303 | 
         
            +
                def propose_step(self, error):
         
     | 
| 304 | 
         
            +
                    inv_error = 1 / (float(error) + self.eps)
         
     | 
| 305 | 
         
            +
                    if not self.errs:
         
     | 
| 306 | 
         
            +
                        self.errs = [inv_error, inv_error, inv_error]
         
     | 
| 307 | 
         
            +
                    self.errs[0] = inv_error
         
     | 
| 308 | 
         
            +
                    factor = self.errs[0] ** self.b1 * self.errs[1] ** self.b2 * self.errs[2] ** self.b3
         
     | 
| 309 | 
         
            +
                    factor = self.limiter(factor)
         
     | 
| 310 | 
         
            +
                    accept = factor >= self.accept_safety
         
     | 
| 311 | 
         
            +
                    if accept:
         
     | 
| 312 | 
         
            +
                        self.errs[2] = self.errs[1]
         
     | 
| 313 | 
         
            +
                        self.errs[1] = self.errs[0]
         
     | 
| 314 | 
         
            +
                    self.h *= factor
         
     | 
| 315 | 
         
            +
                    return accept
         
     | 
| 316 | 
         
            +
             
     | 
| 317 | 
         
            +
             
     | 
| 318 | 
         
            +
            class DPMSolver(nn.Module):
         
     | 
| 319 | 
         
            +
                """DPM-Solver. See https://arxiv.org/abs/2206.00927."""
         
     | 
| 320 | 
         
            +
             
     | 
| 321 | 
         
            +
                def __init__(self, model, extra_args=None, eps_callback=None, info_callback=None):
         
     | 
| 322 | 
         
            +
                    super().__init__()
         
     | 
| 323 | 
         
            +
                    self.model = model
         
     | 
| 324 | 
         
            +
                    self.extra_args = {} if extra_args is None else extra_args
         
     | 
| 325 | 
         
            +
                    self.eps_callback = eps_callback
         
     | 
| 326 | 
         
            +
                    self.info_callback = info_callback
         
     | 
| 327 | 
         
            +
             
     | 
| 328 | 
         
            +
                def t(self, sigma):
         
     | 
| 329 | 
         
            +
                    return -sigma.log()
         
     | 
| 330 | 
         
            +
             
     | 
| 331 | 
         
            +
                def sigma(self, t):
         
     | 
| 332 | 
         
            +
                    return t.neg().exp()
         
     | 
| 333 | 
         
            +
             
     | 
| 334 | 
         
            +
                def eps(self, eps_cache, key, x, t, *args, **kwargs):
         
     | 
| 335 | 
         
            +
                    if key in eps_cache:
         
     | 
| 336 | 
         
            +
                        return eps_cache[key], eps_cache
         
     | 
| 337 | 
         
            +
                    sigma = self.sigma(t) * x.new_ones([x.shape[0]])
         
     | 
| 338 | 
         
            +
                    eps = (x - self.model(x, sigma, *args, **self.extra_args, **kwargs)) / self.sigma(t)
         
     | 
| 339 | 
         
            +
                    if self.eps_callback is not None:
         
     | 
| 340 | 
         
            +
                        self.eps_callback()
         
     | 
| 341 | 
         
            +
                    return eps, {key: eps, **eps_cache}
         
     | 
| 342 | 
         
            +
             
     | 
| 343 | 
         
            +
                def dpm_solver_1_step(self, x, t, t_next, eps_cache=None):
         
     | 
| 344 | 
         
            +
                    eps_cache = {} if eps_cache is None else eps_cache
         
     | 
| 345 | 
         
            +
                    h = t_next - t
         
     | 
| 346 | 
         
            +
                    eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
         
     | 
| 347 | 
         
            +
                    x_1 = x - self.sigma(t_next) * h.expm1() * eps
         
     | 
| 348 | 
         
            +
                    return x_1, eps_cache
         
     | 
| 349 | 
         
            +
             
     | 
| 350 | 
         
            +
                def dpm_solver_2_step(self, x, t, t_next, r1=1 / 2, eps_cache=None):
         
     | 
| 351 | 
         
            +
                    eps_cache = {} if eps_cache is None else eps_cache
         
     | 
| 352 | 
         
            +
                    h = t_next - t
         
     | 
| 353 | 
         
            +
                    eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
         
     | 
| 354 | 
         
            +
                    s1 = t + r1 * h
         
     | 
| 355 | 
         
            +
                    u1 = x - self.sigma(s1) * (r1 * h).expm1() * eps
         
     | 
| 356 | 
         
            +
                    eps_r1, eps_cache = self.eps(eps_cache, 'eps_r1', u1, s1)
         
     | 
| 357 | 
         
            +
                    x_2 = x - self.sigma(t_next) * h.expm1() * eps - self.sigma(t_next) / (2 * r1) * h.expm1() * (eps_r1 - eps)
         
     | 
| 358 | 
         
            +
                    return x_2, eps_cache
         
     | 
| 359 | 
         
            +
             
     | 
| 360 | 
         
            +
                def dpm_solver_3_step(self, x, t, t_next, r1=1 / 3, r2=2 / 3, eps_cache=None):
         
     | 
| 361 | 
         
            +
                    eps_cache = {} if eps_cache is None else eps_cache
         
     | 
| 362 | 
         
            +
                    h = t_next - t
         
     | 
| 363 | 
         
            +
                    eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
         
     | 
| 364 | 
         
            +
                    s1 = t + r1 * h
         
     | 
| 365 | 
         
            +
                    s2 = t + r2 * h
         
     | 
| 366 | 
         
            +
                    u1 = x - self.sigma(s1) * (r1 * h).expm1() * eps
         
     | 
| 367 | 
         
            +
                    eps_r1, eps_cache = self.eps(eps_cache, 'eps_r1', u1, s1)
         
     | 
| 368 | 
         
            +
                    u2 = x - self.sigma(s2) * (r2 * h).expm1() * eps - self.sigma(s2) * (r2 / r1) * ((r2 * h).expm1() / (r2 * h) - 1) * (eps_r1 - eps)
         
     | 
| 369 | 
         
            +
                    eps_r2, eps_cache = self.eps(eps_cache, 'eps_r2', u2, s2)
         
     | 
| 370 | 
         
            +
                    x_3 = x - self.sigma(t_next) * h.expm1() * eps - self.sigma(t_next) / r2 * (h.expm1() / h - 1) * (eps_r2 - eps)
         
     | 
| 371 | 
         
            +
                    return x_3, eps_cache
         
     | 
| 372 | 
         
            +
             
     | 
| 373 | 
         
            +
                def dpm_solver_fast(self, x, t_start, t_end, nfe, eta=0., s_noise=1., noise_sampler=None):
         
     | 
| 374 | 
         
            +
                    noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
         
     | 
| 375 | 
         
            +
                    if not t_end > t_start and eta:
         
     | 
| 376 | 
         
            +
                        raise ValueError('eta must be 0 for reverse sampling')
         
     | 
| 377 | 
         
            +
             
     | 
| 378 | 
         
            +
                    m = math.floor(nfe / 3) + 1
         
     | 
| 379 | 
         
            +
                    ts = torch.linspace(t_start, t_end, m + 1, device=x.device)
         
     | 
| 380 | 
         
            +
             
     | 
| 381 | 
         
            +
                    if nfe % 3 == 0:
         
     | 
| 382 | 
         
            +
                        orders = [3] * (m - 2) + [2, 1]
         
     | 
| 383 | 
         
            +
                    else:
         
     | 
| 384 | 
         
            +
                        orders = [3] * (m - 1) + [nfe % 3]
         
     | 
| 385 | 
         
            +
             
     | 
| 386 | 
         
            +
                    for i in range(len(orders)):
         
     | 
| 387 | 
         
            +
                        eps_cache = {}
         
     | 
| 388 | 
         
            +
                        t, t_next = ts[i], ts[i + 1]
         
     | 
| 389 | 
         
            +
                        if eta:
         
     | 
| 390 | 
         
            +
                            sd, su = get_ancestral_step(self.sigma(t), self.sigma(t_next), eta)
         
     | 
| 391 | 
         
            +
                            t_next_ = torch.minimum(t_end, self.t(sd))
         
     | 
| 392 | 
         
            +
                            su = (self.sigma(t_next) ** 2 - self.sigma(t_next_) ** 2) ** 0.5
         
     | 
| 393 | 
         
            +
                        else:
         
     | 
| 394 | 
         
            +
                            t_next_, su = t_next, 0.
         
     | 
| 395 | 
         
            +
             
     | 
| 396 | 
         
            +
                        eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
         
     | 
| 397 | 
         
            +
                        denoised = x - self.sigma(t) * eps
         
     | 
| 398 | 
         
            +
                        if self.info_callback is not None:
         
     | 
| 399 | 
         
            +
                            self.info_callback({'x': x, 'i': i, 't': ts[i], 't_up': t, 'denoised': denoised})
         
     | 
| 400 | 
         
            +
             
     | 
| 401 | 
         
            +
                        if orders[i] == 1:
         
     | 
| 402 | 
         
            +
                            x, eps_cache = self.dpm_solver_1_step(x, t, t_next_, eps_cache=eps_cache)
         
     | 
| 403 | 
         
            +
                        elif orders[i] == 2:
         
     | 
| 404 | 
         
            +
                            x, eps_cache = self.dpm_solver_2_step(x, t, t_next_, eps_cache=eps_cache)
         
     | 
| 405 | 
         
            +
                        else:
         
     | 
| 406 | 
         
            +
                            x, eps_cache = self.dpm_solver_3_step(x, t, t_next_, eps_cache=eps_cache)
         
     | 
| 407 | 
         
            +
             
     | 
| 408 | 
         
            +
                        x = x + su * s_noise * noise_sampler(self.sigma(t), self.sigma(t_next))
         
     | 
| 409 | 
         
            +
             
     | 
| 410 | 
         
            +
                    return x
         
     | 
| 411 | 
         
            +
             
     | 
| 412 | 
         
            +
                def dpm_solver_adaptive(self, x, t_start, t_end, order=3, rtol=0.05, atol=0.0078, h_init=0.05, pcoeff=0., icoeff=1., dcoeff=0., accept_safety=0.81, eta=0., s_noise=1., noise_sampler=None):
         
     | 
| 413 | 
         
            +
                    noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
         
     | 
| 414 | 
         
            +
                    if order not in {2, 3}:
         
     | 
| 415 | 
         
            +
                        raise ValueError('order should be 2 or 3')
         
     | 
| 416 | 
         
            +
                    forward = t_end > t_start
         
     | 
| 417 | 
         
            +
                    if not forward and eta:
         
     | 
| 418 | 
         
            +
                        raise ValueError('eta must be 0 for reverse sampling')
         
     | 
| 419 | 
         
            +
                    h_init = abs(h_init) * (1 if forward else -1)
         
     | 
| 420 | 
         
            +
                    atol = torch.tensor(atol)
         
     | 
| 421 | 
         
            +
                    rtol = torch.tensor(rtol)
         
     | 
| 422 | 
         
            +
                    s = t_start
         
     | 
| 423 | 
         
            +
                    x_prev = x
         
     | 
| 424 | 
         
            +
                    accept = True
         
     | 
| 425 | 
         
            +
                    pid = PIDStepSizeController(h_init, pcoeff, icoeff, dcoeff, 1.5 if eta else order, accept_safety)
         
     | 
| 426 | 
         
            +
                    info = {'steps': 0, 'nfe': 0, 'n_accept': 0, 'n_reject': 0}
         
     | 
| 427 | 
         
            +
             
     | 
| 428 | 
         
            +
                    while s < t_end - 1e-5 if forward else s > t_end + 1e-5:
         
     | 
| 429 | 
         
            +
                        eps_cache = {}
         
     | 
| 430 | 
         
            +
                        t = torch.minimum(t_end, s + pid.h) if forward else torch.maximum(t_end, s + pid.h)
         
     | 
| 431 | 
         
            +
                        if eta:
         
     | 
| 432 | 
         
            +
                            sd, su = get_ancestral_step(self.sigma(s), self.sigma(t), eta)
         
     | 
| 433 | 
         
            +
                            t_ = torch.minimum(t_end, self.t(sd))
         
     | 
| 434 | 
         
            +
                            su = (self.sigma(t) ** 2 - self.sigma(t_) ** 2) ** 0.5
         
     | 
| 435 | 
         
            +
                        else:
         
     | 
| 436 | 
         
            +
                            t_, su = t, 0.
         
     | 
| 437 | 
         
            +
             
     | 
| 438 | 
         
            +
                        eps, eps_cache = self.eps(eps_cache, 'eps', x, s)
         
     | 
| 439 | 
         
            +
                        denoised = x - self.sigma(s) * eps
         
     | 
| 440 | 
         
            +
             
     | 
| 441 | 
         
            +
                        if order == 2:
         
     | 
| 442 | 
         
            +
                            x_low, eps_cache = self.dpm_solver_1_step(x, s, t_, eps_cache=eps_cache)
         
     | 
| 443 | 
         
            +
                            x_high, eps_cache = self.dpm_solver_2_step(x, s, t_, eps_cache=eps_cache)
         
     | 
| 444 | 
         
            +
                        else:
         
     | 
| 445 | 
         
            +
                            x_low, eps_cache = self.dpm_solver_2_step(x, s, t_, r1=1 / 3, eps_cache=eps_cache)
         
     | 
| 446 | 
         
            +
                            x_high, eps_cache = self.dpm_solver_3_step(x, s, t_, eps_cache=eps_cache)
         
     | 
| 447 | 
         
            +
                        delta = torch.maximum(atol, rtol * torch.maximum(x_low.abs(), x_prev.abs()))
         
     | 
| 448 | 
         
            +
                        error = torch.linalg.norm((x_low - x_high) / delta) / x.numel() ** 0.5
         
     | 
| 449 | 
         
            +
                        accept = pid.propose_step(error)
         
     | 
| 450 | 
         
            +
                        if accept:
         
     | 
| 451 | 
         
            +
                            x_prev = x_low
         
     | 
| 452 | 
         
            +
                            x = x_high + su * s_noise * noise_sampler(self.sigma(s), self.sigma(t))
         
     | 
| 453 | 
         
            +
                            s = t
         
     | 
| 454 | 
         
            +
                            info['n_accept'] += 1
         
     | 
| 455 | 
         
            +
                        else:
         
     | 
| 456 | 
         
            +
                            info['n_reject'] += 1
         
     | 
| 457 | 
         
            +
                        info['nfe'] += order
         
     | 
| 458 | 
         
            +
                        info['steps'] += 1
         
     | 
| 459 | 
         
            +
             
     | 
| 460 | 
         
            +
                        if self.info_callback is not None:
         
     | 
| 461 | 
         
            +
                            self.info_callback({'x': x, 'i': info['steps'] - 1, 't': s, 't_up': s, 'denoised': denoised, 'error': error, 'h': pid.h, **info})
         
     | 
| 462 | 
         
            +
             
     | 
| 463 | 
         
            +
                    return x, info
         
     | 
| 464 | 
         
            +
             
     | 
| 465 | 
         
            +
             
     | 
| 466 | 
         
            +
            @torch.no_grad()
         
     | 
| 467 | 
         
            +
            def sample_dpm_fast(model, x, sigma_min, sigma_max, n, extra_args=None, callback=None, disable=None, eta=0., s_noise=1., noise_sampler=None):
         
     | 
| 468 | 
         
            +
                """DPM-Solver-Fast (fixed step size). See https://arxiv.org/abs/2206.00927."""
         
     | 
| 469 | 
         
            +
                if sigma_min <= 0 or sigma_max <= 0:
         
     | 
| 470 | 
         
            +
                    raise ValueError('sigma_min and sigma_max must not be 0')
         
     | 
| 471 | 
         
            +
                with tqdm(total=n, disable=disable) as pbar:
         
     | 
| 472 | 
         
            +
                    dpm_solver = DPMSolver(model, extra_args, eps_callback=pbar.update)
         
     | 
| 473 | 
         
            +
                    if callback is not None:
         
     | 
| 474 | 
         
            +
                        dpm_solver.info_callback = lambda info: callback({'sigma': dpm_solver.sigma(info['t']), 'sigma_hat': dpm_solver.sigma(info['t_up']), **info})
         
     | 
| 475 | 
         
            +
                    return dpm_solver.dpm_solver_fast(x, dpm_solver.t(torch.tensor(sigma_max)), dpm_solver.t(torch.tensor(sigma_min)), n, eta, s_noise, noise_sampler)
         
     | 
| 476 | 
         
            +
             
     | 
| 477 | 
         
            +
             
     | 
| 478 | 
         
            +
            @torch.no_grad()
         
     | 
| 479 | 
         
            +
            def sample_dpm_adaptive(model, x, sigma_min, sigma_max, extra_args=None, callback=None, disable=None, order=3, rtol=0.05, atol=0.0078, h_init=0.05, pcoeff=0., icoeff=1., dcoeff=0., accept_safety=0.81, eta=0., s_noise=1., noise_sampler=None, return_info=False):
         
     | 
| 480 | 
         
            +
                """DPM-Solver-12 and 23 (adaptive step size). See https://arxiv.org/abs/2206.00927."""
         
     | 
| 481 | 
         
            +
                if sigma_min <= 0 or sigma_max <= 0:
         
     | 
| 482 | 
         
            +
                    raise ValueError('sigma_min and sigma_max must not be 0')
         
     | 
| 483 | 
         
            +
                with tqdm(disable=disable) as pbar:
         
     | 
| 484 | 
         
            +
                    dpm_solver = DPMSolver(model, extra_args, eps_callback=pbar.update)
         
     | 
| 485 | 
         
            +
                    if callback is not None:
         
     | 
| 486 | 
         
            +
                        dpm_solver.info_callback = lambda info: callback({'sigma': dpm_solver.sigma(info['t']), 'sigma_hat': dpm_solver.sigma(info['t_up']), **info})
         
     | 
| 487 | 
         
            +
                    x, info = dpm_solver.dpm_solver_adaptive(x, dpm_solver.t(torch.tensor(sigma_max)), dpm_solver.t(torch.tensor(sigma_min)), order, rtol, atol, h_init, pcoeff, icoeff, dcoeff, accept_safety, eta, s_noise, noise_sampler)
         
     | 
| 488 | 
         
            +
                if return_info:
         
     | 
| 489 | 
         
            +
                    return x, info
         
     | 
| 490 | 
         
            +
                return x
         
     | 
| 491 | 
         
            +
             
     | 
| 492 | 
         
            +
             
     | 
| 493 | 
         
            +
            @torch.no_grad()
         
     | 
| 494 | 
         
            +
            def sample_dpmpp_2s_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
         
     | 
| 495 | 
         
            +
                """Ancestral sampling with DPM-Solver++(2S) second-order steps."""
         
     | 
| 496 | 
         
            +
                extra_args = {} if extra_args is None else extra_args
         
     | 
| 497 | 
         
            +
                noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
         
     | 
| 498 | 
         
            +
                s_in = x.new_ones([x.shape[0]])
         
     | 
| 499 | 
         
            +
                sigma_fn = lambda t: t.neg().exp()
         
     | 
| 500 | 
         
            +
                t_fn = lambda sigma: sigma.log().neg()
         
     | 
| 501 | 
         
            +
             
     | 
| 502 | 
         
            +
                for i in trange(len(sigmas) - 1, disable=disable):
         
     | 
| 503 | 
         
            +
                    denoised = model(x, sigmas[i] * s_in, **extra_args)
         
     | 
| 504 | 
         
            +
                    sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
         
     | 
| 505 | 
         
            +
                    if callback is not None:
         
     | 
| 506 | 
         
            +
                        callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
         
     | 
| 507 | 
         
            +
                    if sigma_down == 0:
         
     | 
| 508 | 
         
            +
                        # Euler method
         
     | 
| 509 | 
         
            +
                        d = to_d(x, sigmas[i], denoised)
         
     | 
| 510 | 
         
            +
                        dt = sigma_down - sigmas[i]
         
     | 
| 511 | 
         
            +
                        x = x + d * dt
         
     | 
| 512 | 
         
            +
                    else:
         
     | 
| 513 | 
         
            +
                        # DPM-Solver++(2S)
         
     | 
| 514 | 
         
            +
                        t, t_next = t_fn(sigmas[i]), t_fn(sigma_down)
         
     | 
| 515 | 
         
            +
                        r = 1 / 2
         
     | 
| 516 | 
         
            +
                        h = t_next - t
         
     | 
| 517 | 
         
            +
                        s = t + r * h
         
     | 
| 518 | 
         
            +
                        x_2 = (sigma_fn(s) / sigma_fn(t)) * x - (-h * r).expm1() * denoised
         
     | 
| 519 | 
         
            +
                        denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
         
     | 
| 520 | 
         
            +
                        x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_2
         
     | 
| 521 | 
         
            +
                    # Noise addition
         
     | 
| 522 | 
         
            +
                    if sigmas[i + 1] > 0:
         
     | 
| 523 | 
         
            +
                        x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
         
     | 
| 524 | 
         
            +
                return x
         
     | 
| 525 | 
         
            +
             
     | 
| 526 | 
         
            +
             
     | 
| 527 | 
         
            +
            @torch.no_grad()
         
     | 
| 528 | 
         
            +
            def sample_dpmpp_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
         
     | 
| 529 | 
         
            +
                """DPM-Solver++ (stochastic)."""
         
     | 
| 530 | 
         
            +
                sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
         
     | 
| 531 | 
         
            +
                seed = extra_args.get("seed", None)
         
     | 
| 532 | 
         
            +
                noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
         
     | 
| 533 | 
         
            +
                extra_args = {} if extra_args is None else extra_args
         
     | 
| 534 | 
         
            +
                s_in = x.new_ones([x.shape[0]])
         
     | 
| 535 | 
         
            +
                sigma_fn = lambda t: t.neg().exp()
         
     | 
| 536 | 
         
            +
                t_fn = lambda sigma: sigma.log().neg()
         
     | 
| 537 | 
         
            +
             
     | 
| 538 | 
         
            +
                for i in trange(len(sigmas) - 1, disable=disable):
         
     | 
| 539 | 
         
            +
                    denoised = model(x, sigmas[i] * s_in, **extra_args)
         
     | 
| 540 | 
         
            +
                    if callback is not None:
         
     | 
| 541 | 
         
            +
                        callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
         
     | 
| 542 | 
         
            +
                    if sigmas[i + 1] == 0:
         
     | 
| 543 | 
         
            +
                        # Euler method
         
     | 
| 544 | 
         
            +
                        d = to_d(x, sigmas[i], denoised)
         
     | 
| 545 | 
         
            +
                        dt = sigmas[i + 1] - sigmas[i]
         
     | 
| 546 | 
         
            +
                        x = x + d * dt
         
     | 
| 547 | 
         
            +
                    else:
         
     | 
| 548 | 
         
            +
                        # DPM-Solver++
         
     | 
| 549 | 
         
            +
                        t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
         
     | 
| 550 | 
         
            +
                        h = t_next - t
         
     | 
| 551 | 
         
            +
                        s = t + h * r
         
     | 
| 552 | 
         
            +
                        fac = 1 / (2 * r)
         
     | 
| 553 | 
         
            +
             
     | 
| 554 | 
         
            +
                        # Step 1
         
     | 
| 555 | 
         
            +
                        sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(s), eta)
         
     | 
| 556 | 
         
            +
                        s_ = t_fn(sd)
         
     | 
| 557 | 
         
            +
                        x_2 = (sigma_fn(s_) / sigma_fn(t)) * x - (t - s_).expm1() * denoised
         
     | 
| 558 | 
         
            +
                        x_2 = x_2 + noise_sampler(sigma_fn(t), sigma_fn(s)) * s_noise * su
         
     | 
| 559 | 
         
            +
                        denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
         
     | 
| 560 | 
         
            +
             
     | 
| 561 | 
         
            +
                        # Step 2
         
     | 
| 562 | 
         
            +
                        sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(t_next), eta)
         
     | 
| 563 | 
         
            +
                        t_next_ = t_fn(sd)
         
     | 
| 564 | 
         
            +
                        denoised_d = (1 - fac) * denoised + fac * denoised_2
         
     | 
| 565 | 
         
            +
                        x = (sigma_fn(t_next_) / sigma_fn(t)) * x - (t - t_next_).expm1() * denoised_d
         
     | 
| 566 | 
         
            +
                        x = x + noise_sampler(sigma_fn(t), sigma_fn(t_next)) * s_noise * su
         
     | 
| 567 | 
         
            +
                return x
         
     | 
| 568 | 
         
            +
             
     | 
| 569 | 
         
            +
             
     | 
| 570 | 
         
            +
            @torch.no_grad()
         
     | 
| 571 | 
         
            +
            def sample_dpmpp_2m(model, x, sigmas, extra_args=None, callback=None, disable=None):
         
     | 
| 572 | 
         
            +
                """DPM-Solver++(2M)."""
         
     | 
| 573 | 
         
            +
                extra_args = {} if extra_args is None else extra_args
         
     | 
| 574 | 
         
            +
                s_in = x.new_ones([x.shape[0]])
         
     | 
| 575 | 
         
            +
                sigma_fn = lambda t: t.neg().exp()
         
     | 
| 576 | 
         
            +
                t_fn = lambda sigma: sigma.log().neg()
         
     | 
| 577 | 
         
            +
                old_denoised = None
         
     | 
| 578 | 
         
            +
             
     | 
| 579 | 
         
            +
                for i in trange(len(sigmas) - 1, disable=disable):
         
     | 
| 580 | 
         
            +
                    denoised = model(x, sigmas[i] * s_in, **extra_args)
         
     | 
| 581 | 
         
            +
                    if callback is not None:
         
     | 
| 582 | 
         
            +
                        callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
         
     | 
| 583 | 
         
            +
                    t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
         
     | 
| 584 | 
         
            +
                    h = t_next - t
         
     | 
| 585 | 
         
            +
                    if old_denoised is None or sigmas[i + 1] == 0:
         
     | 
| 586 | 
         
            +
                        x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised
         
     | 
| 587 | 
         
            +
                    else:
         
     | 
| 588 | 
         
            +
                        h_last = t - t_fn(sigmas[i - 1])
         
     | 
| 589 | 
         
            +
                        r = h_last / h
         
     | 
| 590 | 
         
            +
                        denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised
         
     | 
| 591 | 
         
            +
                        x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d
         
     | 
| 592 | 
         
            +
                    old_denoised = denoised
         
     | 
| 593 | 
         
            +
                return x
         
     | 
| 594 | 
         
            +
             
     | 
| 595 | 
         
            +
            @torch.no_grad()
         
     | 
| 596 | 
         
            +
            def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
         
     | 
| 597 | 
         
            +
                """DPM-Solver++(2M) SDE."""
         
     | 
| 598 | 
         
            +
             
     | 
| 599 | 
         
            +
                if solver_type not in {'heun', 'midpoint'}:
         
     | 
| 600 | 
         
            +
                    raise ValueError('solver_type must be \'heun\' or \'midpoint\'')
         
     | 
| 601 | 
         
            +
             
     | 
| 602 | 
         
            +
                seed = extra_args.get("seed", None)
         
     | 
| 603 | 
         
            +
                sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
         
     | 
| 604 | 
         
            +
                noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
         
     | 
| 605 | 
         
            +
                extra_args = {} if extra_args is None else extra_args
         
     | 
| 606 | 
         
            +
                s_in = x.new_ones([x.shape[0]])
         
     | 
| 607 | 
         
            +
             
     | 
| 608 | 
         
            +
                old_denoised = None
         
     | 
| 609 | 
         
            +
                h_last = None
         
     | 
| 610 | 
         
            +
                h = None
         
     | 
| 611 | 
         
            +
             
     | 
| 612 | 
         
            +
                for i in trange(len(sigmas) - 1, disable=disable):
         
     | 
| 613 | 
         
            +
                    denoised = model(x, sigmas[i] * s_in, **extra_args)
         
     | 
| 614 | 
         
            +
                    if callback is not None:
         
     | 
| 615 | 
         
            +
                        callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
         
     | 
| 616 | 
         
            +
                    if sigmas[i + 1] == 0:
         
     | 
| 617 | 
         
            +
                        # Denoising step
         
     | 
| 618 | 
         
            +
                        x = denoised
         
     | 
| 619 | 
         
            +
                    else:
         
     | 
| 620 | 
         
            +
                        # DPM-Solver++(2M) SDE
         
     | 
| 621 | 
         
            +
                        t, s = -sigmas[i].log(), -sigmas[i + 1].log()
         
     | 
| 622 | 
         
            +
                        h = s - t
         
     | 
| 623 | 
         
            +
                        eta_h = eta * h
         
     | 
| 624 | 
         
            +
             
     | 
| 625 | 
         
            +
                        x = sigmas[i + 1] / sigmas[i] * (-eta_h).exp() * x + (-h - eta_h).expm1().neg() * denoised
         
     | 
| 626 | 
         
            +
             
     | 
| 627 | 
         
            +
                        if old_denoised is not None:
         
     | 
| 628 | 
         
            +
                            r = h_last / h
         
     | 
| 629 | 
         
            +
                            if solver_type == 'heun':
         
     | 
| 630 | 
         
            +
                                x = x + ((-h - eta_h).expm1().neg() / (-h - eta_h) + 1) * (1 / r) * (denoised - old_denoised)
         
     | 
| 631 | 
         
            +
                            elif solver_type == 'midpoint':
         
     | 
| 632 | 
         
            +
                                x = x + 0.5 * (-h - eta_h).expm1().neg() * (1 / r) * (denoised - old_denoised)
         
     | 
| 633 | 
         
            +
             
     | 
| 634 | 
         
            +
                        if eta:
         
     | 
| 635 | 
         
            +
                            x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * eta_h).expm1().neg().sqrt() * s_noise
         
     | 
| 636 | 
         
            +
             
     | 
| 637 | 
         
            +
                    old_denoised = denoised
         
     | 
| 638 | 
         
            +
                    h_last = h
         
     | 
| 639 | 
         
            +
                return x
         
     | 
| 640 | 
         
            +
             
     | 
| 641 | 
         
            +
            @torch.no_grad()
         
     | 
| 642 | 
         
            +
            def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
         
     | 
| 643 | 
         
            +
                """DPM-Solver++(3M) SDE."""
         
     | 
| 644 | 
         
            +
             
     | 
| 645 | 
         
            +
                seed = extra_args.get("seed", None)
         
     | 
| 646 | 
         
            +
                sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
         
     | 
| 647 | 
         
            +
                noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
         
     | 
| 648 | 
         
            +
                extra_args = {} if extra_args is None else extra_args
         
     | 
| 649 | 
         
            +
                s_in = x.new_ones([x.shape[0]])
         
     | 
| 650 | 
         
            +
             
     | 
| 651 | 
         
            +
                denoised_1, denoised_2 = None, None
         
     | 
| 652 | 
         
            +
                h, h_1, h_2 = None, None, None
         
     | 
| 653 | 
         
            +
             
     | 
| 654 | 
         
            +
                for i in trange(len(sigmas) - 1, disable=disable):
         
     | 
| 655 | 
         
            +
                    denoised = model(x, sigmas[i] * s_in, **extra_args)
         
     | 
| 656 | 
         
            +
                    if callback is not None:
         
     | 
| 657 | 
         
            +
                        callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
         
     | 
| 658 | 
         
            +
                    if sigmas[i + 1] == 0:
         
     | 
| 659 | 
         
            +
                        # Denoising step
         
     | 
| 660 | 
         
            +
                        x = denoised
         
     | 
| 661 | 
         
            +
                    else:
         
     | 
| 662 | 
         
            +
                        t, s = -sigmas[i].log(), -sigmas[i + 1].log()
         
     | 
| 663 | 
         
            +
                        h = s - t
         
     | 
| 664 | 
         
            +
                        h_eta = h * (eta + 1)
         
     | 
| 665 | 
         
            +
             
     | 
| 666 | 
         
            +
                        x = torch.exp(-h_eta) * x + (-h_eta).expm1().neg() * denoised
         
     | 
| 667 | 
         
            +
             
     | 
| 668 | 
         
            +
                        if h_2 is not None:
         
     | 
| 669 | 
         
            +
                            r0 = h_1 / h
         
     | 
| 670 | 
         
            +
                            r1 = h_2 / h
         
     | 
| 671 | 
         
            +
                            d1_0 = (denoised - denoised_1) / r0
         
     | 
| 672 | 
         
            +
                            d1_1 = (denoised_1 - denoised_2) / r1
         
     | 
| 673 | 
         
            +
                            d1 = d1_0 + (d1_0 - d1_1) * r0 / (r0 + r1)
         
     | 
| 674 | 
         
            +
                            d2 = (d1_0 - d1_1) / (r0 + r1)
         
     | 
| 675 | 
         
            +
                            phi_2 = h_eta.neg().expm1() / h_eta + 1
         
     | 
| 676 | 
         
            +
                            phi_3 = phi_2 / h_eta - 0.5
         
     | 
| 677 | 
         
            +
                            x = x + phi_2 * d1 - phi_3 * d2
         
     | 
| 678 | 
         
            +
                        elif h_1 is not None:
         
     | 
| 679 | 
         
            +
                            r = h_1 / h
         
     | 
| 680 | 
         
            +
                            d = (denoised - denoised_1) / r
         
     | 
| 681 | 
         
            +
                            phi_2 = h_eta.neg().expm1() / h_eta + 1
         
     | 
| 682 | 
         
            +
                            x = x + phi_2 * d
         
     | 
| 683 | 
         
            +
             
     | 
| 684 | 
         
            +
                        if eta:
         
     | 
| 685 | 
         
            +
                            x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * h * eta).expm1().neg().sqrt() * s_noise
         
     | 
| 686 | 
         
            +
             
     | 
| 687 | 
         
            +
                    denoised_1, denoised_2 = denoised, denoised_1
         
     | 
| 688 | 
         
            +
                    h_1, h_2 = h, h_1
         
     | 
| 689 | 
         
            +
                return x
         
     | 
| 690 | 
         
            +
             
     | 
| 691 | 
         
            +
            @torch.no_grad()
         
     | 
| 692 | 
         
            +
            def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
         
     | 
| 693 | 
         
            +
                sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
         
     | 
| 694 | 
         
            +
                noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
         
     | 
| 695 | 
         
            +
                return sample_dpmpp_3m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler)
         
     | 
| 696 | 
         
            +
             
     | 
| 697 | 
         
            +
            @torch.no_grad()
         
     | 
| 698 | 
         
            +
            def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
         
     | 
| 699 | 
         
            +
                sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
         
     | 
| 700 | 
         
            +
                noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
         
     | 
| 701 | 
         
            +
                return sample_dpmpp_2m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, solver_type=solver_type)
         
     | 
| 702 | 
         
            +
             
     | 
| 703 | 
         
            +
            @torch.no_grad()
         
     | 
| 704 | 
         
            +
            def sample_dpmpp_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
         
     | 
| 705 | 
         
            +
                sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
         
     | 
| 706 | 
         
            +
                noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
         
     | 
| 707 | 
         
            +
                return sample_dpmpp_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, r=r)
         
     | 
| 708 | 
         
            +
             
     | 
| 709 | 
         
            +
             
     | 
| 710 | 
         
            +
            def DDPMSampler_step(x, sigma, sigma_prev, noise, noise_sampler):
         
     | 
| 711 | 
         
            +
                alpha_cumprod = 1 / ((sigma * sigma) + 1)
         
     | 
| 712 | 
         
            +
                alpha_cumprod_prev = 1 / ((sigma_prev * sigma_prev) + 1)
         
     | 
| 713 | 
         
            +
                alpha = (alpha_cumprod / alpha_cumprod_prev)
         
     | 
| 714 | 
         
            +
             
     | 
| 715 | 
         
            +
                mu = (1.0 / alpha).sqrt() * (x - (1 - alpha) * noise / (1 - alpha_cumprod).sqrt())
         
     | 
| 716 | 
         
            +
                if sigma_prev > 0:
         
     | 
| 717 | 
         
            +
                    mu += ((1 - alpha) * (1. - alpha_cumprod_prev) / (1. - alpha_cumprod)).sqrt() * noise_sampler(sigma, sigma_prev)
         
     | 
| 718 | 
         
            +
                return mu
         
     | 
| 719 | 
         
            +
             
     | 
| 720 | 
         
            +
            def generic_step_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None, step_function=None):
         
     | 
| 721 | 
         
            +
                extra_args = {} if extra_args is None else extra_args
         
     | 
| 722 | 
         
            +
                noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
         
     | 
| 723 | 
         
            +
                s_in = x.new_ones([x.shape[0]])
         
     | 
| 724 | 
         
            +
             
     | 
| 725 | 
         
            +
                for i in trange(len(sigmas) - 1, disable=disable):
         
     | 
| 726 | 
         
            +
                    denoised = model(x, sigmas[i] * s_in, **extra_args)
         
     | 
| 727 | 
         
            +
                    if callback is not None:
         
     | 
| 728 | 
         
            +
                        callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
         
     | 
| 729 | 
         
            +
                    x = step_function(x / torch.sqrt(1.0 + sigmas[i] ** 2.0), sigmas[i], sigmas[i + 1], (x - denoised) / sigmas[i], noise_sampler)
         
     | 
| 730 | 
         
            +
                    if sigmas[i + 1] != 0:
         
     | 
| 731 | 
         
            +
                        x *= torch.sqrt(1.0 + sigmas[i + 1] ** 2.0)
         
     | 
| 732 | 
         
            +
                return x
         
     | 
| 733 | 
         
            +
             
     | 
| 734 | 
         
            +
             
     | 
| 735 | 
         
            +
            @torch.no_grad()
         
     | 
| 736 | 
         
            +
            def sample_ddpm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None):
         
     | 
| 737 | 
         
            +
                return generic_step_sampler(model, x, sigmas, extra_args, callback, disable, noise_sampler, DDPMSampler_step)
         
     | 
| 738 | 
         
            +
             
     | 
| 739 | 
         
            +
            @torch.no_grad()
         
     | 
| 740 | 
         
            +
            def sample_lcm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None):
         
     | 
| 741 | 
         
            +
                extra_args = {} if extra_args is None else extra_args
         
     | 
| 742 | 
         
            +
                noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
         
     | 
| 743 | 
         
            +
                s_in = x.new_ones([x.shape[0]])
         
     | 
| 744 | 
         
            +
                for i in trange(len(sigmas) - 1, disable=disable):
         
     | 
| 745 | 
         
            +
                    denoised = model(x, sigmas[i] * s_in, **extra_args)
         
     | 
| 746 | 
         
            +
                    if callback is not None:
         
     | 
| 747 | 
         
            +
                        callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
         
     | 
| 748 | 
         
            +
             
     | 
| 749 | 
         
            +
                    x = denoised
         
     | 
| 750 | 
         
            +
                    if sigmas[i + 1] > 0:
         
     | 
| 751 | 
         
            +
                        x += sigmas[i + 1] * noise_sampler(sigmas[i], sigmas[i + 1])
         
     | 
| 752 | 
         
            +
                return x
         
     | 
| 753 | 
         
            +
             
     | 
| 754 | 
         
            +
             
     | 
| 755 | 
         
            +
             
     | 
| 756 | 
         
            +
            @torch.no_grad()
         
     | 
| 757 | 
         
            +
            def sample_heunpp2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
         
     | 
| 758 | 
         
            +
                # From MIT licensed: https://github.com/Carzit/sd-webui-samplers-scheduler/
         
     | 
| 759 | 
         
            +
                extra_args = {} if extra_args is None else extra_args
         
     | 
| 760 | 
         
            +
                s_in = x.new_ones([x.shape[0]])
         
     | 
| 761 | 
         
            +
                s_end = sigmas[-1]
         
     | 
| 762 | 
         
            +
                for i in trange(len(sigmas) - 1, disable=disable):
         
     | 
| 763 | 
         
            +
                    gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
         
     | 
| 764 | 
         
            +
                    eps = torch.randn_like(x) * s_noise
         
     | 
| 765 | 
         
            +
                    sigma_hat = sigmas[i] * (gamma + 1)
         
     | 
| 766 | 
         
            +
                    if gamma > 0:
         
     | 
| 767 | 
         
            +
                        x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
         
     | 
| 768 | 
         
            +
                    denoised = model(x, sigma_hat * s_in, **extra_args)
         
     | 
| 769 | 
         
            +
                    d = to_d(x, sigma_hat, denoised)
         
     | 
| 770 | 
         
            +
                    if callback is not None:
         
     | 
| 771 | 
         
            +
                        callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
         
     | 
| 772 | 
         
            +
                    dt = sigmas[i + 1] - sigma_hat
         
     | 
| 773 | 
         
            +
                    if sigmas[i + 1] == s_end:
         
     | 
| 774 | 
         
            +
                        # Euler method
         
     | 
| 775 | 
         
            +
                        x = x + d * dt
         
     | 
| 776 | 
         
            +
                    elif sigmas[i + 2] == s_end:
         
     | 
| 777 | 
         
            +
             
     | 
| 778 | 
         
            +
                        # Heun's method
         
     | 
| 779 | 
         
            +
                        x_2 = x + d * dt
         
     | 
| 780 | 
         
            +
                        denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
         
     | 
| 781 | 
         
            +
                        d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
         
     | 
| 782 | 
         
            +
             
     | 
| 783 | 
         
            +
                        w = 2 * sigmas[0]
         
     | 
| 784 | 
         
            +
                        w2 = sigmas[i+1]/w
         
     | 
| 785 | 
         
            +
                        w1 = 1 - w2
         
     | 
| 786 | 
         
            +
             
     | 
| 787 | 
         
            +
                        d_prime = d * w1 + d_2 * w2
         
     | 
| 788 | 
         
            +
             
     | 
| 789 | 
         
            +
             
     | 
| 790 | 
         
            +
                        x = x + d_prime * dt
         
     | 
| 791 | 
         
            +
             
     | 
| 792 | 
         
            +
                    else:
         
     | 
| 793 | 
         
            +
                        # Heun++
         
     | 
| 794 | 
         
            +
                        x_2 = x + d * dt
         
     | 
| 795 | 
         
            +
                        denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
         
     | 
| 796 | 
         
            +
                        d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
         
     | 
| 797 | 
         
            +
                        dt_2 = sigmas[i + 2] - sigmas[i + 1]
         
     | 
| 798 | 
         
            +
             
     | 
| 799 | 
         
            +
                        x_3 = x_2 + d_2 * dt_2
         
     | 
| 800 | 
         
            +
                        denoised_3 = model(x_3, sigmas[i + 2] * s_in, **extra_args)
         
     | 
| 801 | 
         
            +
                        d_3 = to_d(x_3, sigmas[i + 2], denoised_3)
         
     | 
| 802 | 
         
            +
             
     | 
| 803 | 
         
            +
                        w = 3 * sigmas[0]
         
     | 
| 804 | 
         
            +
                        w2 = sigmas[i + 1] / w
         
     | 
| 805 | 
         
            +
                        w3 = sigmas[i + 2] / w
         
     | 
| 806 | 
         
            +
                        w1 = 1 - w2 - w3
         
     | 
| 807 | 
         
            +
             
     | 
| 808 | 
         
            +
                        d_prime = w1 * d + w2 * d_2 + w3 * d_3
         
     | 
| 809 | 
         
            +
                        x = x + d_prime * dt
         
     | 
| 810 | 
         
            +
                return x
         
     | 
    	
        comfy/k_diffusion/utils.py
    ADDED
    
    | 
         @@ -0,0 +1,313 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from contextlib import contextmanager
         
     | 
| 2 | 
         
            +
            import hashlib
         
     | 
| 3 | 
         
            +
            import math
         
     | 
| 4 | 
         
            +
            from pathlib import Path
         
     | 
| 5 | 
         
            +
            import shutil
         
     | 
| 6 | 
         
            +
            import urllib
         
     | 
| 7 | 
         
            +
            import warnings
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            from PIL import Image
         
     | 
| 10 | 
         
            +
            import torch
         
     | 
| 11 | 
         
            +
            from torch import nn, optim
         
     | 
| 12 | 
         
            +
            from torch.utils import data
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            def hf_datasets_augs_helper(examples, transform, image_key, mode='RGB'):
         
     | 
| 16 | 
         
            +
                """Apply passed in transforms for HuggingFace Datasets."""
         
     | 
| 17 | 
         
            +
                images = [transform(image.convert(mode)) for image in examples[image_key]]
         
     | 
| 18 | 
         
            +
                return {image_key: images}
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
            def append_dims(x, target_dims):
         
     | 
| 22 | 
         
            +
                """Appends dimensions to the end of a tensor until it has target_dims dimensions."""
         
     | 
| 23 | 
         
            +
                dims_to_append = target_dims - x.ndim
         
     | 
| 24 | 
         
            +
                if dims_to_append < 0:
         
     | 
| 25 | 
         
            +
                    raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
         
     | 
| 26 | 
         
            +
                expanded = x[(...,) + (None,) * dims_to_append]
         
     | 
| 27 | 
         
            +
                # MPS will get inf values if it tries to index into the new axes, but detaching fixes this.
         
     | 
| 28 | 
         
            +
                # https://github.com/pytorch/pytorch/issues/84364
         
     | 
| 29 | 
         
            +
                return expanded.detach().clone() if expanded.device.type == 'mps' else expanded
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
            def n_params(module):
         
     | 
| 33 | 
         
            +
                """Returns the number of trainable parameters in a module."""
         
     | 
| 34 | 
         
            +
                return sum(p.numel() for p in module.parameters())
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
            def download_file(path, url, digest=None):
         
     | 
| 38 | 
         
            +
                """Downloads a file if it does not exist, optionally checking its SHA-256 hash."""
         
     | 
| 39 | 
         
            +
                path = Path(path)
         
     | 
| 40 | 
         
            +
                path.parent.mkdir(parents=True, exist_ok=True)
         
     | 
| 41 | 
         
            +
                if not path.exists():
         
     | 
| 42 | 
         
            +
                    with urllib.request.urlopen(url) as response, open(path, 'wb') as f:
         
     | 
| 43 | 
         
            +
                        shutil.copyfileobj(response, f)
         
     | 
| 44 | 
         
            +
                if digest is not None:
         
     | 
| 45 | 
         
            +
                    file_digest = hashlib.sha256(open(path, 'rb').read()).hexdigest()
         
     | 
| 46 | 
         
            +
                    if digest != file_digest:
         
     | 
| 47 | 
         
            +
                        raise OSError(f'hash of {path} (url: {url}) failed to validate')
         
     | 
| 48 | 
         
            +
                return path
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
            @contextmanager
         
     | 
| 52 | 
         
            +
            def train_mode(model, mode=True):
         
     | 
| 53 | 
         
            +
                """A context manager that places a model into training mode and restores
         
     | 
| 54 | 
         
            +
                the previous mode on exit."""
         
     | 
| 55 | 
         
            +
                modes = [module.training for module in model.modules()]
         
     | 
| 56 | 
         
            +
                try:
         
     | 
| 57 | 
         
            +
                    yield model.train(mode)
         
     | 
| 58 | 
         
            +
                finally:
         
     | 
| 59 | 
         
            +
                    for i, module in enumerate(model.modules()):
         
     | 
| 60 | 
         
            +
                        module.training = modes[i]
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
             
     | 
| 63 | 
         
            +
            def eval_mode(model):
         
     | 
| 64 | 
         
            +
                """A context manager that places a model into evaluation mode and restores
         
     | 
| 65 | 
         
            +
                the previous mode on exit."""
         
     | 
| 66 | 
         
            +
                return train_mode(model, False)
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
            @torch.no_grad()
         
     | 
| 70 | 
         
            +
            def ema_update(model, averaged_model, decay):
         
     | 
| 71 | 
         
            +
                """Incorporates updated model parameters into an exponential moving averaged
         
     | 
| 72 | 
         
            +
                version of a model. It should be called after each optimizer step."""
         
     | 
| 73 | 
         
            +
                model_params = dict(model.named_parameters())
         
     | 
| 74 | 
         
            +
                averaged_params = dict(averaged_model.named_parameters())
         
     | 
| 75 | 
         
            +
                assert model_params.keys() == averaged_params.keys()
         
     | 
| 76 | 
         
            +
             
     | 
| 77 | 
         
            +
                for name, param in model_params.items():
         
     | 
| 78 | 
         
            +
                    averaged_params[name].mul_(decay).add_(param, alpha=1 - decay)
         
     | 
| 79 | 
         
            +
             
     | 
| 80 | 
         
            +
                model_buffers = dict(model.named_buffers())
         
     | 
| 81 | 
         
            +
                averaged_buffers = dict(averaged_model.named_buffers())
         
     | 
| 82 | 
         
            +
                assert model_buffers.keys() == averaged_buffers.keys()
         
     | 
| 83 | 
         
            +
             
     | 
| 84 | 
         
            +
                for name, buf in model_buffers.items():
         
     | 
| 85 | 
         
            +
                    averaged_buffers[name].copy_(buf)
         
     | 
| 86 | 
         
            +
             
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
            class EMAWarmup:
         
     | 
| 89 | 
         
            +
                """Implements an EMA warmup using an inverse decay schedule.
         
     | 
| 90 | 
         
            +
                If inv_gamma=1 and power=1, implements a simple average. inv_gamma=1, power=2/3 are
         
     | 
| 91 | 
         
            +
                good values for models you plan to train for a million or more steps (reaches decay
         
     | 
| 92 | 
         
            +
                factor 0.999 at 31.6K steps, 0.9999 at 1M steps), inv_gamma=1, power=3/4 for models
         
     | 
| 93 | 
         
            +
                you plan to train for less (reaches decay factor 0.999 at 10K steps, 0.9999 at
         
     | 
| 94 | 
         
            +
                215.4k steps).
         
     | 
| 95 | 
         
            +
                Args:
         
     | 
| 96 | 
         
            +
                    inv_gamma (float): Inverse multiplicative factor of EMA warmup. Default: 1.
         
     | 
| 97 | 
         
            +
                    power (float): Exponential factor of EMA warmup. Default: 1.
         
     | 
| 98 | 
         
            +
                    min_value (float): The minimum EMA decay rate. Default: 0.
         
     | 
| 99 | 
         
            +
                    max_value (float): The maximum EMA decay rate. Default: 1.
         
     | 
| 100 | 
         
            +
                    start_at (int): The epoch to start averaging at. Default: 0.
         
     | 
| 101 | 
         
            +
                    last_epoch (int): The index of last epoch. Default: 0.
         
     | 
| 102 | 
         
            +
                """
         
     | 
| 103 | 
         
            +
             
     | 
| 104 | 
         
            +
                def __init__(self, inv_gamma=1., power=1., min_value=0., max_value=1., start_at=0,
         
     | 
| 105 | 
         
            +
                             last_epoch=0):
         
     | 
| 106 | 
         
            +
                    self.inv_gamma = inv_gamma
         
     | 
| 107 | 
         
            +
                    self.power = power
         
     | 
| 108 | 
         
            +
                    self.min_value = min_value
         
     | 
| 109 | 
         
            +
                    self.max_value = max_value
         
     | 
| 110 | 
         
            +
                    self.start_at = start_at
         
     | 
| 111 | 
         
            +
                    self.last_epoch = last_epoch
         
     | 
| 112 | 
         
            +
             
     | 
| 113 | 
         
            +
                def state_dict(self):
         
     | 
| 114 | 
         
            +
                    """Returns the state of the class as a :class:`dict`."""
         
     | 
| 115 | 
         
            +
                    return dict(self.__dict__.items())
         
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
                def load_state_dict(self, state_dict):
         
     | 
| 118 | 
         
            +
                    """Loads the class's state.
         
     | 
| 119 | 
         
            +
                    Args:
         
     | 
| 120 | 
         
            +
                        state_dict (dict): scaler state. Should be an object returned
         
     | 
| 121 | 
         
            +
                            from a call to :meth:`state_dict`.
         
     | 
| 122 | 
         
            +
                    """
         
     | 
| 123 | 
         
            +
                    self.__dict__.update(state_dict)
         
     | 
| 124 | 
         
            +
             
     | 
| 125 | 
         
            +
                def get_value(self):
         
     | 
| 126 | 
         
            +
                    """Gets the current EMA decay rate."""
         
     | 
| 127 | 
         
            +
                    epoch = max(0, self.last_epoch - self.start_at)
         
     | 
| 128 | 
         
            +
                    value = 1 - (1 + epoch / self.inv_gamma) ** -self.power
         
     | 
| 129 | 
         
            +
                    return 0. if epoch < 0 else min(self.max_value, max(self.min_value, value))
         
     | 
| 130 | 
         
            +
             
     | 
| 131 | 
         
            +
                def step(self):
         
     | 
| 132 | 
         
            +
                    """Updates the step count."""
         
     | 
| 133 | 
         
            +
                    self.last_epoch += 1
         
     | 
| 134 | 
         
            +
             
     | 
| 135 | 
         
            +
             
     | 
| 136 | 
         
            +
            class InverseLR(optim.lr_scheduler._LRScheduler):
         
     | 
| 137 | 
         
            +
                """Implements an inverse decay learning rate schedule with an optional exponential
         
     | 
| 138 | 
         
            +
                warmup. When last_epoch=-1, sets initial lr as lr.
         
     | 
| 139 | 
         
            +
                inv_gamma is the number of steps/epochs required for the learning rate to decay to
         
     | 
| 140 | 
         
            +
                (1 / 2)**power of its original value.
         
     | 
| 141 | 
         
            +
                Args:
         
     | 
| 142 | 
         
            +
                    optimizer (Optimizer): Wrapped optimizer.
         
     | 
| 143 | 
         
            +
                    inv_gamma (float): Inverse multiplicative factor of learning rate decay. Default: 1.
         
     | 
| 144 | 
         
            +
                    power (float): Exponential factor of learning rate decay. Default: 1.
         
     | 
| 145 | 
         
            +
                    warmup (float): Exponential warmup factor (0 <= warmup < 1, 0 to disable)
         
     | 
| 146 | 
         
            +
                        Default: 0.
         
     | 
| 147 | 
         
            +
                    min_lr (float): The minimum learning rate. Default: 0.
         
     | 
| 148 | 
         
            +
                    last_epoch (int): The index of last epoch. Default: -1.
         
     | 
| 149 | 
         
            +
                    verbose (bool): If ``True``, prints a message to stdout for
         
     | 
| 150 | 
         
            +
                        each update. Default: ``False``.
         
     | 
| 151 | 
         
            +
                """
         
     | 
| 152 | 
         
            +
             
     | 
| 153 | 
         
            +
                def __init__(self, optimizer, inv_gamma=1., power=1., warmup=0., min_lr=0.,
         
     | 
| 154 | 
         
            +
                             last_epoch=-1, verbose=False):
         
     | 
| 155 | 
         
            +
                    self.inv_gamma = inv_gamma
         
     | 
| 156 | 
         
            +
                    self.power = power
         
     | 
| 157 | 
         
            +
                    if not 0. <= warmup < 1:
         
     | 
| 158 | 
         
            +
                        raise ValueError('Invalid value for warmup')
         
     | 
| 159 | 
         
            +
                    self.warmup = warmup
         
     | 
| 160 | 
         
            +
                    self.min_lr = min_lr
         
     | 
| 161 | 
         
            +
                    super().__init__(optimizer, last_epoch, verbose)
         
     | 
| 162 | 
         
            +
             
     | 
| 163 | 
         
            +
                def get_lr(self):
         
     | 
| 164 | 
         
            +
                    if not self._get_lr_called_within_step:
         
     | 
| 165 | 
         
            +
                        warnings.warn("To get the last learning rate computed by the scheduler, "
         
     | 
| 166 | 
         
            +
                                      "please use `get_last_lr()`.")
         
     | 
| 167 | 
         
            +
             
     | 
| 168 | 
         
            +
                    return self._get_closed_form_lr()
         
     | 
| 169 | 
         
            +
             
     | 
| 170 | 
         
            +
                def _get_closed_form_lr(self):
         
     | 
| 171 | 
         
            +
                    warmup = 1 - self.warmup ** (self.last_epoch + 1)
         
     | 
| 172 | 
         
            +
                    lr_mult = (1 + self.last_epoch / self.inv_gamma) ** -self.power
         
     | 
| 173 | 
         
            +
                    return [warmup * max(self.min_lr, base_lr * lr_mult)
         
     | 
| 174 | 
         
            +
                            for base_lr in self.base_lrs]
         
     | 
| 175 | 
         
            +
             
     | 
| 176 | 
         
            +
             
     | 
| 177 | 
         
            +
            class ExponentialLR(optim.lr_scheduler._LRScheduler):
         
     | 
| 178 | 
         
            +
                """Implements an exponential learning rate schedule with an optional exponential
         
     | 
| 179 | 
         
            +
                warmup. When last_epoch=-1, sets initial lr as lr. Decays the learning rate
         
     | 
| 180 | 
         
            +
                continuously by decay (default 0.5) every num_steps steps.
         
     | 
| 181 | 
         
            +
                Args:
         
     | 
| 182 | 
         
            +
                    optimizer (Optimizer): Wrapped optimizer.
         
     | 
| 183 | 
         
            +
                    num_steps (float): The number of steps to decay the learning rate by decay in.
         
     | 
| 184 | 
         
            +
                    decay (float): The factor by which to decay the learning rate every num_steps
         
     | 
| 185 | 
         
            +
                        steps. Default: 0.5.
         
     | 
| 186 | 
         
            +
                    warmup (float): Exponential warmup factor (0 <= warmup < 1, 0 to disable)
         
     | 
| 187 | 
         
            +
                        Default: 0.
         
     | 
| 188 | 
         
            +
                    min_lr (float): The minimum learning rate. Default: 0.
         
     | 
| 189 | 
         
            +
                    last_epoch (int): The index of last epoch. Default: -1.
         
     | 
| 190 | 
         
            +
                    verbose (bool): If ``True``, prints a message to stdout for
         
     | 
| 191 | 
         
            +
                        each update. Default: ``False``.
         
     | 
| 192 | 
         
            +
                """
         
     | 
| 193 | 
         
            +
             
     | 
| 194 | 
         
            +
                def __init__(self, optimizer, num_steps, decay=0.5, warmup=0., min_lr=0.,
         
     | 
| 195 | 
         
            +
                             last_epoch=-1, verbose=False):
         
     | 
| 196 | 
         
            +
                    self.num_steps = num_steps
         
     | 
| 197 | 
         
            +
                    self.decay = decay
         
     | 
| 198 | 
         
            +
                    if not 0. <= warmup < 1:
         
     | 
| 199 | 
         
            +
                        raise ValueError('Invalid value for warmup')
         
     | 
| 200 | 
         
            +
                    self.warmup = warmup
         
     | 
| 201 | 
         
            +
                    self.min_lr = min_lr
         
     | 
| 202 | 
         
            +
                    super().__init__(optimizer, last_epoch, verbose)
         
     | 
| 203 | 
         
            +
             
     | 
| 204 | 
         
            +
                def get_lr(self):
         
     | 
| 205 | 
         
            +
                    if not self._get_lr_called_within_step:
         
     | 
| 206 | 
         
            +
                        warnings.warn("To get the last learning rate computed by the scheduler, "
         
     | 
| 207 | 
         
            +
                                      "please use `get_last_lr()`.")
         
     | 
| 208 | 
         
            +
             
     | 
| 209 | 
         
            +
                    return self._get_closed_form_lr()
         
     | 
| 210 | 
         
            +
             
     | 
| 211 | 
         
            +
                def _get_closed_form_lr(self):
         
     | 
| 212 | 
         
            +
                    warmup = 1 - self.warmup ** (self.last_epoch + 1)
         
     | 
| 213 | 
         
            +
                    lr_mult = (self.decay ** (1 / self.num_steps)) ** self.last_epoch
         
     | 
| 214 | 
         
            +
                    return [warmup * max(self.min_lr, base_lr * lr_mult)
         
     | 
| 215 | 
         
            +
                            for base_lr in self.base_lrs]
         
     | 
| 216 | 
         
            +
             
     | 
| 217 | 
         
            +
             
     | 
| 218 | 
         
            +
            def rand_log_normal(shape, loc=0., scale=1., device='cpu', dtype=torch.float32):
         
     | 
| 219 | 
         
            +
                """Draws samples from an lognormal distribution."""
         
     | 
| 220 | 
         
            +
                return (torch.randn(shape, device=device, dtype=dtype) * scale + loc).exp()
         
     | 
| 221 | 
         
            +
             
     | 
| 222 | 
         
            +
             
     | 
| 223 | 
         
            +
            def rand_log_logistic(shape, loc=0., scale=1., min_value=0., max_value=float('inf'), device='cpu', dtype=torch.float32):
         
     | 
| 224 | 
         
            +
                """Draws samples from an optionally truncated log-logistic distribution."""
         
     | 
| 225 | 
         
            +
                min_value = torch.as_tensor(min_value, device=device, dtype=torch.float64)
         
     | 
| 226 | 
         
            +
                max_value = torch.as_tensor(max_value, device=device, dtype=torch.float64)
         
     | 
| 227 | 
         
            +
                min_cdf = min_value.log().sub(loc).div(scale).sigmoid()
         
     | 
| 228 | 
         
            +
                max_cdf = max_value.log().sub(loc).div(scale).sigmoid()
         
     | 
| 229 | 
         
            +
                u = torch.rand(shape, device=device, dtype=torch.float64) * (max_cdf - min_cdf) + min_cdf
         
     | 
| 230 | 
         
            +
                return u.logit().mul(scale).add(loc).exp().to(dtype)
         
     | 
| 231 | 
         
            +
             
     | 
| 232 | 
         
            +
             
     | 
| 233 | 
         
            +
            def rand_log_uniform(shape, min_value, max_value, device='cpu', dtype=torch.float32):
         
     | 
| 234 | 
         
            +
                """Draws samples from an log-uniform distribution."""
         
     | 
| 235 | 
         
            +
                min_value = math.log(min_value)
         
     | 
| 236 | 
         
            +
                max_value = math.log(max_value)
         
     | 
| 237 | 
         
            +
                return (torch.rand(shape, device=device, dtype=dtype) * (max_value - min_value) + min_value).exp()
         
     | 
| 238 | 
         
            +
             
     | 
| 239 | 
         
            +
             
     | 
| 240 | 
         
            +
            def rand_v_diffusion(shape, sigma_data=1., min_value=0., max_value=float('inf'), device='cpu', dtype=torch.float32):
         
     | 
| 241 | 
         
            +
                """Draws samples from a truncated v-diffusion training timestep distribution."""
         
     | 
| 242 | 
         
            +
                min_cdf = math.atan(min_value / sigma_data) * 2 / math.pi
         
     | 
| 243 | 
         
            +
                max_cdf = math.atan(max_value / sigma_data) * 2 / math.pi
         
     | 
| 244 | 
         
            +
                u = torch.rand(shape, device=device, dtype=dtype) * (max_cdf - min_cdf) + min_cdf
         
     | 
| 245 | 
         
            +
                return torch.tan(u * math.pi / 2) * sigma_data
         
     | 
| 246 | 
         
            +
             
     | 
| 247 | 
         
            +
             
     | 
| 248 | 
         
            +
            def rand_split_log_normal(shape, loc, scale_1, scale_2, device='cpu', dtype=torch.float32):
         
     | 
| 249 | 
         
            +
                """Draws samples from a split lognormal distribution."""
         
     | 
| 250 | 
         
            +
                n = torch.randn(shape, device=device, dtype=dtype).abs()
         
     | 
| 251 | 
         
            +
                u = torch.rand(shape, device=device, dtype=dtype)
         
     | 
| 252 | 
         
            +
                n_left = n * -scale_1 + loc
         
     | 
| 253 | 
         
            +
                n_right = n * scale_2 + loc
         
     | 
| 254 | 
         
            +
                ratio = scale_1 / (scale_1 + scale_2)
         
     | 
| 255 | 
         
            +
                return torch.where(u < ratio, n_left, n_right).exp()
         
     | 
| 256 | 
         
            +
             
     | 
| 257 | 
         
            +
             
     | 
| 258 | 
         
            +
            class FolderOfImages(data.Dataset):
         
     | 
| 259 | 
         
            +
                """Recursively finds all images in a directory. It does not support
         
     | 
| 260 | 
         
            +
                classes/targets."""
         
     | 
| 261 | 
         
            +
             
     | 
| 262 | 
         
            +
                IMG_EXTENSIONS = {'.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', '.webp'}
         
     | 
| 263 | 
         
            +
             
     | 
| 264 | 
         
            +
                def __init__(self, root, transform=None):
         
     | 
| 265 | 
         
            +
                    super().__init__()
         
     | 
| 266 | 
         
            +
                    self.root = Path(root)
         
     | 
| 267 | 
         
            +
                    self.transform = nn.Identity() if transform is None else transform
         
     | 
| 268 | 
         
            +
                    self.paths = sorted(path for path in self.root.rglob('*') if path.suffix.lower() in self.IMG_EXTENSIONS)
         
     | 
| 269 | 
         
            +
             
     | 
| 270 | 
         
            +
                def __repr__(self):
         
     | 
| 271 | 
         
            +
                    return f'FolderOfImages(root="{self.root}", len: {len(self)})'
         
     | 
| 272 | 
         
            +
             
     | 
| 273 | 
         
            +
                def __len__(self):
         
     | 
| 274 | 
         
            +
                    return len(self.paths)
         
     | 
| 275 | 
         
            +
             
     | 
| 276 | 
         
            +
                def __getitem__(self, key):
         
     | 
| 277 | 
         
            +
                    path = self.paths[key]
         
     | 
| 278 | 
         
            +
                    with open(path, 'rb') as f:
         
     | 
| 279 | 
         
            +
                        image = Image.open(f).convert('RGB')
         
     | 
| 280 | 
         
            +
                    image = self.transform(image)
         
     | 
| 281 | 
         
            +
                    return image,
         
     | 
| 282 | 
         
            +
             
     | 
| 283 | 
         
            +
             
     | 
| 284 | 
         
            +
            class CSVLogger:
         
     | 
| 285 | 
         
            +
                def __init__(self, filename, columns):
         
     | 
| 286 | 
         
            +
                    self.filename = Path(filename)
         
     | 
| 287 | 
         
            +
                    self.columns = columns
         
     | 
| 288 | 
         
            +
                    if self.filename.exists():
         
     | 
| 289 | 
         
            +
                        self.file = open(self.filename, 'a')
         
     | 
| 290 | 
         
            +
                    else:
         
     | 
| 291 | 
         
            +
                        self.file = open(self.filename, 'w')
         
     | 
| 292 | 
         
            +
                        self.write(*self.columns)
         
     | 
| 293 | 
         
            +
             
     | 
| 294 | 
         
            +
                def write(self, *args):
         
     | 
| 295 | 
         
            +
                    print(*args, sep=',', file=self.file, flush=True)
         
     | 
| 296 | 
         
            +
             
     | 
| 297 | 
         
            +
             
     | 
| 298 | 
         
            +
            @contextmanager
         
     | 
| 299 | 
         
            +
            def tf32_mode(cudnn=None, matmul=None):
         
     | 
| 300 | 
         
            +
                """A context manager that sets whether TF32 is allowed on cuDNN or matmul."""
         
     | 
| 301 | 
         
            +
                cudnn_old = torch.backends.cudnn.allow_tf32
         
     | 
| 302 | 
         
            +
                matmul_old = torch.backends.cuda.matmul.allow_tf32
         
     | 
| 303 | 
         
            +
                try:
         
     | 
| 304 | 
         
            +
                    if cudnn is not None:
         
     | 
| 305 | 
         
            +
                        torch.backends.cudnn.allow_tf32 = cudnn
         
     | 
| 306 | 
         
            +
                    if matmul is not None:
         
     | 
| 307 | 
         
            +
                        torch.backends.cuda.matmul.allow_tf32 = matmul
         
     | 
| 308 | 
         
            +
                    yield
         
     | 
| 309 | 
         
            +
                finally:
         
     | 
| 310 | 
         
            +
                    if cudnn is not None:
         
     | 
| 311 | 
         
            +
                        torch.backends.cudnn.allow_tf32 = cudnn_old
         
     | 
| 312 | 
         
            +
                    if matmul is not None:
         
     | 
| 313 | 
         
            +
                        torch.backends.cuda.matmul.allow_tf32 = matmul_old
         
     | 
    	
        comfy/latent_formats.py
    ADDED
    
    | 
         @@ -0,0 +1,39 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
             
     | 
| 2 | 
         
            +
            class LatentFormat:
         
     | 
| 3 | 
         
            +
                scale_factor = 1.0
         
     | 
| 4 | 
         
            +
                latent_rgb_factors = None
         
     | 
| 5 | 
         
            +
                taesd_decoder_name = None
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
                def process_in(self, latent):
         
     | 
| 8 | 
         
            +
                    return latent * self.scale_factor
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
                def process_out(self, latent):
         
     | 
| 11 | 
         
            +
                    return latent / self.scale_factor
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            class SD15(LatentFormat):
         
     | 
| 14 | 
         
            +
                def __init__(self, scale_factor=0.18215):
         
     | 
| 15 | 
         
            +
                    self.scale_factor = scale_factor
         
     | 
| 16 | 
         
            +
                    self.latent_rgb_factors = [
         
     | 
| 17 | 
         
            +
                                #   R        G        B
         
     | 
| 18 | 
         
            +
                                [ 0.3512,  0.2297,  0.3227],
         
     | 
| 19 | 
         
            +
                                [ 0.3250,  0.4974,  0.2350],
         
     | 
| 20 | 
         
            +
                                [-0.2829,  0.1762,  0.2721],
         
     | 
| 21 | 
         
            +
                                [-0.2120, -0.2616, -0.7177]
         
     | 
| 22 | 
         
            +
                            ]
         
     | 
| 23 | 
         
            +
                    self.taesd_decoder_name = "taesd_decoder"
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
            class SDXL(LatentFormat):
         
     | 
| 26 | 
         
            +
                def __init__(self):
         
     | 
| 27 | 
         
            +
                    self.scale_factor = 0.13025
         
     | 
| 28 | 
         
            +
                    self.latent_rgb_factors = [
         
     | 
| 29 | 
         
            +
                                #   R        G        B
         
     | 
| 30 | 
         
            +
                                [ 0.3920,  0.4054,  0.4549],
         
     | 
| 31 | 
         
            +
                                [-0.2634, -0.0196,  0.0653],
         
     | 
| 32 | 
         
            +
                                [ 0.0568,  0.1687, -0.0755],
         
     | 
| 33 | 
         
            +
                                [-0.3112, -0.2359, -0.2076]
         
     | 
| 34 | 
         
            +
                            ]
         
     | 
| 35 | 
         
            +
                    self.taesd_decoder_name = "taesdxl_decoder"
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
            class SD_X4(LatentFormat):
         
     | 
| 38 | 
         
            +
                def __init__(self):
         
     | 
| 39 | 
         
            +
                    self.scale_factor = 0.08333
         
     | 
    	
        comfy/ldm/.DS_Store
    ADDED
    
    | 
         Binary file (6.15 kB). View file 
     | 
| 
         | 
    	
        comfy/ldm/models/autoencoder.py
    ADDED
    
    | 
         @@ -0,0 +1,228 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            # import pytorch_lightning as pl
         
     | 
| 3 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 4 | 
         
            +
            from contextlib import contextmanager
         
     | 
| 5 | 
         
            +
            from typing import Any, Dict, List, Optional, Tuple, Union
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
            from comfy.ldm.modules.distributions.distributions import DiagonalGaussianDistribution
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            from comfy.ldm.util import instantiate_from_config
         
     | 
| 10 | 
         
            +
            from comfy.ldm.modules.ema import LitEma
         
     | 
| 11 | 
         
            +
            import comfy.ops
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            class DiagonalGaussianRegularizer(torch.nn.Module):
         
     | 
| 14 | 
         
            +
                def __init__(self, sample: bool = True):
         
     | 
| 15 | 
         
            +
                    super().__init__()
         
     | 
| 16 | 
         
            +
                    self.sample = sample
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
                def get_trainable_parameters(self) -> Any:
         
     | 
| 19 | 
         
            +
                    yield from ()
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
                def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]:
         
     | 
| 22 | 
         
            +
                    log = dict()
         
     | 
| 23 | 
         
            +
                    posterior = DiagonalGaussianDistribution(z)
         
     | 
| 24 | 
         
            +
                    if self.sample:
         
     | 
| 25 | 
         
            +
                        z = posterior.sample()
         
     | 
| 26 | 
         
            +
                    else:
         
     | 
| 27 | 
         
            +
                        z = posterior.mode()
         
     | 
| 28 | 
         
            +
                    kl_loss = posterior.kl()
         
     | 
| 29 | 
         
            +
                    kl_loss = torch.sum(kl_loss) / kl_loss.shape[0]
         
     | 
| 30 | 
         
            +
                    log["kl_loss"] = kl_loss
         
     | 
| 31 | 
         
            +
                    return z, log
         
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
            class AbstractAutoencoder(torch.nn.Module):
         
     | 
| 35 | 
         
            +
                """
         
     | 
| 36 | 
         
            +
                This is the base class for all autoencoders, including image autoencoders, image autoencoders with discriminators,
         
     | 
| 37 | 
         
            +
                unCLIP models, etc. Hence, it is fairly general, and specific features
         
     | 
| 38 | 
         
            +
                (e.g. discriminator training, encoding, decoding) must be implemented in subclasses.
         
     | 
| 39 | 
         
            +
                """
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
                def __init__(
         
     | 
| 42 | 
         
            +
                    self,
         
     | 
| 43 | 
         
            +
                    ema_decay: Union[None, float] = None,
         
     | 
| 44 | 
         
            +
                    monitor: Union[None, str] = None,
         
     | 
| 45 | 
         
            +
                    input_key: str = "jpg",
         
     | 
| 46 | 
         
            +
                    **kwargs,
         
     | 
| 47 | 
         
            +
                ):
         
     | 
| 48 | 
         
            +
                    super().__init__()
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
                    self.input_key = input_key
         
     | 
| 51 | 
         
            +
                    self.use_ema = ema_decay is not None
         
     | 
| 52 | 
         
            +
                    if monitor is not None:
         
     | 
| 53 | 
         
            +
                        self.monitor = monitor
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
                    if self.use_ema:
         
     | 
| 56 | 
         
            +
                        self.model_ema = LitEma(self, decay=ema_decay)
         
     | 
| 57 | 
         
            +
                        logpy.info(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
         
     | 
| 58 | 
         
            +
             
     | 
| 59 | 
         
            +
                def get_input(self, batch) -> Any:
         
     | 
| 60 | 
         
            +
                    raise NotImplementedError()
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
                def on_train_batch_end(self, *args, **kwargs):
         
     | 
| 63 | 
         
            +
                    # for EMA computation
         
     | 
| 64 | 
         
            +
                    if self.use_ema:
         
     | 
| 65 | 
         
            +
                        self.model_ema(self)
         
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
                @contextmanager
         
     | 
| 68 | 
         
            +
                def ema_scope(self, context=None):
         
     | 
| 69 | 
         
            +
                    if self.use_ema:
         
     | 
| 70 | 
         
            +
                        self.model_ema.store(self.parameters())
         
     | 
| 71 | 
         
            +
                        self.model_ema.copy_to(self)
         
     | 
| 72 | 
         
            +
                        if context is not None:
         
     | 
| 73 | 
         
            +
                            logpy.info(f"{context}: Switched to EMA weights")
         
     | 
| 74 | 
         
            +
                    try:
         
     | 
| 75 | 
         
            +
                        yield None
         
     | 
| 76 | 
         
            +
                    finally:
         
     | 
| 77 | 
         
            +
                        if self.use_ema:
         
     | 
| 78 | 
         
            +
                            self.model_ema.restore(self.parameters())
         
     | 
| 79 | 
         
            +
                            if context is not None:
         
     | 
| 80 | 
         
            +
                                logpy.info(f"{context}: Restored training weights")
         
     | 
| 81 | 
         
            +
             
     | 
| 82 | 
         
            +
                def encode(self, *args, **kwargs) -> torch.Tensor:
         
     | 
| 83 | 
         
            +
                    raise NotImplementedError("encode()-method of abstract base class called")
         
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
                def decode(self, *args, **kwargs) -> torch.Tensor:
         
     | 
| 86 | 
         
            +
                    raise NotImplementedError("decode()-method of abstract base class called")
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
                def instantiate_optimizer_from_config(self, params, lr, cfg):
         
     | 
| 89 | 
         
            +
                    logpy.info(f"loading >>> {cfg['target']} <<< optimizer from config")
         
     | 
| 90 | 
         
            +
                    return get_obj_from_str(cfg["target"])(
         
     | 
| 91 | 
         
            +
                        params, lr=lr, **cfg.get("params", dict())
         
     | 
| 92 | 
         
            +
                    )
         
     | 
| 93 | 
         
            +
             
     | 
| 94 | 
         
            +
                def configure_optimizers(self) -> Any:
         
     | 
| 95 | 
         
            +
                    raise NotImplementedError()
         
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
             
     | 
| 98 | 
         
            +
            class AutoencodingEngine(AbstractAutoencoder):
         
     | 
| 99 | 
         
            +
                """
         
     | 
| 100 | 
         
            +
                Base class for all image autoencoders that we train, like VQGAN or AutoencoderKL
         
     | 
| 101 | 
         
            +
                (we also restore them explicitly as special cases for legacy reasons).
         
     | 
| 102 | 
         
            +
                Regularizations such as KL or VQ are moved to the regularizer class.
         
     | 
| 103 | 
         
            +
                """
         
     | 
| 104 | 
         
            +
             
     | 
| 105 | 
         
            +
                def __init__(
         
     | 
| 106 | 
         
            +
                    self,
         
     | 
| 107 | 
         
            +
                    *args,
         
     | 
| 108 | 
         
            +
                    encoder_config: Dict,
         
     | 
| 109 | 
         
            +
                    decoder_config: Dict,
         
     | 
| 110 | 
         
            +
                    regularizer_config: Dict,
         
     | 
| 111 | 
         
            +
                    **kwargs,
         
     | 
| 112 | 
         
            +
                ):
         
     | 
| 113 | 
         
            +
                    super().__init__(*args, **kwargs)
         
     | 
| 114 | 
         
            +
             
     | 
| 115 | 
         
            +
                    self.encoder: torch.nn.Module = instantiate_from_config(encoder_config)
         
     | 
| 116 | 
         
            +
                    self.decoder: torch.nn.Module = instantiate_from_config(decoder_config)
         
     | 
| 117 | 
         
            +
                    self.regularization: AbstractRegularizer = instantiate_from_config(
         
     | 
| 118 | 
         
            +
                        regularizer_config
         
     | 
| 119 | 
         
            +
                    )
         
     | 
| 120 | 
         
            +
             
     | 
| 121 | 
         
            +
                def get_last_layer(self):
         
     | 
| 122 | 
         
            +
                    return self.decoder.get_last_layer()
         
     | 
| 123 | 
         
            +
             
     | 
| 124 | 
         
            +
                def encode(
         
     | 
| 125 | 
         
            +
                    self,
         
     | 
| 126 | 
         
            +
                    x: torch.Tensor,
         
     | 
| 127 | 
         
            +
                    return_reg_log: bool = False,
         
     | 
| 128 | 
         
            +
                    unregularized: bool = False,
         
     | 
| 129 | 
         
            +
                ) -> Union[torch.Tensor, Tuple[torch.Tensor, dict]]:
         
     | 
| 130 | 
         
            +
                    z = self.encoder(x)
         
     | 
| 131 | 
         
            +
                    if unregularized:
         
     | 
| 132 | 
         
            +
                        return z, dict()
         
     | 
| 133 | 
         
            +
                    z, reg_log = self.regularization(z)
         
     | 
| 134 | 
         
            +
                    if return_reg_log:
         
     | 
| 135 | 
         
            +
                        return z, reg_log
         
     | 
| 136 | 
         
            +
                    return z
         
     | 
| 137 | 
         
            +
             
     | 
| 138 | 
         
            +
                def decode(self, z: torch.Tensor, **kwargs) -> torch.Tensor:
         
     | 
| 139 | 
         
            +
                    x = self.decoder(z, **kwargs)
         
     | 
| 140 | 
         
            +
                    return x
         
     | 
| 141 | 
         
            +
             
     | 
| 142 | 
         
            +
                def forward(
         
     | 
| 143 | 
         
            +
                    self, x: torch.Tensor, **additional_decode_kwargs
         
     | 
| 144 | 
         
            +
                ) -> Tuple[torch.Tensor, torch.Tensor, dict]:
         
     | 
| 145 | 
         
            +
                    z, reg_log = self.encode(x, return_reg_log=True)
         
     | 
| 146 | 
         
            +
                    dec = self.decode(z, **additional_decode_kwargs)
         
     | 
| 147 | 
         
            +
                    return z, dec, reg_log
         
     | 
| 148 | 
         
            +
             
     | 
| 149 | 
         
            +
             
     | 
| 150 | 
         
            +
            class AutoencodingEngineLegacy(AutoencodingEngine):
         
     | 
| 151 | 
         
            +
                def __init__(self, embed_dim: int, **kwargs):
         
     | 
| 152 | 
         
            +
                    self.max_batch_size = kwargs.pop("max_batch_size", None)
         
     | 
| 153 | 
         
            +
                    ddconfig = kwargs.pop("ddconfig")
         
     | 
| 154 | 
         
            +
                    super().__init__(
         
     | 
| 155 | 
         
            +
                        encoder_config={
         
     | 
| 156 | 
         
            +
                            "target": "comfy.ldm.modules.diffusionmodules.model.Encoder",
         
     | 
| 157 | 
         
            +
                            "params": ddconfig,
         
     | 
| 158 | 
         
            +
                        },
         
     | 
| 159 | 
         
            +
                        decoder_config={
         
     | 
| 160 | 
         
            +
                            "target": "comfy.ldm.modules.diffusionmodules.model.Decoder",
         
     | 
| 161 | 
         
            +
                            "params": ddconfig,
         
     | 
| 162 | 
         
            +
                        },
         
     | 
| 163 | 
         
            +
                        **kwargs,
         
     | 
| 164 | 
         
            +
                    )
         
     | 
| 165 | 
         
            +
                    self.quant_conv = comfy.ops.disable_weight_init.Conv2d(
         
     | 
| 166 | 
         
            +
                        (1 + ddconfig["double_z"]) * ddconfig["z_channels"],
         
     | 
| 167 | 
         
            +
                        (1 + ddconfig["double_z"]) * embed_dim,
         
     | 
| 168 | 
         
            +
                        1,
         
     | 
| 169 | 
         
            +
                    )
         
     | 
| 170 | 
         
            +
                    self.post_quant_conv = comfy.ops.disable_weight_init.Conv2d(embed_dim, ddconfig["z_channels"], 1)
         
     | 
| 171 | 
         
            +
                    self.embed_dim = embed_dim
         
     | 
| 172 | 
         
            +
             
     | 
| 173 | 
         
            +
                def get_autoencoder_params(self) -> list:
         
     | 
| 174 | 
         
            +
                    params = super().get_autoencoder_params()
         
     | 
| 175 | 
         
            +
                    return params
         
     | 
| 176 | 
         
            +
             
     | 
| 177 | 
         
            +
                def encode(
         
     | 
| 178 | 
         
            +
                    self, x: torch.Tensor, return_reg_log: bool = False
         
     | 
| 179 | 
         
            +
                ) -> Union[torch.Tensor, Tuple[torch.Tensor, dict]]:
         
     | 
| 180 | 
         
            +
                    if self.max_batch_size is None:
         
     | 
| 181 | 
         
            +
                        z = self.encoder(x)
         
     | 
| 182 | 
         
            +
                        z = self.quant_conv(z)
         
     | 
| 183 | 
         
            +
                    else:
         
     | 
| 184 | 
         
            +
                        N = x.shape[0]
         
     | 
| 185 | 
         
            +
                        bs = self.max_batch_size
         
     | 
| 186 | 
         
            +
                        n_batches = int(math.ceil(N / bs))
         
     | 
| 187 | 
         
            +
                        z = list()
         
     | 
| 188 | 
         
            +
                        for i_batch in range(n_batches):
         
     | 
| 189 | 
         
            +
                            z_batch = self.encoder(x[i_batch * bs : (i_batch + 1) * bs])
         
     | 
| 190 | 
         
            +
                            z_batch = self.quant_conv(z_batch)
         
     | 
| 191 | 
         
            +
                            z.append(z_batch)
         
     | 
| 192 | 
         
            +
                        z = torch.cat(z, 0)
         
     | 
| 193 | 
         
            +
             
     | 
| 194 | 
         
            +
                    z, reg_log = self.regularization(z)
         
     | 
| 195 | 
         
            +
                    if return_reg_log:
         
     | 
| 196 | 
         
            +
                        return z, reg_log
         
     | 
| 197 | 
         
            +
                    return z
         
     | 
| 198 | 
         
            +
             
     | 
| 199 | 
         
            +
                def decode(self, z: torch.Tensor, **decoder_kwargs) -> torch.Tensor:
         
     | 
| 200 | 
         
            +
                    if self.max_batch_size is None:
         
     | 
| 201 | 
         
            +
                        dec = self.post_quant_conv(z)
         
     | 
| 202 | 
         
            +
                        dec = self.decoder(dec, **decoder_kwargs)
         
     | 
| 203 | 
         
            +
                    else:
         
     | 
| 204 | 
         
            +
                        N = z.shape[0]
         
     | 
| 205 | 
         
            +
                        bs = self.max_batch_size
         
     | 
| 206 | 
         
            +
                        n_batches = int(math.ceil(N / bs))
         
     | 
| 207 | 
         
            +
                        dec = list()
         
     | 
| 208 | 
         
            +
                        for i_batch in range(n_batches):
         
     | 
| 209 | 
         
            +
                            dec_batch = self.post_quant_conv(z[i_batch * bs : (i_batch + 1) * bs])
         
     | 
| 210 | 
         
            +
                            dec_batch = self.decoder(dec_batch, **decoder_kwargs)
         
     | 
| 211 | 
         
            +
                            dec.append(dec_batch)
         
     | 
| 212 | 
         
            +
                        dec = torch.cat(dec, 0)
         
     | 
| 213 | 
         
            +
             
     | 
| 214 | 
         
            +
                    return dec
         
     | 
| 215 | 
         
            +
             
     | 
| 216 | 
         
            +
             
     | 
| 217 | 
         
            +
            class AutoencoderKL(AutoencodingEngineLegacy):
         
     | 
| 218 | 
         
            +
                def __init__(self, **kwargs):
         
     | 
| 219 | 
         
            +
                    if "lossconfig" in kwargs:
         
     | 
| 220 | 
         
            +
                        kwargs["loss_config"] = kwargs.pop("lossconfig")
         
     | 
| 221 | 
         
            +
                    super().__init__(
         
     | 
| 222 | 
         
            +
                        regularizer_config={
         
     | 
| 223 | 
         
            +
                            "target": (
         
     | 
| 224 | 
         
            +
                                "comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer"
         
     | 
| 225 | 
         
            +
                            )
         
     | 
| 226 | 
         
            +
                        },
         
     | 
| 227 | 
         
            +
                        **kwargs,
         
     | 
| 228 | 
         
            +
                    )
         
     | 
    	
        comfy/ldm/modules/attention.py
    ADDED
    
    | 
         @@ -0,0 +1,781 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import math
         
     | 
| 2 | 
         
            +
            import torch
         
     | 
| 3 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 4 | 
         
            +
            from torch import nn, einsum
         
     | 
| 5 | 
         
            +
            from einops import rearrange, repeat
         
     | 
| 6 | 
         
            +
            from typing import Optional, Any
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            from .diffusionmodules.util import checkpoint, AlphaBlender, timestep_embedding
         
     | 
| 9 | 
         
            +
            from .sub_quadratic_attention import efficient_dot_product_attention
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            from comfy import model_management
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            if model_management.xformers_enabled():
         
     | 
| 14 | 
         
            +
                import xformers
         
     | 
| 15 | 
         
            +
                import xformers.ops
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
            from comfy.cli_args import args
         
     | 
| 18 | 
         
            +
            import comfy.ops
         
     | 
| 19 | 
         
            +
            ops = comfy.ops.disable_weight_init
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
            # CrossAttn precision handling
         
     | 
| 22 | 
         
            +
            if args.dont_upcast_attention:
         
     | 
| 23 | 
         
            +
                print("disabling upcasting of attention")
         
     | 
| 24 | 
         
            +
                _ATTN_PRECISION = "fp16"
         
     | 
| 25 | 
         
            +
            else:
         
     | 
| 26 | 
         
            +
                _ATTN_PRECISION = "fp32"
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
            def exists(val):
         
     | 
| 30 | 
         
            +
                return val is not None
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
            def uniq(arr):
         
     | 
| 34 | 
         
            +
                return{el: True for el in arr}.keys()
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
            def default(val, d):
         
     | 
| 38 | 
         
            +
                if exists(val):
         
     | 
| 39 | 
         
            +
                    return val
         
     | 
| 40 | 
         
            +
                return d
         
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
             
     | 
| 43 | 
         
            +
            def max_neg_value(t):
         
     | 
| 44 | 
         
            +
                return -torch.finfo(t.dtype).max
         
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
            def init_(tensor):
         
     | 
| 48 | 
         
            +
                dim = tensor.shape[-1]
         
     | 
| 49 | 
         
            +
                std = 1 / math.sqrt(dim)
         
     | 
| 50 | 
         
            +
                tensor.uniform_(-std, std)
         
     | 
| 51 | 
         
            +
                return tensor
         
     | 
| 52 | 
         
            +
             
     | 
| 53 | 
         
            +
             
     | 
| 54 | 
         
            +
            # feedforward
         
     | 
| 55 | 
         
            +
            class GEGLU(nn.Module):
         
     | 
| 56 | 
         
            +
                def __init__(self, dim_in, dim_out, dtype=None, device=None, operations=ops):
         
     | 
| 57 | 
         
            +
                    super().__init__()
         
     | 
| 58 | 
         
            +
                    self.proj = operations.Linear(dim_in, dim_out * 2, dtype=dtype, device=device)
         
     | 
| 59 | 
         
            +
             
     | 
| 60 | 
         
            +
                def forward(self, x):
         
     | 
| 61 | 
         
            +
                    x, gate = self.proj(x).chunk(2, dim=-1)
         
     | 
| 62 | 
         
            +
                    return x * F.gelu(gate)
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
             
     | 
| 65 | 
         
            +
            class FeedForward(nn.Module):
         
     | 
| 66 | 
         
            +
                def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0., dtype=None, device=None, operations=ops):
         
     | 
| 67 | 
         
            +
                    super().__init__()
         
     | 
| 68 | 
         
            +
                    inner_dim = int(dim * mult)
         
     | 
| 69 | 
         
            +
                    dim_out = default(dim_out, dim)
         
     | 
| 70 | 
         
            +
                    project_in = nn.Sequential(
         
     | 
| 71 | 
         
            +
                        operations.Linear(dim, inner_dim, dtype=dtype, device=device),
         
     | 
| 72 | 
         
            +
                        nn.GELU()
         
     | 
| 73 | 
         
            +
                    ) if not glu else GEGLU(dim, inner_dim, dtype=dtype, device=device, operations=operations)
         
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
                    self.net = nn.Sequential(
         
     | 
| 76 | 
         
            +
                        project_in,
         
     | 
| 77 | 
         
            +
                        nn.Dropout(dropout),
         
     | 
| 78 | 
         
            +
                        operations.Linear(inner_dim, dim_out, dtype=dtype, device=device)
         
     | 
| 79 | 
         
            +
                    )
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
                def forward(self, x):
         
     | 
| 82 | 
         
            +
                    return self.net(x)
         
     | 
| 83 | 
         
            +
             
     | 
| 84 | 
         
            +
            def Normalize(in_channels, dtype=None, device=None):
         
     | 
| 85 | 
         
            +
                return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
         
     | 
| 86 | 
         
            +
             
     | 
| 87 | 
         
            +
            def attention_basic(q, k, v, heads, mask=None):
         
     | 
| 88 | 
         
            +
                b, _, dim_head = q.shape
         
     | 
| 89 | 
         
            +
                dim_head //= heads
         
     | 
| 90 | 
         
            +
                scale = dim_head ** -0.5
         
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
                h = heads
         
     | 
| 93 | 
         
            +
                q, k, v = map(
         
     | 
| 94 | 
         
            +
                    lambda t: t.unsqueeze(3)
         
     | 
| 95 | 
         
            +
                    .reshape(b, -1, heads, dim_head)
         
     | 
| 96 | 
         
            +
                    .permute(0, 2, 1, 3)
         
     | 
| 97 | 
         
            +
                    .reshape(b * heads, -1, dim_head)
         
     | 
| 98 | 
         
            +
                    .contiguous(),
         
     | 
| 99 | 
         
            +
                    (q, k, v),
         
     | 
| 100 | 
         
            +
                )
         
     | 
| 101 | 
         
            +
             
     | 
| 102 | 
         
            +
                # force cast to fp32 to avoid overflowing
         
     | 
| 103 | 
         
            +
                if _ATTN_PRECISION =="fp32":
         
     | 
| 104 | 
         
            +
                    sim = einsum('b i d, b j d -> b i j', q.float(), k.float()) * scale
         
     | 
| 105 | 
         
            +
                else:
         
     | 
| 106 | 
         
            +
                    sim = einsum('b i d, b j d -> b i j', q, k) * scale
         
     | 
| 107 | 
         
            +
             
     | 
| 108 | 
         
            +
                del q, k
         
     | 
| 109 | 
         
            +
             
     | 
| 110 | 
         
            +
                if exists(mask):
         
     | 
| 111 | 
         
            +
                    if mask.dtype == torch.bool:
         
     | 
| 112 | 
         
            +
                        mask = rearrange(mask, 'b ... -> b (...)') #TODO: check if this bool part matches pytorch attention
         
     | 
| 113 | 
         
            +
                        max_neg_value = -torch.finfo(sim.dtype).max
         
     | 
| 114 | 
         
            +
                        mask = repeat(mask, 'b j -> (b h) () j', h=h)
         
     | 
| 115 | 
         
            +
                        sim.masked_fill_(~mask, max_neg_value)
         
     | 
| 116 | 
         
            +
                    else:
         
     | 
| 117 | 
         
            +
                        sim += mask
         
     | 
| 118 | 
         
            +
             
     | 
| 119 | 
         
            +
                # attention, what we cannot get enough of
         
     | 
| 120 | 
         
            +
                sim = sim.softmax(dim=-1)
         
     | 
| 121 | 
         
            +
             
     | 
| 122 | 
         
            +
                out = einsum('b i j, b j d -> b i d', sim.to(v.dtype), v)
         
     | 
| 123 | 
         
            +
                out = (
         
     | 
| 124 | 
         
            +
                    out.unsqueeze(0)
         
     | 
| 125 | 
         
            +
                    .reshape(b, heads, -1, dim_head)
         
     | 
| 126 | 
         
            +
                    .permute(0, 2, 1, 3)
         
     | 
| 127 | 
         
            +
                    .reshape(b, -1, heads * dim_head)
         
     | 
| 128 | 
         
            +
                )
         
     | 
| 129 | 
         
            +
                return out
         
     | 
| 130 | 
         
            +
             
     | 
| 131 | 
         
            +
             
     | 
| 132 | 
         
            +
            def attention_sub_quad(query, key, value, heads, mask=None):
         
     | 
| 133 | 
         
            +
                b, _, dim_head = query.shape
         
     | 
| 134 | 
         
            +
                dim_head //= heads
         
     | 
| 135 | 
         
            +
             
     | 
| 136 | 
         
            +
                scale = dim_head ** -0.5
         
     | 
| 137 | 
         
            +
                query = query.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head)
         
     | 
| 138 | 
         
            +
                value = value.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head)
         
     | 
| 139 | 
         
            +
             
     | 
| 140 | 
         
            +
                key = key.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 3, 1).reshape(b * heads, dim_head, -1)
         
     | 
| 141 | 
         
            +
             
     | 
| 142 | 
         
            +
                dtype = query.dtype
         
     | 
| 143 | 
         
            +
                upcast_attention = _ATTN_PRECISION =="fp32" and query.dtype != torch.float32
         
     | 
| 144 | 
         
            +
                if upcast_attention:
         
     | 
| 145 | 
         
            +
                    bytes_per_token = torch.finfo(torch.float32).bits//8
         
     | 
| 146 | 
         
            +
                else:
         
     | 
| 147 | 
         
            +
                    bytes_per_token = torch.finfo(query.dtype).bits//8
         
     | 
| 148 | 
         
            +
                batch_x_heads, q_tokens, _ = query.shape
         
     | 
| 149 | 
         
            +
                _, _, k_tokens = key.shape
         
     | 
| 150 | 
         
            +
                qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens
         
     | 
| 151 | 
         
            +
             
     | 
| 152 | 
         
            +
                mem_free_total, mem_free_torch = model_management.get_free_memory(query.device, True)
         
     | 
| 153 | 
         
            +
             
     | 
| 154 | 
         
            +
                kv_chunk_size_min = None
         
     | 
| 155 | 
         
            +
                kv_chunk_size = None
         
     | 
| 156 | 
         
            +
                query_chunk_size = None
         
     | 
| 157 | 
         
            +
             
     | 
| 158 | 
         
            +
                for x in [4096, 2048, 1024, 512, 256]:
         
     | 
| 159 | 
         
            +
                    count = mem_free_total / (batch_x_heads * bytes_per_token * x * 4.0)
         
     | 
| 160 | 
         
            +
                    if count >= k_tokens:
         
     | 
| 161 | 
         
            +
                        kv_chunk_size = k_tokens
         
     | 
| 162 | 
         
            +
                        query_chunk_size = x
         
     | 
| 163 | 
         
            +
                        break
         
     | 
| 164 | 
         
            +
             
     | 
| 165 | 
         
            +
                if query_chunk_size is None:
         
     | 
| 166 | 
         
            +
                    query_chunk_size = 512
         
     | 
| 167 | 
         
            +
             
     | 
| 168 | 
         
            +
                hidden_states = efficient_dot_product_attention(
         
     | 
| 169 | 
         
            +
                    query,
         
     | 
| 170 | 
         
            +
                    key,
         
     | 
| 171 | 
         
            +
                    value,
         
     | 
| 172 | 
         
            +
                    query_chunk_size=query_chunk_size,
         
     | 
| 173 | 
         
            +
                    kv_chunk_size=kv_chunk_size,
         
     | 
| 174 | 
         
            +
                    kv_chunk_size_min=kv_chunk_size_min,
         
     | 
| 175 | 
         
            +
                    use_checkpoint=False,
         
     | 
| 176 | 
         
            +
                    upcast_attention=upcast_attention,
         
     | 
| 177 | 
         
            +
                    mask=mask,
         
     | 
| 178 | 
         
            +
                )
         
     | 
| 179 | 
         
            +
             
     | 
| 180 | 
         
            +
                hidden_states = hidden_states.to(dtype)
         
     | 
| 181 | 
         
            +
             
     | 
| 182 | 
         
            +
                hidden_states = hidden_states.unflatten(0, (-1, heads)).transpose(1,2).flatten(start_dim=2)
         
     | 
| 183 | 
         
            +
                return hidden_states
         
     | 
| 184 | 
         
            +
             
     | 
| 185 | 
         
            +
            def attention_split(q, k, v, heads, mask=None):
         
     | 
| 186 | 
         
            +
                b, _, dim_head = q.shape
         
     | 
| 187 | 
         
            +
                dim_head //= heads
         
     | 
| 188 | 
         
            +
                scale = dim_head ** -0.5
         
     | 
| 189 | 
         
            +
             
     | 
| 190 | 
         
            +
                h = heads
         
     | 
| 191 | 
         
            +
                q, k, v = map(
         
     | 
| 192 | 
         
            +
                    lambda t: t.unsqueeze(3)
         
     | 
| 193 | 
         
            +
                    .reshape(b, -1, heads, dim_head)
         
     | 
| 194 | 
         
            +
                    .permute(0, 2, 1, 3)
         
     | 
| 195 | 
         
            +
                    .reshape(b * heads, -1, dim_head)
         
     | 
| 196 | 
         
            +
                    .contiguous(),
         
     | 
| 197 | 
         
            +
                    (q, k, v),
         
     | 
| 198 | 
         
            +
                )
         
     | 
| 199 | 
         
            +
             
     | 
| 200 | 
         
            +
                r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
         
     | 
| 201 | 
         
            +
             
     | 
| 202 | 
         
            +
                mem_free_total = model_management.get_free_memory(q.device)
         
     | 
| 203 | 
         
            +
             
     | 
| 204 | 
         
            +
                if _ATTN_PRECISION =="fp32":
         
     | 
| 205 | 
         
            +
                    element_size = 4
         
     | 
| 206 | 
         
            +
                else:
         
     | 
| 207 | 
         
            +
                    element_size = q.element_size()
         
     | 
| 208 | 
         
            +
             
     | 
| 209 | 
         
            +
                gb = 1024 ** 3
         
     | 
| 210 | 
         
            +
                tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * element_size
         
     | 
| 211 | 
         
            +
                modifier = 3
         
     | 
| 212 | 
         
            +
                mem_required = tensor_size * modifier
         
     | 
| 213 | 
         
            +
                steps = 1
         
     | 
| 214 | 
         
            +
             
     | 
| 215 | 
         
            +
             
     | 
| 216 | 
         
            +
                if mem_required > mem_free_total:
         
     | 
| 217 | 
         
            +
                    steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
         
     | 
| 218 | 
         
            +
                    # print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB "
         
     | 
| 219 | 
         
            +
                    #      f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}")
         
     | 
| 220 | 
         
            +
             
     | 
| 221 | 
         
            +
                if steps > 64:
         
     | 
| 222 | 
         
            +
                    max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
         
     | 
| 223 | 
         
            +
                    raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
         
     | 
| 224 | 
         
            +
                                        f'Need: {mem_required/64/gb:0.1f}GB free, Have:{mem_free_total/gb:0.1f}GB free')
         
     | 
| 225 | 
         
            +
             
     | 
| 226 | 
         
            +
                # print("steps", steps, mem_required, mem_free_total, modifier, q.element_size(), tensor_size)
         
     | 
| 227 | 
         
            +
                first_op_done = False
         
     | 
| 228 | 
         
            +
                cleared_cache = False
         
     | 
| 229 | 
         
            +
                while True:
         
     | 
| 230 | 
         
            +
                    try:
         
     | 
| 231 | 
         
            +
                        slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
         
     | 
| 232 | 
         
            +
                        for i in range(0, q.shape[1], slice_size):
         
     | 
| 233 | 
         
            +
                            end = i + slice_size
         
     | 
| 234 | 
         
            +
                            if _ATTN_PRECISION =="fp32":
         
     | 
| 235 | 
         
            +
                                with torch.autocast(enabled=False, device_type = 'cuda'):
         
     | 
| 236 | 
         
            +
                                    s1 = einsum('b i d, b j d -> b i j', q[:, i:end].float(), k.float()) * scale
         
     | 
| 237 | 
         
            +
                            else:
         
     | 
| 238 | 
         
            +
                                s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) * scale
         
     | 
| 239 | 
         
            +
             
     | 
| 240 | 
         
            +
                            if mask is not None:
         
     | 
| 241 | 
         
            +
                                if len(mask.shape) == 2:
         
     | 
| 242 | 
         
            +
                                    s1 += mask[i:end]
         
     | 
| 243 | 
         
            +
                                else:
         
     | 
| 244 | 
         
            +
                                    s1 += mask[:, i:end]
         
     | 
| 245 | 
         
            +
             
     | 
| 246 | 
         
            +
                            s2 = s1.softmax(dim=-1).to(v.dtype)
         
     | 
| 247 | 
         
            +
                            del s1
         
     | 
| 248 | 
         
            +
                            first_op_done = True
         
     | 
| 249 | 
         
            +
             
     | 
| 250 | 
         
            +
                            r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
         
     | 
| 251 | 
         
            +
                            del s2
         
     | 
| 252 | 
         
            +
                        break
         
     | 
| 253 | 
         
            +
                    except model_management.OOM_EXCEPTION as e:
         
     | 
| 254 | 
         
            +
                        if first_op_done == False:
         
     | 
| 255 | 
         
            +
                            model_management.soft_empty_cache(True)
         
     | 
| 256 | 
         
            +
                            if cleared_cache == False:
         
     | 
| 257 | 
         
            +
                                cleared_cache = True
         
     | 
| 258 | 
         
            +
                                print("out of memory error, emptying cache and trying again")
         
     | 
| 259 | 
         
            +
                                continue
         
     | 
| 260 | 
         
            +
                            steps *= 2
         
     | 
| 261 | 
         
            +
                            if steps > 64:
         
     | 
| 262 | 
         
            +
                                raise e
         
     | 
| 263 | 
         
            +
                            print("out of memory error, increasing steps and trying again", steps)
         
     | 
| 264 | 
         
            +
                        else:
         
     | 
| 265 | 
         
            +
                            raise e
         
     | 
| 266 | 
         
            +
             
     | 
| 267 | 
         
            +
                del q, k, v
         
     | 
| 268 | 
         
            +
             
     | 
| 269 | 
         
            +
                r1 = (
         
     | 
| 270 | 
         
            +
                    r1.unsqueeze(0)
         
     | 
| 271 | 
         
            +
                    .reshape(b, heads, -1, dim_head)
         
     | 
| 272 | 
         
            +
                    .permute(0, 2, 1, 3)
         
     | 
| 273 | 
         
            +
                    .reshape(b, -1, heads * dim_head)
         
     | 
| 274 | 
         
            +
                )
         
     | 
| 275 | 
         
            +
                return r1
         
     | 
| 276 | 
         
            +
             
     | 
| 277 | 
         
            +
            BROKEN_XFORMERS = False
         
     | 
| 278 | 
         
            +
            try:
         
     | 
| 279 | 
         
            +
                x_vers = xformers.__version__
         
     | 
| 280 | 
         
            +
                #I think 0.0.23 is also broken (q with bs bigger than 65535 gives CUDA error)
         
     | 
| 281 | 
         
            +
                BROKEN_XFORMERS = x_vers.startswith("0.0.21") or x_vers.startswith("0.0.22") or x_vers.startswith("0.0.23")
         
     | 
| 282 | 
         
            +
            except:
         
     | 
| 283 | 
         
            +
                pass
         
     | 
| 284 | 
         
            +
             
     | 
| 285 | 
         
            +
            def attention_xformers(q, k, v, heads, mask=None):
         
     | 
| 286 | 
         
            +
                b, _, dim_head = q.shape
         
     | 
| 287 | 
         
            +
                dim_head //= heads
         
     | 
| 288 | 
         
            +
                if BROKEN_XFORMERS:
         
     | 
| 289 | 
         
            +
                    if b * heads > 65535:
         
     | 
| 290 | 
         
            +
                        return attention_pytorch(q, k, v, heads, mask)
         
     | 
| 291 | 
         
            +
             
     | 
| 292 | 
         
            +
                q, k, v = map(
         
     | 
| 293 | 
         
            +
                    lambda t: t.unsqueeze(3)
         
     | 
| 294 | 
         
            +
                    .reshape(b, -1, heads, dim_head)
         
     | 
| 295 | 
         
            +
                    .permute(0, 2, 1, 3)
         
     | 
| 296 | 
         
            +
                    .reshape(b * heads, -1, dim_head)
         
     | 
| 297 | 
         
            +
                    .contiguous(),
         
     | 
| 298 | 
         
            +
                    (q, k, v),
         
     | 
| 299 | 
         
            +
                )
         
     | 
| 300 | 
         
            +
             
     | 
| 301 | 
         
            +
                if mask is not None:
         
     | 
| 302 | 
         
            +
                    pad = 8 - q.shape[1] % 8
         
     | 
| 303 | 
         
            +
                    mask_out = torch.empty([q.shape[0], q.shape[1], q.shape[1] + pad], dtype=q.dtype, device=q.device)
         
     | 
| 304 | 
         
            +
                    mask_out[:, :, :mask.shape[-1]] = mask
         
     | 
| 305 | 
         
            +
                    mask = mask_out[:, :, :mask.shape[-1]]
         
     | 
| 306 | 
         
            +
             
     | 
| 307 | 
         
            +
                out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=mask)
         
     | 
| 308 | 
         
            +
             
     | 
| 309 | 
         
            +
                out = (
         
     | 
| 310 | 
         
            +
                    out.unsqueeze(0)
         
     | 
| 311 | 
         
            +
                    .reshape(b, heads, -1, dim_head)
         
     | 
| 312 | 
         
            +
                    .permute(0, 2, 1, 3)
         
     | 
| 313 | 
         
            +
                    .reshape(b, -1, heads * dim_head)
         
     | 
| 314 | 
         
            +
                )
         
     | 
| 315 | 
         
            +
                return out
         
     | 
| 316 | 
         
            +
             
     | 
| 317 | 
         
            +
            def attention_pytorch(q, k, v, heads, mask=None):
         
     | 
| 318 | 
         
            +
                b, _, dim_head = q.shape
         
     | 
| 319 | 
         
            +
                dim_head //= heads
         
     | 
| 320 | 
         
            +
                q, k, v = map(
         
     | 
| 321 | 
         
            +
                    lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2),
         
     | 
| 322 | 
         
            +
                    (q, k, v),
         
     | 
| 323 | 
         
            +
                )
         
     | 
| 324 | 
         
            +
             
     | 
| 325 | 
         
            +
                out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
         
     | 
| 326 | 
         
            +
                out = (
         
     | 
| 327 | 
         
            +
                    out.transpose(1, 2).reshape(b, -1, heads * dim_head)
         
     | 
| 328 | 
         
            +
                )
         
     | 
| 329 | 
         
            +
                return out
         
     | 
| 330 | 
         
            +
             
     | 
| 331 | 
         
            +
             
     | 
| 332 | 
         
            +
            optimized_attention = attention_basic
         
     | 
| 333 | 
         
            +
             
     | 
| 334 | 
         
            +
            if model_management.xformers_enabled():
         
     | 
| 335 | 
         
            +
                print("Using xformers cross attention")
         
     | 
| 336 | 
         
            +
                optimized_attention = attention_xformers
         
     | 
| 337 | 
         
            +
            elif model_management.pytorch_attention_enabled():
         
     | 
| 338 | 
         
            +
                print("Using pytorch cross attention")
         
     | 
| 339 | 
         
            +
                optimized_attention = attention_pytorch
         
     | 
| 340 | 
         
            +
            else:
         
     | 
| 341 | 
         
            +
                if args.use_split_cross_attention:
         
     | 
| 342 | 
         
            +
                    print("Using split optimization for cross attention")
         
     | 
| 343 | 
         
            +
                    optimized_attention = attention_split
         
     | 
| 344 | 
         
            +
                else:
         
     | 
| 345 | 
         
            +
                    print("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention")
         
     | 
| 346 | 
         
            +
                    optimized_attention = attention_sub_quad
         
     | 
| 347 | 
         
            +
             
     | 
| 348 | 
         
            +
            optimized_attention_masked = optimized_attention
         
     | 
| 349 | 
         
            +
             
     | 
| 350 | 
         
            +
            def optimized_attention_for_device(device, mask=False, small_input=False):
         
     | 
| 351 | 
         
            +
                if small_input:
         
     | 
| 352 | 
         
            +
                    if model_management.pytorch_attention_enabled():
         
     | 
| 353 | 
         
            +
                        return attention_pytorch #TODO: need to confirm but this is probably slightly faster for small inputs in all cases
         
     | 
| 354 | 
         
            +
                    else:
         
     | 
| 355 | 
         
            +
                        return attention_basic
         
     | 
| 356 | 
         
            +
             
     | 
| 357 | 
         
            +
                if device == torch.device("cpu"):
         
     | 
| 358 | 
         
            +
                    return attention_sub_quad
         
     | 
| 359 | 
         
            +
             
     | 
| 360 | 
         
            +
                if mask:
         
     | 
| 361 | 
         
            +
                    return optimized_attention_masked
         
     | 
| 362 | 
         
            +
             
     | 
| 363 | 
         
            +
                return optimized_attention
         
     | 
| 364 | 
         
            +
             
     | 
| 365 | 
         
            +
             
     | 
| 366 | 
         
            +
            class CrossAttention(nn.Module):
         
     | 
| 367 | 
         
            +
                def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., dtype=None, device=None, operations=ops):
         
     | 
| 368 | 
         
            +
                    super().__init__()
         
     | 
| 369 | 
         
            +
                    inner_dim = dim_head * heads
         
     | 
| 370 | 
         
            +
                    context_dim = default(context_dim, query_dim)
         
     | 
| 371 | 
         
            +
             
     | 
| 372 | 
         
            +
                    self.heads = heads
         
     | 
| 373 | 
         
            +
                    self.dim_head = dim_head
         
     | 
| 374 | 
         
            +
             
     | 
| 375 | 
         
            +
                    self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device)
         
     | 
| 376 | 
         
            +
                    self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
         
     | 
| 377 | 
         
            +
                    self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device)
         
     | 
| 378 | 
         
            +
             
     | 
| 379 | 
         
            +
                    self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
         
     | 
| 380 | 
         
            +
             
     | 
| 381 | 
         
            +
                def forward(self, x, context=None, value=None, mask=None):
         
     | 
| 382 | 
         
            +
                    q = self.to_q(x)
         
     | 
| 383 | 
         
            +
                    context = default(context, x)
         
     | 
| 384 | 
         
            +
                    k = self.to_k(context)
         
     | 
| 385 | 
         
            +
                    if value is not None:
         
     | 
| 386 | 
         
            +
                        v = self.to_v(value)
         
     | 
| 387 | 
         
            +
                        del value
         
     | 
| 388 | 
         
            +
                    else:
         
     | 
| 389 | 
         
            +
                        v = self.to_v(context)
         
     | 
| 390 | 
         
            +
             
     | 
| 391 | 
         
            +
                    if mask is None:
         
     | 
| 392 | 
         
            +
                        out = optimized_attention(q, k, v, self.heads)
         
     | 
| 393 | 
         
            +
                    else:
         
     | 
| 394 | 
         
            +
                        out = optimized_attention_masked(q, k, v, self.heads, mask)
         
     | 
| 395 | 
         
            +
                    return self.to_out(out)
         
     | 
| 396 | 
         
            +
             
     | 
| 397 | 
         
            +
             
     | 
| 398 | 
         
            +
            class BasicTransformerBlock(nn.Module):
         
     | 
| 399 | 
         
            +
                def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, ff_in=False, inner_dim=None,
         
     | 
| 400 | 
         
            +
                             disable_self_attn=False, disable_temporal_crossattention=False, switch_temporal_ca_to_sa=False, dtype=None, device=None, operations=ops):
         
     | 
| 401 | 
         
            +
                    super().__init__()
         
     | 
| 402 | 
         
            +
             
     | 
| 403 | 
         
            +
                    self.ff_in = ff_in or inner_dim is not None
         
     | 
| 404 | 
         
            +
                    if inner_dim is None:
         
     | 
| 405 | 
         
            +
                        inner_dim = dim
         
     | 
| 406 | 
         
            +
             
     | 
| 407 | 
         
            +
                    self.is_res = inner_dim == dim
         
     | 
| 408 | 
         
            +
             
     | 
| 409 | 
         
            +
                    if self.ff_in:
         
     | 
| 410 | 
         
            +
                        self.norm_in = operations.LayerNorm(dim, dtype=dtype, device=device)
         
     | 
| 411 | 
         
            +
                        self.ff_in = FeedForward(dim, dim_out=inner_dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations)
         
     | 
| 412 | 
         
            +
             
     | 
| 413 | 
         
            +
                    self.disable_self_attn = disable_self_attn
         
     | 
| 414 | 
         
            +
                    self.attn1 = CrossAttention(query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout,
         
     | 
| 415 | 
         
            +
                                          context_dim=context_dim if self.disable_self_attn else None, dtype=dtype, device=device, operations=operations)  # is a self-attention if not self.disable_self_attn
         
     | 
| 416 | 
         
            +
                    self.ff = FeedForward(inner_dim, dim_out=dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations)
         
     | 
| 417 | 
         
            +
             
     | 
| 418 | 
         
            +
                    if disable_temporal_crossattention:
         
     | 
| 419 | 
         
            +
                        if switch_temporal_ca_to_sa:
         
     | 
| 420 | 
         
            +
                            raise ValueError
         
     | 
| 421 | 
         
            +
                        else:
         
     | 
| 422 | 
         
            +
                            self.attn2 = None
         
     | 
| 423 | 
         
            +
                    else:
         
     | 
| 424 | 
         
            +
                        context_dim_attn2 = None
         
     | 
| 425 | 
         
            +
                        if not switch_temporal_ca_to_sa:
         
     | 
| 426 | 
         
            +
                            context_dim_attn2 = context_dim
         
     | 
| 427 | 
         
            +
             
     | 
| 428 | 
         
            +
                        self.attn2 = CrossAttention(query_dim=inner_dim, context_dim=context_dim_attn2,
         
     | 
| 429 | 
         
            +
                                            heads=n_heads, dim_head=d_head, dropout=dropout, dtype=dtype, device=device, operations=operations)  # is self-attn if context is none
         
     | 
| 430 | 
         
            +
                        self.norm2 = operations.LayerNorm(inner_dim, dtype=dtype, device=device)
         
     | 
| 431 | 
         
            +
             
     | 
| 432 | 
         
            +
                    self.norm1 = operations.LayerNorm(inner_dim, dtype=dtype, device=device)
         
     | 
| 433 | 
         
            +
                    self.norm3 = operations.LayerNorm(inner_dim, dtype=dtype, device=device)
         
     | 
| 434 | 
         
            +
                    self.checkpoint = checkpoint
         
     | 
| 435 | 
         
            +
                    self.n_heads = n_heads
         
     | 
| 436 | 
         
            +
                    self.d_head = d_head
         
     | 
| 437 | 
         
            +
                    self.switch_temporal_ca_to_sa = switch_temporal_ca_to_sa
         
     | 
| 438 | 
         
            +
             
     | 
| 439 | 
         
            +
                def forward(self, x, context=None, transformer_options={}):
         
     | 
| 440 | 
         
            +
                    return checkpoint(self._forward, (x, context, transformer_options), self.parameters(), self.checkpoint)
         
     | 
| 441 | 
         
            +
             
     | 
| 442 | 
         
            +
                def _forward(self, x, context=None, transformer_options={}):
         
     | 
| 443 | 
         
            +
                    extra_options = {}
         
     | 
| 444 | 
         
            +
                    block = transformer_options.get("block", None)
         
     | 
| 445 | 
         
            +
                    block_index = transformer_options.get("block_index", 0)
         
     | 
| 446 | 
         
            +
                    transformer_patches = {}
         
     | 
| 447 | 
         
            +
                    transformer_patches_replace = {}
         
     | 
| 448 | 
         
            +
             
     | 
| 449 | 
         
            +
                    for k in transformer_options:
         
     | 
| 450 | 
         
            +
                        if k == "patches":
         
     | 
| 451 | 
         
            +
                            transformer_patches = transformer_options[k]
         
     | 
| 452 | 
         
            +
                        elif k == "patches_replace":
         
     | 
| 453 | 
         
            +
                            transformer_patches_replace = transformer_options[k]
         
     | 
| 454 | 
         
            +
                        else:
         
     | 
| 455 | 
         
            +
                            extra_options[k] = transformer_options[k]
         
     | 
| 456 | 
         
            +
             
     | 
| 457 | 
         
            +
                    extra_options["n_heads"] = self.n_heads
         
     | 
| 458 | 
         
            +
                    extra_options["dim_head"] = self.d_head
         
     | 
| 459 | 
         
            +
             
     | 
| 460 | 
         
            +
                    if self.ff_in:
         
     | 
| 461 | 
         
            +
                        x_skip = x
         
     | 
| 462 | 
         
            +
                        x = self.ff_in(self.norm_in(x))
         
     | 
| 463 | 
         
            +
                        if self.is_res:
         
     | 
| 464 | 
         
            +
                            x += x_skip
         
     | 
| 465 | 
         
            +
             
     | 
| 466 | 
         
            +
                    n = self.norm1(x)
         
     | 
| 467 | 
         
            +
                    if self.disable_self_attn:
         
     | 
| 468 | 
         
            +
                        context_attn1 = context
         
     | 
| 469 | 
         
            +
                    else:
         
     | 
| 470 | 
         
            +
                        context_attn1 = None
         
     | 
| 471 | 
         
            +
                    value_attn1 = None
         
     | 
| 472 | 
         
            +
             
     | 
| 473 | 
         
            +
                    if "attn1_patch" in transformer_patches:
         
     | 
| 474 | 
         
            +
                        patch = transformer_patches["attn1_patch"]
         
     | 
| 475 | 
         
            +
                        if context_attn1 is None:
         
     | 
| 476 | 
         
            +
                            context_attn1 = n
         
     | 
| 477 | 
         
            +
                        value_attn1 = context_attn1
         
     | 
| 478 | 
         
            +
                        for p in patch:
         
     | 
| 479 | 
         
            +
                            n, context_attn1, value_attn1 = p(n, context_attn1, value_attn1, extra_options)
         
     | 
| 480 | 
         
            +
             
     | 
| 481 | 
         
            +
                    if block is not None:
         
     | 
| 482 | 
         
            +
                        transformer_block = (block[0], block[1], block_index)
         
     | 
| 483 | 
         
            +
                    else:
         
     | 
| 484 | 
         
            +
                        transformer_block = None
         
     | 
| 485 | 
         
            +
                    attn1_replace_patch = transformer_patches_replace.get("attn1", {})
         
     | 
| 486 | 
         
            +
                    block_attn1 = transformer_block
         
     | 
| 487 | 
         
            +
                    if block_attn1 not in attn1_replace_patch:
         
     | 
| 488 | 
         
            +
                        block_attn1 = block
         
     | 
| 489 | 
         
            +
             
     | 
| 490 | 
         
            +
                    if block_attn1 in attn1_replace_patch:
         
     | 
| 491 | 
         
            +
                        if context_attn1 is None:
         
     | 
| 492 | 
         
            +
                            context_attn1 = n
         
     | 
| 493 | 
         
            +
                            value_attn1 = n
         
     | 
| 494 | 
         
            +
                        n = self.attn1.to_q(n)
         
     | 
| 495 | 
         
            +
                        context_attn1 = self.attn1.to_k(context_attn1)
         
     | 
| 496 | 
         
            +
                        value_attn1 = self.attn1.to_v(value_attn1)
         
     | 
| 497 | 
         
            +
                        n = attn1_replace_patch[block_attn1](n, context_attn1, value_attn1, extra_options)
         
     | 
| 498 | 
         
            +
                        n = self.attn1.to_out(n)
         
     | 
| 499 | 
         
            +
                    else:
         
     | 
| 500 | 
         
            +
                        n = self.attn1(n, context=context_attn1, value=value_attn1)
         
     | 
| 501 | 
         
            +
             
     | 
| 502 | 
         
            +
                    if "attn1_output_patch" in transformer_patches:
         
     | 
| 503 | 
         
            +
                        patch = transformer_patches["attn1_output_patch"]
         
     | 
| 504 | 
         
            +
                        for p in patch:
         
     | 
| 505 | 
         
            +
                            n = p(n, extra_options)
         
     | 
| 506 | 
         
            +
             
     | 
| 507 | 
         
            +
                    x += n
         
     | 
| 508 | 
         
            +
                    if "middle_patch" in transformer_patches:
         
     | 
| 509 | 
         
            +
                        patch = transformer_patches["middle_patch"]
         
     | 
| 510 | 
         
            +
                        for p in patch:
         
     | 
| 511 | 
         
            +
                            x = p(x, extra_options)
         
     | 
| 512 | 
         
            +
             
     | 
| 513 | 
         
            +
                    if self.attn2 is not None:
         
     | 
| 514 | 
         
            +
                        n = self.norm2(x)
         
     | 
| 515 | 
         
            +
                        if self.switch_temporal_ca_to_sa:
         
     | 
| 516 | 
         
            +
                            context_attn2 = n
         
     | 
| 517 | 
         
            +
                        else:
         
     | 
| 518 | 
         
            +
                            context_attn2 = context
         
     | 
| 519 | 
         
            +
                        value_attn2 = None
         
     | 
| 520 | 
         
            +
                        if "attn2_patch" in transformer_patches:
         
     | 
| 521 | 
         
            +
                            patch = transformer_patches["attn2_patch"]
         
     | 
| 522 | 
         
            +
                            value_attn2 = context_attn2
         
     | 
| 523 | 
         
            +
                            for p in patch:
         
     | 
| 524 | 
         
            +
                                n, context_attn2, value_attn2 = p(n, context_attn2, value_attn2, extra_options)
         
     | 
| 525 | 
         
            +
             
     | 
| 526 | 
         
            +
                        attn2_replace_patch = transformer_patches_replace.get("attn2", {})
         
     | 
| 527 | 
         
            +
                        block_attn2 = transformer_block
         
     | 
| 528 | 
         
            +
                        if block_attn2 not in attn2_replace_patch:
         
     | 
| 529 | 
         
            +
                            block_attn2 = block
         
     | 
| 530 | 
         
            +
             
     | 
| 531 | 
         
            +
                        if block_attn2 in attn2_replace_patch:
         
     | 
| 532 | 
         
            +
                            if value_attn2 is None:
         
     | 
| 533 | 
         
            +
                                value_attn2 = context_attn2
         
     | 
| 534 | 
         
            +
                            n = self.attn2.to_q(n)
         
     | 
| 535 | 
         
            +
                            context_attn2 = self.attn2.to_k(context_attn2)
         
     | 
| 536 | 
         
            +
                            value_attn2 = self.attn2.to_v(value_attn2)
         
     | 
| 537 | 
         
            +
                            n = attn2_replace_patch[block_attn2](n, context_attn2, value_attn2, extra_options)
         
     | 
| 538 | 
         
            +
                            n = self.attn2.to_out(n)
         
     | 
| 539 | 
         
            +
                        else:
         
     | 
| 540 | 
         
            +
                            n = self.attn2(n, context=context_attn2, value=value_attn2)
         
     | 
| 541 | 
         
            +
             
     | 
| 542 | 
         
            +
                    if "attn2_output_patch" in transformer_patches:
         
     | 
| 543 | 
         
            +
                        patch = transformer_patches["attn2_output_patch"]
         
     | 
| 544 | 
         
            +
                        for p in patch:
         
     | 
| 545 | 
         
            +
                            n = p(n, extra_options)
         
     | 
| 546 | 
         
            +
             
     | 
| 547 | 
         
            +
                    x += n
         
     | 
| 548 | 
         
            +
                    if self.is_res:
         
     | 
| 549 | 
         
            +
                        x_skip = x
         
     | 
| 550 | 
         
            +
                    x = self.ff(self.norm3(x))
         
     | 
| 551 | 
         
            +
                    if self.is_res:
         
     | 
| 552 | 
         
            +
                        x += x_skip
         
     | 
| 553 | 
         
            +
             
     | 
| 554 | 
         
            +
                    return x
         
     | 
| 555 | 
         
            +
             
     | 
| 556 | 
         
            +
             
     | 
| 557 | 
         
            +
            class SpatialTransformer(nn.Module):
         
     | 
| 558 | 
         
            +
                """
         
     | 
| 559 | 
         
            +
                Transformer block for image-like data.
         
     | 
| 560 | 
         
            +
                First, project the input (aka embedding)
         
     | 
| 561 | 
         
            +
                and reshape to b, t, d.
         
     | 
| 562 | 
         
            +
                Then apply standard transformer action.
         
     | 
| 563 | 
         
            +
                Finally, reshape to image
         
     | 
| 564 | 
         
            +
                NEW: use_linear for more efficiency instead of the 1x1 convs
         
     | 
| 565 | 
         
            +
                """
         
     | 
| 566 | 
         
            +
                def __init__(self, in_channels, n_heads, d_head,
         
     | 
| 567 | 
         
            +
                             depth=1, dropout=0., context_dim=None,
         
     | 
| 568 | 
         
            +
                             disable_self_attn=False, use_linear=False,
         
     | 
| 569 | 
         
            +
                             use_checkpoint=True, dtype=None, device=None, operations=ops):
         
     | 
| 570 | 
         
            +
                    super().__init__()
         
     | 
| 571 | 
         
            +
                    if exists(context_dim) and not isinstance(context_dim, list):
         
     | 
| 572 | 
         
            +
                        context_dim = [context_dim] * depth
         
     | 
| 573 | 
         
            +
                    self.in_channels = in_channels
         
     | 
| 574 | 
         
            +
                    inner_dim = n_heads * d_head
         
     | 
| 575 | 
         
            +
                    self.norm = operations.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
         
     | 
| 576 | 
         
            +
                    if not use_linear:
         
     | 
| 577 | 
         
            +
                        self.proj_in = operations.Conv2d(in_channels,
         
     | 
| 578 | 
         
            +
                                                 inner_dim,
         
     | 
| 579 | 
         
            +
                                                 kernel_size=1,
         
     | 
| 580 | 
         
            +
                                                 stride=1,
         
     | 
| 581 | 
         
            +
                                                 padding=0, dtype=dtype, device=device)
         
     | 
| 582 | 
         
            +
                    else:
         
     | 
| 583 | 
         
            +
                        self.proj_in = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device)
         
     | 
| 584 | 
         
            +
             
     | 
| 585 | 
         
            +
                    self.transformer_blocks = nn.ModuleList(
         
     | 
| 586 | 
         
            +
                        [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
         
     | 
| 587 | 
         
            +
                                               disable_self_attn=disable_self_attn, checkpoint=use_checkpoint, dtype=dtype, device=device, operations=operations)
         
     | 
| 588 | 
         
            +
                            for d in range(depth)]
         
     | 
| 589 | 
         
            +
                    )
         
     | 
| 590 | 
         
            +
                    if not use_linear:
         
     | 
| 591 | 
         
            +
                        self.proj_out = operations.Conv2d(inner_dim,in_channels,
         
     | 
| 592 | 
         
            +
                                                              kernel_size=1,
         
     | 
| 593 | 
         
            +
                                                              stride=1,
         
     | 
| 594 | 
         
            +
                                                              padding=0, dtype=dtype, device=device)
         
     | 
| 595 | 
         
            +
                    else:
         
     | 
| 596 | 
         
            +
                        self.proj_out = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device)
         
     | 
| 597 | 
         
            +
                    self.use_linear = use_linear
         
     | 
| 598 | 
         
            +
             
     | 
| 599 | 
         
            +
                def forward(self, x, context=None, transformer_options={}):
         
     | 
| 600 | 
         
            +
                    # note: if no context is given, cross-attention defaults to self-attention
         
     | 
| 601 | 
         
            +
                    if not isinstance(context, list):
         
     | 
| 602 | 
         
            +
                        context = [context] * len(self.transformer_blocks)
         
     | 
| 603 | 
         
            +
                    b, c, h, w = x.shape
         
     | 
| 604 | 
         
            +
                    x_in = x
         
     | 
| 605 | 
         
            +
                    x = self.norm(x)
         
     | 
| 606 | 
         
            +
                    if not self.use_linear:
         
     | 
| 607 | 
         
            +
                        x = self.proj_in(x)
         
     | 
| 608 | 
         
            +
                    x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
         
     | 
| 609 | 
         
            +
                    if self.use_linear:
         
     | 
| 610 | 
         
            +
                        x = self.proj_in(x)
         
     | 
| 611 | 
         
            +
                    for i, block in enumerate(self.transformer_blocks):
         
     | 
| 612 | 
         
            +
                        transformer_options["block_index"] = i
         
     | 
| 613 | 
         
            +
                        x = block(x, context=context[i], transformer_options=transformer_options)
         
     | 
| 614 | 
         
            +
                    if self.use_linear:
         
     | 
| 615 | 
         
            +
                        x = self.proj_out(x)
         
     | 
| 616 | 
         
            +
                    x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
         
     | 
| 617 | 
         
            +
                    if not self.use_linear:
         
     | 
| 618 | 
         
            +
                        x = self.proj_out(x)
         
     | 
| 619 | 
         
            +
                    return x + x_in
         
     | 
| 620 | 
         
            +
             
     | 
| 621 | 
         
            +
             
     | 
| 622 | 
         
            +
            class SpatialVideoTransformer(SpatialTransformer):
         
     | 
| 623 | 
         
            +
                def __init__(
         
     | 
| 624 | 
         
            +
                    self,
         
     | 
| 625 | 
         
            +
                    in_channels,
         
     | 
| 626 | 
         
            +
                    n_heads,
         
     | 
| 627 | 
         
            +
                    d_head,
         
     | 
| 628 | 
         
            +
                    depth=1,
         
     | 
| 629 | 
         
            +
                    dropout=0.0,
         
     | 
| 630 | 
         
            +
                    use_linear=False,
         
     | 
| 631 | 
         
            +
                    context_dim=None,
         
     | 
| 632 | 
         
            +
                    use_spatial_context=False,
         
     | 
| 633 | 
         
            +
                    timesteps=None,
         
     | 
| 634 | 
         
            +
                    merge_strategy: str = "fixed",
         
     | 
| 635 | 
         
            +
                    merge_factor: float = 0.5,
         
     | 
| 636 | 
         
            +
                    time_context_dim=None,
         
     | 
| 637 | 
         
            +
                    ff_in=False,
         
     | 
| 638 | 
         
            +
                    checkpoint=False,
         
     | 
| 639 | 
         
            +
                    time_depth=1,
         
     | 
| 640 | 
         
            +
                    disable_self_attn=False,
         
     | 
| 641 | 
         
            +
                    disable_temporal_crossattention=False,
         
     | 
| 642 | 
         
            +
                    max_time_embed_period: int = 10000,
         
     | 
| 643 | 
         
            +
                    dtype=None, device=None, operations=ops
         
     | 
| 644 | 
         
            +
                ):
         
     | 
| 645 | 
         
            +
                    super().__init__(
         
     | 
| 646 | 
         
            +
                        in_channels,
         
     | 
| 647 | 
         
            +
                        n_heads,
         
     | 
| 648 | 
         
            +
                        d_head,
         
     | 
| 649 | 
         
            +
                        depth=depth,
         
     | 
| 650 | 
         
            +
                        dropout=dropout,
         
     | 
| 651 | 
         
            +
                        use_checkpoint=checkpoint,
         
     | 
| 652 | 
         
            +
                        context_dim=context_dim,
         
     | 
| 653 | 
         
            +
                        use_linear=use_linear,
         
     | 
| 654 | 
         
            +
                        disable_self_attn=disable_self_attn,
         
     | 
| 655 | 
         
            +
                        dtype=dtype, device=device, operations=operations
         
     | 
| 656 | 
         
            +
                    )
         
     | 
| 657 | 
         
            +
                    self.time_depth = time_depth
         
     | 
| 658 | 
         
            +
                    self.depth = depth
         
     | 
| 659 | 
         
            +
                    self.max_time_embed_period = max_time_embed_period
         
     | 
| 660 | 
         
            +
             
     | 
| 661 | 
         
            +
                    time_mix_d_head = d_head
         
     | 
| 662 | 
         
            +
                    n_time_mix_heads = n_heads
         
     | 
| 663 | 
         
            +
             
     | 
| 664 | 
         
            +
                    time_mix_inner_dim = int(time_mix_d_head * n_time_mix_heads)
         
     | 
| 665 | 
         
            +
             
     | 
| 666 | 
         
            +
                    inner_dim = n_heads * d_head
         
     | 
| 667 | 
         
            +
                    if use_spatial_context:
         
     | 
| 668 | 
         
            +
                        time_context_dim = context_dim
         
     | 
| 669 | 
         
            +
             
     | 
| 670 | 
         
            +
                    self.time_stack = nn.ModuleList(
         
     | 
| 671 | 
         
            +
                        [
         
     | 
| 672 | 
         
            +
                            BasicTransformerBlock(
         
     | 
| 673 | 
         
            +
                                inner_dim,
         
     | 
| 674 | 
         
            +
                                n_time_mix_heads,
         
     | 
| 675 | 
         
            +
                                time_mix_d_head,
         
     | 
| 676 | 
         
            +
                                dropout=dropout,
         
     | 
| 677 | 
         
            +
                                context_dim=time_context_dim,
         
     | 
| 678 | 
         
            +
                                # timesteps=timesteps,
         
     | 
| 679 | 
         
            +
                                checkpoint=checkpoint,
         
     | 
| 680 | 
         
            +
                                ff_in=ff_in,
         
     | 
| 681 | 
         
            +
                                inner_dim=time_mix_inner_dim,
         
     | 
| 682 | 
         
            +
                                disable_self_attn=disable_self_attn,
         
     | 
| 683 | 
         
            +
                                disable_temporal_crossattention=disable_temporal_crossattention,
         
     | 
| 684 | 
         
            +
                                dtype=dtype, device=device, operations=operations
         
     | 
| 685 | 
         
            +
                            )
         
     | 
| 686 | 
         
            +
                            for _ in range(self.depth)
         
     | 
| 687 | 
         
            +
                        ]
         
     | 
| 688 | 
         
            +
                    )
         
     | 
| 689 | 
         
            +
             
     | 
| 690 | 
         
            +
                    assert len(self.time_stack) == len(self.transformer_blocks)
         
     | 
| 691 | 
         
            +
             
     | 
| 692 | 
         
            +
                    self.use_spatial_context = use_spatial_context
         
     | 
| 693 | 
         
            +
                    self.in_channels = in_channels
         
     | 
| 694 | 
         
            +
             
     | 
| 695 | 
         
            +
                    time_embed_dim = self.in_channels * 4
         
     | 
| 696 | 
         
            +
                    self.time_pos_embed = nn.Sequential(
         
     | 
| 697 | 
         
            +
                        operations.Linear(self.in_channels, time_embed_dim, dtype=dtype, device=device),
         
     | 
| 698 | 
         
            +
                        nn.SiLU(),
         
     | 
| 699 | 
         
            +
                        operations.Linear(time_embed_dim, self.in_channels, dtype=dtype, device=device),
         
     | 
| 700 | 
         
            +
                    )
         
     | 
| 701 | 
         
            +
             
     | 
| 702 | 
         
            +
                    self.time_mixer = AlphaBlender(
         
     | 
| 703 | 
         
            +
                        alpha=merge_factor, merge_strategy=merge_strategy
         
     | 
| 704 | 
         
            +
                    )
         
     | 
| 705 | 
         
            +
             
     | 
| 706 | 
         
            +
                def forward(
         
     | 
| 707 | 
         
            +
                    self,
         
     | 
| 708 | 
         
            +
                    x: torch.Tensor,
         
     | 
| 709 | 
         
            +
                    context: Optional[torch.Tensor] = None,
         
     | 
| 710 | 
         
            +
                    time_context: Optional[torch.Tensor] = None,
         
     | 
| 711 | 
         
            +
                    timesteps: Optional[int] = None,
         
     | 
| 712 | 
         
            +
                    image_only_indicator: Optional[torch.Tensor] = None,
         
     | 
| 713 | 
         
            +
                    transformer_options={}
         
     | 
| 714 | 
         
            +
                ) -> torch.Tensor:
         
     | 
| 715 | 
         
            +
                    _, _, h, w = x.shape
         
     | 
| 716 | 
         
            +
                    x_in = x
         
     | 
| 717 | 
         
            +
                    spatial_context = None
         
     | 
| 718 | 
         
            +
                    if exists(context):
         
     | 
| 719 | 
         
            +
                        spatial_context = context
         
     | 
| 720 | 
         
            +
             
     | 
| 721 | 
         
            +
                    if self.use_spatial_context:
         
     | 
| 722 | 
         
            +
                        assert (
         
     | 
| 723 | 
         
            +
                            context.ndim == 3
         
     | 
| 724 | 
         
            +
                        ), f"n dims of spatial context should be 3 but are {context.ndim}"
         
     | 
| 725 | 
         
            +
             
     | 
| 726 | 
         
            +
                        if time_context is None:
         
     | 
| 727 | 
         
            +
                            time_context = context
         
     | 
| 728 | 
         
            +
                        time_context_first_timestep = time_context[::timesteps]
         
     | 
| 729 | 
         
            +
                        time_context = repeat(
         
     | 
| 730 | 
         
            +
                            time_context_first_timestep, "b ... -> (b n) ...", n=h * w
         
     | 
| 731 | 
         
            +
                        )
         
     | 
| 732 | 
         
            +
                    elif time_context is not None and not self.use_spatial_context:
         
     | 
| 733 | 
         
            +
                        time_context = repeat(time_context, "b ... -> (b n) ...", n=h * w)
         
     | 
| 734 | 
         
            +
                        if time_context.ndim == 2:
         
     | 
| 735 | 
         
            +
                            time_context = rearrange(time_context, "b c -> b 1 c")
         
     | 
| 736 | 
         
            +
             
     | 
| 737 | 
         
            +
                    x = self.norm(x)
         
     | 
| 738 | 
         
            +
                    if not self.use_linear:
         
     | 
| 739 | 
         
            +
                        x = self.proj_in(x)
         
     | 
| 740 | 
         
            +
                    x = rearrange(x, "b c h w -> b (h w) c")
         
     | 
| 741 | 
         
            +
                    if self.use_linear:
         
     | 
| 742 | 
         
            +
                        x = self.proj_in(x)
         
     | 
| 743 | 
         
            +
             
     | 
| 744 | 
         
            +
                    num_frames = torch.arange(timesteps, device=x.device)
         
     | 
| 745 | 
         
            +
                    num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps)
         
     | 
| 746 | 
         
            +
                    num_frames = rearrange(num_frames, "b t -> (b t)")
         
     | 
| 747 | 
         
            +
                    t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False, max_period=self.max_time_embed_period).to(x.dtype)
         
     | 
| 748 | 
         
            +
                    emb = self.time_pos_embed(t_emb)
         
     | 
| 749 | 
         
            +
                    emb = emb[:, None, :]
         
     | 
| 750 | 
         
            +
             
     | 
| 751 | 
         
            +
                    for it_, (block, mix_block) in enumerate(
         
     | 
| 752 | 
         
            +
                        zip(self.transformer_blocks, self.time_stack)
         
     | 
| 753 | 
         
            +
                    ):
         
     | 
| 754 | 
         
            +
                        transformer_options["block_index"] = it_
         
     | 
| 755 | 
         
            +
                        x = block(
         
     | 
| 756 | 
         
            +
                            x,
         
     | 
| 757 | 
         
            +
                            context=spatial_context,
         
     | 
| 758 | 
         
            +
                            transformer_options=transformer_options,
         
     | 
| 759 | 
         
            +
                        )
         
     | 
| 760 | 
         
            +
             
     | 
| 761 | 
         
            +
                        x_mix = x
         
     | 
| 762 | 
         
            +
                        x_mix = x_mix + emb
         
     | 
| 763 | 
         
            +
             
     | 
| 764 | 
         
            +
                        B, S, C = x_mix.shape
         
     | 
| 765 | 
         
            +
                        x_mix = rearrange(x_mix, "(b t) s c -> (b s) t c", t=timesteps)
         
     | 
| 766 | 
         
            +
                        x_mix = mix_block(x_mix, context=time_context) #TODO: transformer_options
         
     | 
| 767 | 
         
            +
                        x_mix = rearrange(
         
     | 
| 768 | 
         
            +
                            x_mix, "(b s) t c -> (b t) s c", s=S, b=B // timesteps, c=C, t=timesteps
         
     | 
| 769 | 
         
            +
                        )
         
     | 
| 770 | 
         
            +
             
     | 
| 771 | 
         
            +
                        x = self.time_mixer(x_spatial=x, x_temporal=x_mix, image_only_indicator=image_only_indicator)
         
     | 
| 772 | 
         
            +
             
     | 
| 773 | 
         
            +
                    if self.use_linear:
         
     | 
| 774 | 
         
            +
                        x = self.proj_out(x)
         
     | 
| 775 | 
         
            +
                    x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
         
     | 
| 776 | 
         
            +
                    if not self.use_linear:
         
     | 
| 777 | 
         
            +
                        x = self.proj_out(x)
         
     | 
| 778 | 
         
            +
                    out = x + x_in
         
     | 
| 779 | 
         
            +
                    return out
         
     | 
| 780 | 
         
            +
             
     | 
| 781 | 
         
            +
             
     | 
    	
        comfy/ldm/modules/diffusionmodules/__init__.py
    ADDED
    
    | 
         
            File without changes
         
     | 
    	
        comfy/ldm/modules/diffusionmodules/model.py
    ADDED
    
    | 
         @@ -0,0 +1,650 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # pytorch_diffusion + derived encoder decoder
         
     | 
| 2 | 
         
            +
            import math
         
     | 
| 3 | 
         
            +
            import torch
         
     | 
| 4 | 
         
            +
            import torch.nn as nn
         
     | 
| 5 | 
         
            +
            import numpy as np
         
     | 
| 6 | 
         
            +
            from einops import rearrange
         
     | 
| 7 | 
         
            +
            from typing import Optional, Any
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            from comfy import model_management
         
     | 
| 10 | 
         
            +
            import comfy.ops
         
     | 
| 11 | 
         
            +
            ops = comfy.ops.disable_weight_init
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            if model_management.xformers_enabled_vae():
         
     | 
| 14 | 
         
            +
                import xformers
         
     | 
| 15 | 
         
            +
                import xformers.ops
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
            def get_timestep_embedding(timesteps, embedding_dim):
         
     | 
| 18 | 
         
            +
                """
         
     | 
| 19 | 
         
            +
                This matches the implementation in Denoising Diffusion Probabilistic Models:
         
     | 
| 20 | 
         
            +
                From Fairseq.
         
     | 
| 21 | 
         
            +
                Build sinusoidal embeddings.
         
     | 
| 22 | 
         
            +
                This matches the implementation in tensor2tensor, but differs slightly
         
     | 
| 23 | 
         
            +
                from the description in Section 3.5 of "Attention Is All You Need".
         
     | 
| 24 | 
         
            +
                """
         
     | 
| 25 | 
         
            +
                assert len(timesteps.shape) == 1
         
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
                half_dim = embedding_dim // 2
         
     | 
| 28 | 
         
            +
                emb = math.log(10000) / (half_dim - 1)
         
     | 
| 29 | 
         
            +
                emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
         
     | 
| 30 | 
         
            +
                emb = emb.to(device=timesteps.device)
         
     | 
| 31 | 
         
            +
                emb = timesteps.float()[:, None] * emb[None, :]
         
     | 
| 32 | 
         
            +
                emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
         
     | 
| 33 | 
         
            +
                if embedding_dim % 2 == 1:  # zero pad
         
     | 
| 34 | 
         
            +
                    emb = torch.nn.functional.pad(emb, (0,1,0,0))
         
     | 
| 35 | 
         
            +
                return emb
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
            def nonlinearity(x):
         
     | 
| 39 | 
         
            +
                # swish
         
     | 
| 40 | 
         
            +
                return x*torch.sigmoid(x)
         
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
             
     | 
| 43 | 
         
            +
            def Normalize(in_channels, num_groups=32):
         
     | 
| 44 | 
         
            +
                return ops.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
         
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
            class Upsample(nn.Module):
         
     | 
| 48 | 
         
            +
                def __init__(self, in_channels, with_conv):
         
     | 
| 49 | 
         
            +
                    super().__init__()
         
     | 
| 50 | 
         
            +
                    self.with_conv = with_conv
         
     | 
| 51 | 
         
            +
                    if self.with_conv:
         
     | 
| 52 | 
         
            +
                        self.conv = ops.Conv2d(in_channels,
         
     | 
| 53 | 
         
            +
                                                    in_channels,
         
     | 
| 54 | 
         
            +
                                                    kernel_size=3,
         
     | 
| 55 | 
         
            +
                                                    stride=1,
         
     | 
| 56 | 
         
            +
                                                    padding=1)
         
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
                def forward(self, x):
         
     | 
| 59 | 
         
            +
                    try:
         
     | 
| 60 | 
         
            +
                        x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
         
     | 
| 61 | 
         
            +
                    except: #operation not implemented for bf16
         
     | 
| 62 | 
         
            +
                        b, c, h, w = x.shape
         
     | 
| 63 | 
         
            +
                        out = torch.empty((b, c, h*2, w*2), dtype=x.dtype, layout=x.layout, device=x.device)
         
     | 
| 64 | 
         
            +
                        split = 8
         
     | 
| 65 | 
         
            +
                        l = out.shape[1] // split
         
     | 
| 66 | 
         
            +
                        for i in range(0, out.shape[1], l):
         
     | 
| 67 | 
         
            +
                            out[:,i:i+l] = torch.nn.functional.interpolate(x[:,i:i+l].to(torch.float32), scale_factor=2.0, mode="nearest").to(x.dtype)
         
     | 
| 68 | 
         
            +
                        del x
         
     | 
| 69 | 
         
            +
                        x = out
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
                    if self.with_conv:
         
     | 
| 72 | 
         
            +
                        x = self.conv(x)
         
     | 
| 73 | 
         
            +
                    return x
         
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
            class Downsample(nn.Module):
         
     | 
| 77 | 
         
            +
                def __init__(self, in_channels, with_conv):
         
     | 
| 78 | 
         
            +
                    super().__init__()
         
     | 
| 79 | 
         
            +
                    self.with_conv = with_conv
         
     | 
| 80 | 
         
            +
                    if self.with_conv:
         
     | 
| 81 | 
         
            +
                        # no asymmetric padding in torch conv, must do it ourselves
         
     | 
| 82 | 
         
            +
                        self.conv = ops.Conv2d(in_channels,
         
     | 
| 83 | 
         
            +
                                                    in_channels,
         
     | 
| 84 | 
         
            +
                                                    kernel_size=3,
         
     | 
| 85 | 
         
            +
                                                    stride=2,
         
     | 
| 86 | 
         
            +
                                                    padding=0)
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
                def forward(self, x):
         
     | 
| 89 | 
         
            +
                    if self.with_conv:
         
     | 
| 90 | 
         
            +
                        pad = (0,1,0,1)
         
     | 
| 91 | 
         
            +
                        x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
         
     | 
| 92 | 
         
            +
                        x = self.conv(x)
         
     | 
| 93 | 
         
            +
                    else:
         
     | 
| 94 | 
         
            +
                        x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
         
     | 
| 95 | 
         
            +
                    return x
         
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
             
     | 
| 98 | 
         
            +
            class ResnetBlock(nn.Module):
         
     | 
| 99 | 
         
            +
                def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
         
     | 
| 100 | 
         
            +
                             dropout, temb_channels=512):
         
     | 
| 101 | 
         
            +
                    super().__init__()
         
     | 
| 102 | 
         
            +
                    self.in_channels = in_channels
         
     | 
| 103 | 
         
            +
                    out_channels = in_channels if out_channels is None else out_channels
         
     | 
| 104 | 
         
            +
                    self.out_channels = out_channels
         
     | 
| 105 | 
         
            +
                    self.use_conv_shortcut = conv_shortcut
         
     | 
| 106 | 
         
            +
             
     | 
| 107 | 
         
            +
                    self.swish = torch.nn.SiLU(inplace=True)
         
     | 
| 108 | 
         
            +
                    self.norm1 = Normalize(in_channels)
         
     | 
| 109 | 
         
            +
                    self.conv1 = ops.Conv2d(in_channels,
         
     | 
| 110 | 
         
            +
                                                 out_channels,
         
     | 
| 111 | 
         
            +
                                                 kernel_size=3,
         
     | 
| 112 | 
         
            +
                                                 stride=1,
         
     | 
| 113 | 
         
            +
                                                 padding=1)
         
     | 
| 114 | 
         
            +
                    if temb_channels > 0:
         
     | 
| 115 | 
         
            +
                        self.temb_proj = ops.Linear(temb_channels,
         
     | 
| 116 | 
         
            +
                                                         out_channels)
         
     | 
| 117 | 
         
            +
                    self.norm2 = Normalize(out_channels)
         
     | 
| 118 | 
         
            +
                    self.dropout = torch.nn.Dropout(dropout, inplace=True)
         
     | 
| 119 | 
         
            +
                    self.conv2 = ops.Conv2d(out_channels,
         
     | 
| 120 | 
         
            +
                                                 out_channels,
         
     | 
| 121 | 
         
            +
                                                 kernel_size=3,
         
     | 
| 122 | 
         
            +
                                                 stride=1,
         
     | 
| 123 | 
         
            +
                                                 padding=1)
         
     | 
| 124 | 
         
            +
                    if self.in_channels != self.out_channels:
         
     | 
| 125 | 
         
            +
                        if self.use_conv_shortcut:
         
     | 
| 126 | 
         
            +
                            self.conv_shortcut = ops.Conv2d(in_channels,
         
     | 
| 127 | 
         
            +
                                                                 out_channels,
         
     | 
| 128 | 
         
            +
                                                                 kernel_size=3,
         
     | 
| 129 | 
         
            +
                                                                 stride=1,
         
     | 
| 130 | 
         
            +
                                                                 padding=1)
         
     | 
| 131 | 
         
            +
                        else:
         
     | 
| 132 | 
         
            +
                            self.nin_shortcut = ops.Conv2d(in_channels,
         
     | 
| 133 | 
         
            +
                                                                out_channels,
         
     | 
| 134 | 
         
            +
                                                                kernel_size=1,
         
     | 
| 135 | 
         
            +
                                                                stride=1,
         
     | 
| 136 | 
         
            +
                                                                padding=0)
         
     | 
| 137 | 
         
            +
             
     | 
| 138 | 
         
            +
                def forward(self, x, temb):
         
     | 
| 139 | 
         
            +
                    h = x
         
     | 
| 140 | 
         
            +
                    h = self.norm1(h)
         
     | 
| 141 | 
         
            +
                    h = self.swish(h)
         
     | 
| 142 | 
         
            +
                    h = self.conv1(h)
         
     | 
| 143 | 
         
            +
             
     | 
| 144 | 
         
            +
                    if temb is not None:
         
     | 
| 145 | 
         
            +
                        h = h + self.temb_proj(self.swish(temb))[:,:,None,None]
         
     | 
| 146 | 
         
            +
             
     | 
| 147 | 
         
            +
                    h = self.norm2(h)
         
     | 
| 148 | 
         
            +
                    h = self.swish(h)
         
     | 
| 149 | 
         
            +
                    h = self.dropout(h)
         
     | 
| 150 | 
         
            +
                    h = self.conv2(h)
         
     | 
| 151 | 
         
            +
             
     | 
| 152 | 
         
            +
                    if self.in_channels != self.out_channels:
         
     | 
| 153 | 
         
            +
                        if self.use_conv_shortcut:
         
     | 
| 154 | 
         
            +
                            x = self.conv_shortcut(x)
         
     | 
| 155 | 
         
            +
                        else:
         
     | 
| 156 | 
         
            +
                            x = self.nin_shortcut(x)
         
     | 
| 157 | 
         
            +
             
     | 
| 158 | 
         
            +
                    return x+h
         
     | 
| 159 | 
         
            +
             
     | 
| 160 | 
         
            +
            def slice_attention(q, k, v):
         
     | 
| 161 | 
         
            +
                r1 = torch.zeros_like(k, device=q.device)
         
     | 
| 162 | 
         
            +
                scale = (int(q.shape[-1])**(-0.5))
         
     | 
| 163 | 
         
            +
             
     | 
| 164 | 
         
            +
                mem_free_total = model_management.get_free_memory(q.device)
         
     | 
| 165 | 
         
            +
             
     | 
| 166 | 
         
            +
                gb = 1024 ** 3
         
     | 
| 167 | 
         
            +
                tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size()
         
     | 
| 168 | 
         
            +
                modifier = 3 if q.element_size() == 2 else 2.5
         
     | 
| 169 | 
         
            +
                mem_required = tensor_size * modifier
         
     | 
| 170 | 
         
            +
                steps = 1
         
     | 
| 171 | 
         
            +
             
     | 
| 172 | 
         
            +
                if mem_required > mem_free_total:
         
     | 
| 173 | 
         
            +
                    steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
         
     | 
| 174 | 
         
            +
             
     | 
| 175 | 
         
            +
                while True:
         
     | 
| 176 | 
         
            +
                    try:
         
     | 
| 177 | 
         
            +
                        slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
         
     | 
| 178 | 
         
            +
                        for i in range(0, q.shape[1], slice_size):
         
     | 
| 179 | 
         
            +
                            end = i + slice_size
         
     | 
| 180 | 
         
            +
                            s1 = torch.bmm(q[:, i:end], k) * scale
         
     | 
| 181 | 
         
            +
             
     | 
| 182 | 
         
            +
                            s2 = torch.nn.functional.softmax(s1, dim=2).permute(0,2,1)
         
     | 
| 183 | 
         
            +
                            del s1
         
     | 
| 184 | 
         
            +
             
     | 
| 185 | 
         
            +
                            r1[:, :, i:end] = torch.bmm(v, s2)
         
     | 
| 186 | 
         
            +
                            del s2
         
     | 
| 187 | 
         
            +
                        break
         
     | 
| 188 | 
         
            +
                    except model_management.OOM_EXCEPTION as e:
         
     | 
| 189 | 
         
            +
                        model_management.soft_empty_cache(True)
         
     | 
| 190 | 
         
            +
                        steps *= 2
         
     | 
| 191 | 
         
            +
                        if steps > 128:
         
     | 
| 192 | 
         
            +
                            raise e
         
     | 
| 193 | 
         
            +
                        print("out of memory error, increasing steps and trying again", steps)
         
     | 
| 194 | 
         
            +
             
     | 
| 195 | 
         
            +
                return r1
         
     | 
| 196 | 
         
            +
             
     | 
| 197 | 
         
            +
            def normal_attention(q, k, v):
         
     | 
| 198 | 
         
            +
                # compute attention
         
     | 
| 199 | 
         
            +
                b,c,h,w = q.shape
         
     | 
| 200 | 
         
            +
             
     | 
| 201 | 
         
            +
                q = q.reshape(b,c,h*w)
         
     | 
| 202 | 
         
            +
                q = q.permute(0,2,1)   # b,hw,c
         
     | 
| 203 | 
         
            +
                k = k.reshape(b,c,h*w) # b,c,hw
         
     | 
| 204 | 
         
            +
                v = v.reshape(b,c,h*w)
         
     | 
| 205 | 
         
            +
             
     | 
| 206 | 
         
            +
                r1 = slice_attention(q, k, v)
         
     | 
| 207 | 
         
            +
                h_ = r1.reshape(b,c,h,w)
         
     | 
| 208 | 
         
            +
                del r1
         
     | 
| 209 | 
         
            +
                return h_
         
     | 
| 210 | 
         
            +
             
     | 
| 211 | 
         
            +
            def xformers_attention(q, k, v):
         
     | 
| 212 | 
         
            +
                # compute attention
         
     | 
| 213 | 
         
            +
                B, C, H, W = q.shape
         
     | 
| 214 | 
         
            +
                q, k, v = map(
         
     | 
| 215 | 
         
            +
                    lambda t: t.view(B, C, -1).transpose(1, 2).contiguous(),
         
     | 
| 216 | 
         
            +
                    (q, k, v),
         
     | 
| 217 | 
         
            +
                )
         
     | 
| 218 | 
         
            +
             
     | 
| 219 | 
         
            +
                try:
         
     | 
| 220 | 
         
            +
                    out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None)
         
     | 
| 221 | 
         
            +
                    out = out.transpose(1, 2).reshape(B, C, H, W)
         
     | 
| 222 | 
         
            +
                except NotImplementedError as e:
         
     | 
| 223 | 
         
            +
                    out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W)
         
     | 
| 224 | 
         
            +
                return out
         
     | 
| 225 | 
         
            +
             
     | 
| 226 | 
         
            +
            def pytorch_attention(q, k, v):
         
     | 
| 227 | 
         
            +
                # compute attention
         
     | 
| 228 | 
         
            +
                B, C, H, W = q.shape
         
     | 
| 229 | 
         
            +
                q, k, v = map(
         
     | 
| 230 | 
         
            +
                    lambda t: t.view(B, 1, C, -1).transpose(2, 3).contiguous(),
         
     | 
| 231 | 
         
            +
                    (q, k, v),
         
     | 
| 232 | 
         
            +
                )
         
     | 
| 233 | 
         
            +
             
     | 
| 234 | 
         
            +
                try:
         
     | 
| 235 | 
         
            +
                    out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)
         
     | 
| 236 | 
         
            +
                    out = out.transpose(2, 3).reshape(B, C, H, W)
         
     | 
| 237 | 
         
            +
                except model_management.OOM_EXCEPTION as e:
         
     | 
| 238 | 
         
            +
                    print("scaled_dot_product_attention OOMed: switched to slice attention")
         
     | 
| 239 | 
         
            +
                    out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W)
         
     | 
| 240 | 
         
            +
                return out
         
     | 
| 241 | 
         
            +
             
     | 
| 242 | 
         
            +
             
     | 
| 243 | 
         
            +
            class AttnBlock(nn.Module):
         
     | 
| 244 | 
         
            +
                def __init__(self, in_channels):
         
     | 
| 245 | 
         
            +
                    super().__init__()
         
     | 
| 246 | 
         
            +
                    self.in_channels = in_channels
         
     | 
| 247 | 
         
            +
             
     | 
| 248 | 
         
            +
                    self.norm = Normalize(in_channels)
         
     | 
| 249 | 
         
            +
                    self.q = ops.Conv2d(in_channels,
         
     | 
| 250 | 
         
            +
                                             in_channels,
         
     | 
| 251 | 
         
            +
                                             kernel_size=1,
         
     | 
| 252 | 
         
            +
                                             stride=1,
         
     | 
| 253 | 
         
            +
                                             padding=0)
         
     | 
| 254 | 
         
            +
                    self.k = ops.Conv2d(in_channels,
         
     | 
| 255 | 
         
            +
                                             in_channels,
         
     | 
| 256 | 
         
            +
                                             kernel_size=1,
         
     | 
| 257 | 
         
            +
                                             stride=1,
         
     | 
| 258 | 
         
            +
                                             padding=0)
         
     | 
| 259 | 
         
            +
                    self.v = ops.Conv2d(in_channels,
         
     | 
| 260 | 
         
            +
                                             in_channels,
         
     | 
| 261 | 
         
            +
                                             kernel_size=1,
         
     | 
| 262 | 
         
            +
                                             stride=1,
         
     | 
| 263 | 
         
            +
                                             padding=0)
         
     | 
| 264 | 
         
            +
                    self.proj_out = ops.Conv2d(in_channels,
         
     | 
| 265 | 
         
            +
                                                    in_channels,
         
     | 
| 266 | 
         
            +
                                                    kernel_size=1,
         
     | 
| 267 | 
         
            +
                                                    stride=1,
         
     | 
| 268 | 
         
            +
                                                    padding=0)
         
     | 
| 269 | 
         
            +
             
     | 
| 270 | 
         
            +
                    if model_management.xformers_enabled_vae():
         
     | 
| 271 | 
         
            +
                        print("Using xformers attention in VAE")
         
     | 
| 272 | 
         
            +
                        self.optimized_attention = xformers_attention
         
     | 
| 273 | 
         
            +
                    elif model_management.pytorch_attention_enabled():
         
     | 
| 274 | 
         
            +
                        print("Using pytorch attention in VAE")
         
     | 
| 275 | 
         
            +
                        self.optimized_attention = pytorch_attention
         
     | 
| 276 | 
         
            +
                    else:
         
     | 
| 277 | 
         
            +
                        print("Using split attention in VAE")
         
     | 
| 278 | 
         
            +
                        self.optimized_attention = normal_attention
         
     | 
| 279 | 
         
            +
             
     | 
| 280 | 
         
            +
                def forward(self, x):
         
     | 
| 281 | 
         
            +
                    h_ = x
         
     | 
| 282 | 
         
            +
                    h_ = self.norm(h_)
         
     | 
| 283 | 
         
            +
                    q = self.q(h_)
         
     | 
| 284 | 
         
            +
                    k = self.k(h_)
         
     | 
| 285 | 
         
            +
                    v = self.v(h_)
         
     | 
| 286 | 
         
            +
             
     | 
| 287 | 
         
            +
                    h_ = self.optimized_attention(q, k, v)
         
     | 
| 288 | 
         
            +
             
     | 
| 289 | 
         
            +
                    h_ = self.proj_out(h_)
         
     | 
| 290 | 
         
            +
             
     | 
| 291 | 
         
            +
                    return x+h_
         
     | 
| 292 | 
         
            +
             
     | 
| 293 | 
         
            +
             
     | 
| 294 | 
         
            +
            def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
         
     | 
| 295 | 
         
            +
                return AttnBlock(in_channels)
         
     | 
| 296 | 
         
            +
             
     | 
| 297 | 
         
            +
             
     | 
| 298 | 
         
            +
            class Model(nn.Module):
         
     | 
| 299 | 
         
            +
                def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
         
     | 
| 300 | 
         
            +
                             attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
         
     | 
| 301 | 
         
            +
                             resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
         
     | 
| 302 | 
         
            +
                    super().__init__()
         
     | 
| 303 | 
         
            +
                    if use_linear_attn: attn_type = "linear"
         
     | 
| 304 | 
         
            +
                    self.ch = ch
         
     | 
| 305 | 
         
            +
                    self.temb_ch = self.ch*4
         
     | 
| 306 | 
         
            +
                    self.num_resolutions = len(ch_mult)
         
     | 
| 307 | 
         
            +
                    self.num_res_blocks = num_res_blocks
         
     | 
| 308 | 
         
            +
                    self.resolution = resolution
         
     | 
| 309 | 
         
            +
                    self.in_channels = in_channels
         
     | 
| 310 | 
         
            +
             
     | 
| 311 | 
         
            +
                    self.use_timestep = use_timestep
         
     | 
| 312 | 
         
            +
                    if self.use_timestep:
         
     | 
| 313 | 
         
            +
                        # timestep embedding
         
     | 
| 314 | 
         
            +
                        self.temb = nn.Module()
         
     | 
| 315 | 
         
            +
                        self.temb.dense = nn.ModuleList([
         
     | 
| 316 | 
         
            +
                            ops.Linear(self.ch,
         
     | 
| 317 | 
         
            +
                                            self.temb_ch),
         
     | 
| 318 | 
         
            +
                            ops.Linear(self.temb_ch,
         
     | 
| 319 | 
         
            +
                                            self.temb_ch),
         
     | 
| 320 | 
         
            +
                        ])
         
     | 
| 321 | 
         
            +
             
     | 
| 322 | 
         
            +
                    # downsampling
         
     | 
| 323 | 
         
            +
                    self.conv_in = ops.Conv2d(in_channels,
         
     | 
| 324 | 
         
            +
                                                   self.ch,
         
     | 
| 325 | 
         
            +
                                                   kernel_size=3,
         
     | 
| 326 | 
         
            +
                                                   stride=1,
         
     | 
| 327 | 
         
            +
                                                   padding=1)
         
     | 
| 328 | 
         
            +
             
     | 
| 329 | 
         
            +
                    curr_res = resolution
         
     | 
| 330 | 
         
            +
                    in_ch_mult = (1,)+tuple(ch_mult)
         
     | 
| 331 | 
         
            +
                    self.down = nn.ModuleList()
         
     | 
| 332 | 
         
            +
                    for i_level in range(self.num_resolutions):
         
     | 
| 333 | 
         
            +
                        block = nn.ModuleList()
         
     | 
| 334 | 
         
            +
                        attn = nn.ModuleList()
         
     | 
| 335 | 
         
            +
                        block_in = ch*in_ch_mult[i_level]
         
     | 
| 336 | 
         
            +
                        block_out = ch*ch_mult[i_level]
         
     | 
| 337 | 
         
            +
                        for i_block in range(self.num_res_blocks):
         
     | 
| 338 | 
         
            +
                            block.append(ResnetBlock(in_channels=block_in,
         
     | 
| 339 | 
         
            +
                                                     out_channels=block_out,
         
     | 
| 340 | 
         
            +
                                                     temb_channels=self.temb_ch,
         
     | 
| 341 | 
         
            +
                                                     dropout=dropout))
         
     | 
| 342 | 
         
            +
                            block_in = block_out
         
     | 
| 343 | 
         
            +
                            if curr_res in attn_resolutions:
         
     | 
| 344 | 
         
            +
                                attn.append(make_attn(block_in, attn_type=attn_type))
         
     | 
| 345 | 
         
            +
                        down = nn.Module()
         
     | 
| 346 | 
         
            +
                        down.block = block
         
     | 
| 347 | 
         
            +
                        down.attn = attn
         
     | 
| 348 | 
         
            +
                        if i_level != self.num_resolutions-1:
         
     | 
| 349 | 
         
            +
                            down.downsample = Downsample(block_in, resamp_with_conv)
         
     | 
| 350 | 
         
            +
                            curr_res = curr_res // 2
         
     | 
| 351 | 
         
            +
                        self.down.append(down)
         
     | 
| 352 | 
         
            +
             
     | 
| 353 | 
         
            +
                    # middle
         
     | 
| 354 | 
         
            +
                    self.mid = nn.Module()
         
     | 
| 355 | 
         
            +
                    self.mid.block_1 = ResnetBlock(in_channels=block_in,
         
     | 
| 356 | 
         
            +
                                                   out_channels=block_in,
         
     | 
| 357 | 
         
            +
                                                   temb_channels=self.temb_ch,
         
     | 
| 358 | 
         
            +
                                                   dropout=dropout)
         
     | 
| 359 | 
         
            +
                    self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
         
     | 
| 360 | 
         
            +
                    self.mid.block_2 = ResnetBlock(in_channels=block_in,
         
     | 
| 361 | 
         
            +
                                                   out_channels=block_in,
         
     | 
| 362 | 
         
            +
                                                   temb_channels=self.temb_ch,
         
     | 
| 363 | 
         
            +
                                                   dropout=dropout)
         
     | 
| 364 | 
         
            +
             
     | 
| 365 | 
         
            +
                    # upsampling
         
     | 
| 366 | 
         
            +
                    self.up = nn.ModuleList()
         
     | 
| 367 | 
         
            +
                    for i_level in reversed(range(self.num_resolutions)):
         
     | 
| 368 | 
         
            +
                        block = nn.ModuleList()
         
     | 
| 369 | 
         
            +
                        attn = nn.ModuleList()
         
     | 
| 370 | 
         
            +
                        block_out = ch*ch_mult[i_level]
         
     | 
| 371 | 
         
            +
                        skip_in = ch*ch_mult[i_level]
         
     | 
| 372 | 
         
            +
                        for i_block in range(self.num_res_blocks+1):
         
     | 
| 373 | 
         
            +
                            if i_block == self.num_res_blocks:
         
     | 
| 374 | 
         
            +
                                skip_in = ch*in_ch_mult[i_level]
         
     | 
| 375 | 
         
            +
                            block.append(ResnetBlock(in_channels=block_in+skip_in,
         
     | 
| 376 | 
         
            +
                                                     out_channels=block_out,
         
     | 
| 377 | 
         
            +
                                                     temb_channels=self.temb_ch,
         
     | 
| 378 | 
         
            +
                                                     dropout=dropout))
         
     | 
| 379 | 
         
            +
                            block_in = block_out
         
     | 
| 380 | 
         
            +
                            if curr_res in attn_resolutions:
         
     | 
| 381 | 
         
            +
                                attn.append(make_attn(block_in, attn_type=attn_type))
         
     | 
| 382 | 
         
            +
                        up = nn.Module()
         
     | 
| 383 | 
         
            +
                        up.block = block
         
     | 
| 384 | 
         
            +
                        up.attn = attn
         
     | 
| 385 | 
         
            +
                        if i_level != 0:
         
     | 
| 386 | 
         
            +
                            up.upsample = Upsample(block_in, resamp_with_conv)
         
     | 
| 387 | 
         
            +
                            curr_res = curr_res * 2
         
     | 
| 388 | 
         
            +
                        self.up.insert(0, up) # prepend to get consistent order
         
     | 
| 389 | 
         
            +
             
     | 
| 390 | 
         
            +
                    # end
         
     | 
| 391 | 
         
            +
                    self.norm_out = Normalize(block_in)
         
     | 
| 392 | 
         
            +
                    self.conv_out = ops.Conv2d(block_in,
         
     | 
| 393 | 
         
            +
                                                    out_ch,
         
     | 
| 394 | 
         
            +
                                                    kernel_size=3,
         
     | 
| 395 | 
         
            +
                                                    stride=1,
         
     | 
| 396 | 
         
            +
                                                    padding=1)
         
     | 
| 397 | 
         
            +
             
     | 
| 398 | 
         
            +
                def forward(self, x, t=None, context=None):
         
     | 
| 399 | 
         
            +
                    #assert x.shape[2] == x.shape[3] == self.resolution
         
     | 
| 400 | 
         
            +
                    if context is not None:
         
     | 
| 401 | 
         
            +
                        # assume aligned context, cat along channel axis
         
     | 
| 402 | 
         
            +
                        x = torch.cat((x, context), dim=1)
         
     | 
| 403 | 
         
            +
                    if self.use_timestep:
         
     | 
| 404 | 
         
            +
                        # timestep embedding
         
     | 
| 405 | 
         
            +
                        assert t is not None
         
     | 
| 406 | 
         
            +
                        temb = get_timestep_embedding(t, self.ch)
         
     | 
| 407 | 
         
            +
                        temb = self.temb.dense[0](temb)
         
     | 
| 408 | 
         
            +
                        temb = nonlinearity(temb)
         
     | 
| 409 | 
         
            +
                        temb = self.temb.dense[1](temb)
         
     | 
| 410 | 
         
            +
                    else:
         
     | 
| 411 | 
         
            +
                        temb = None
         
     | 
| 412 | 
         
            +
             
     | 
| 413 | 
         
            +
                    # downsampling
         
     | 
| 414 | 
         
            +
                    hs = [self.conv_in(x)]
         
     | 
| 415 | 
         
            +
                    for i_level in range(self.num_resolutions):
         
     | 
| 416 | 
         
            +
                        for i_block in range(self.num_res_blocks):
         
     | 
| 417 | 
         
            +
                            h = self.down[i_level].block[i_block](hs[-1], temb)
         
     | 
| 418 | 
         
            +
                            if len(self.down[i_level].attn) > 0:
         
     | 
| 419 | 
         
            +
                                h = self.down[i_level].attn[i_block](h)
         
     | 
| 420 | 
         
            +
                            hs.append(h)
         
     | 
| 421 | 
         
            +
                        if i_level != self.num_resolutions-1:
         
     | 
| 422 | 
         
            +
                            hs.append(self.down[i_level].downsample(hs[-1]))
         
     | 
| 423 | 
         
            +
             
     | 
| 424 | 
         
            +
                    # middle
         
     | 
| 425 | 
         
            +
                    h = hs[-1]
         
     | 
| 426 | 
         
            +
                    h = self.mid.block_1(h, temb)
         
     | 
| 427 | 
         
            +
                    h = self.mid.attn_1(h)
         
     | 
| 428 | 
         
            +
                    h = self.mid.block_2(h, temb)
         
     | 
| 429 | 
         
            +
             
     | 
| 430 | 
         
            +
                    # upsampling
         
     | 
| 431 | 
         
            +
                    for i_level in reversed(range(self.num_resolutions)):
         
     | 
| 432 | 
         
            +
                        for i_block in range(self.num_res_blocks+1):
         
     | 
| 433 | 
         
            +
                            h = self.up[i_level].block[i_block](
         
     | 
| 434 | 
         
            +
                                torch.cat([h, hs.pop()], dim=1), temb)
         
     | 
| 435 | 
         
            +
                            if len(self.up[i_level].attn) > 0:
         
     | 
| 436 | 
         
            +
                                h = self.up[i_level].attn[i_block](h)
         
     | 
| 437 | 
         
            +
                        if i_level != 0:
         
     | 
| 438 | 
         
            +
                            h = self.up[i_level].upsample(h)
         
     | 
| 439 | 
         
            +
             
     | 
| 440 | 
         
            +
                    # end
         
     | 
| 441 | 
         
            +
                    h = self.norm_out(h)
         
     | 
| 442 | 
         
            +
                    h = nonlinearity(h)
         
     | 
| 443 | 
         
            +
                    h = self.conv_out(h)
         
     | 
| 444 | 
         
            +
                    return h
         
     | 
| 445 | 
         
            +
             
     | 
| 446 | 
         
            +
                def get_last_layer(self):
         
     | 
| 447 | 
         
            +
                    return self.conv_out.weight
         
     | 
| 448 | 
         
            +
             
     | 
| 449 | 
         
            +
             
     | 
| 450 | 
         
            +
            class Encoder(nn.Module):
         
     | 
| 451 | 
         
            +
                def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
         
     | 
| 452 | 
         
            +
                             attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
         
     | 
| 453 | 
         
            +
                             resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
         
     | 
| 454 | 
         
            +
                             **ignore_kwargs):
         
     | 
| 455 | 
         
            +
                    super().__init__()
         
     | 
| 456 | 
         
            +
                    if use_linear_attn: attn_type = "linear"
         
     | 
| 457 | 
         
            +
                    self.ch = ch
         
     | 
| 458 | 
         
            +
                    self.temb_ch = 0
         
     | 
| 459 | 
         
            +
                    self.num_resolutions = len(ch_mult)
         
     | 
| 460 | 
         
            +
                    self.num_res_blocks = num_res_blocks
         
     | 
| 461 | 
         
            +
                    self.resolution = resolution
         
     | 
| 462 | 
         
            +
                    self.in_channels = in_channels
         
     | 
| 463 | 
         
            +
             
     | 
| 464 | 
         
            +
                    # downsampling
         
     | 
| 465 | 
         
            +
                    self.conv_in = ops.Conv2d(in_channels,
         
     | 
| 466 | 
         
            +
                                                   self.ch,
         
     | 
| 467 | 
         
            +
                                                   kernel_size=3,
         
     | 
| 468 | 
         
            +
                                                   stride=1,
         
     | 
| 469 | 
         
            +
                                                   padding=1)
         
     | 
| 470 | 
         
            +
             
     | 
| 471 | 
         
            +
                    curr_res = resolution
         
     | 
| 472 | 
         
            +
                    in_ch_mult = (1,)+tuple(ch_mult)
         
     | 
| 473 | 
         
            +
                    self.in_ch_mult = in_ch_mult
         
     | 
| 474 | 
         
            +
                    self.down = nn.ModuleList()
         
     | 
| 475 | 
         
            +
                    for i_level in range(self.num_resolutions):
         
     | 
| 476 | 
         
            +
                        block = nn.ModuleList()
         
     | 
| 477 | 
         
            +
                        attn = nn.ModuleList()
         
     | 
| 478 | 
         
            +
                        block_in = ch*in_ch_mult[i_level]
         
     | 
| 479 | 
         
            +
                        block_out = ch*ch_mult[i_level]
         
     | 
| 480 | 
         
            +
                        for i_block in range(self.num_res_blocks):
         
     | 
| 481 | 
         
            +
                            block.append(ResnetBlock(in_channels=block_in,
         
     | 
| 482 | 
         
            +
                                                     out_channels=block_out,
         
     | 
| 483 | 
         
            +
                                                     temb_channels=self.temb_ch,
         
     | 
| 484 | 
         
            +
                                                     dropout=dropout))
         
     | 
| 485 | 
         
            +
                            block_in = block_out
         
     | 
| 486 | 
         
            +
                            if curr_res in attn_resolutions:
         
     | 
| 487 | 
         
            +
                                attn.append(make_attn(block_in, attn_type=attn_type))
         
     | 
| 488 | 
         
            +
                        down = nn.Module()
         
     | 
| 489 | 
         
            +
                        down.block = block
         
     | 
| 490 | 
         
            +
                        down.attn = attn
         
     | 
| 491 | 
         
            +
                        if i_level != self.num_resolutions-1:
         
     | 
| 492 | 
         
            +
                            down.downsample = Downsample(block_in, resamp_with_conv)
         
     | 
| 493 | 
         
            +
                            curr_res = curr_res // 2
         
     | 
| 494 | 
         
            +
                        self.down.append(down)
         
     | 
| 495 | 
         
            +
             
     | 
| 496 | 
         
            +
                    # middle
         
     | 
| 497 | 
         
            +
                    self.mid = nn.Module()
         
     | 
| 498 | 
         
            +
                    self.mid.block_1 = ResnetBlock(in_channels=block_in,
         
     | 
| 499 | 
         
            +
                                                   out_channels=block_in,
         
     | 
| 500 | 
         
            +
                                                   temb_channels=self.temb_ch,
         
     | 
| 501 | 
         
            +
                                                   dropout=dropout)
         
     | 
| 502 | 
         
            +
                    self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
         
     | 
| 503 | 
         
            +
                    self.mid.block_2 = ResnetBlock(in_channels=block_in,
         
     | 
| 504 | 
         
            +
                                                   out_channels=block_in,
         
     | 
| 505 | 
         
            +
                                                   temb_channels=self.temb_ch,
         
     | 
| 506 | 
         
            +
                                                   dropout=dropout)
         
     | 
| 507 | 
         
            +
             
     | 
| 508 | 
         
            +
                    # end
         
     | 
| 509 | 
         
            +
                    self.norm_out = Normalize(block_in)
         
     | 
| 510 | 
         
            +
                    self.conv_out = ops.Conv2d(block_in,
         
     | 
| 511 | 
         
            +
                                                    2*z_channels if double_z else z_channels,
         
     | 
| 512 | 
         
            +
                                                    kernel_size=3,
         
     | 
| 513 | 
         
            +
                                                    stride=1,
         
     | 
| 514 | 
         
            +
                                                    padding=1)
         
     | 
| 515 | 
         
            +
             
     | 
| 516 | 
         
            +
                def forward(self, x):
         
     | 
| 517 | 
         
            +
                    # timestep embedding
         
     | 
| 518 | 
         
            +
                    temb = None
         
     | 
| 519 | 
         
            +
                    # downsampling
         
     | 
| 520 | 
         
            +
                    h = self.conv_in(x)
         
     | 
| 521 | 
         
            +
                    for i_level in range(self.num_resolutions):
         
     | 
| 522 | 
         
            +
                        for i_block in range(self.num_res_blocks):
         
     | 
| 523 | 
         
            +
                            h = self.down[i_level].block[i_block](h, temb)
         
     | 
| 524 | 
         
            +
                            if len(self.down[i_level].attn) > 0:
         
     | 
| 525 | 
         
            +
                                h = self.down[i_level].attn[i_block](h)
         
     | 
| 526 | 
         
            +
                        if i_level != self.num_resolutions-1:
         
     | 
| 527 | 
         
            +
                            h = self.down[i_level].downsample(h)
         
     | 
| 528 | 
         
            +
             
     | 
| 529 | 
         
            +
                    # middle
         
     | 
| 530 | 
         
            +
                    h = self.mid.block_1(h, temb)
         
     | 
| 531 | 
         
            +
                    h = self.mid.attn_1(h)
         
     | 
| 532 | 
         
            +
                    h = self.mid.block_2(h, temb)
         
     | 
| 533 | 
         
            +
             
     | 
| 534 | 
         
            +
                    # end
         
     | 
| 535 | 
         
            +
                    h = self.norm_out(h)
         
     | 
| 536 | 
         
            +
                    h = nonlinearity(h)
         
     | 
| 537 | 
         
            +
                    h = self.conv_out(h)
         
     | 
| 538 | 
         
            +
                    return h
         
     | 
| 539 | 
         
            +
             
     | 
| 540 | 
         
            +
             
     | 
| 541 | 
         
            +
            class Decoder(nn.Module):
         
     | 
| 542 | 
         
            +
                def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
         
     | 
| 543 | 
         
            +
                             attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
         
     | 
| 544 | 
         
            +
                             resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
         
     | 
| 545 | 
         
            +
                             conv_out_op=ops.Conv2d,
         
     | 
| 546 | 
         
            +
                             resnet_op=ResnetBlock,
         
     | 
| 547 | 
         
            +
                             attn_op=AttnBlock,
         
     | 
| 548 | 
         
            +
                            **ignorekwargs):
         
     | 
| 549 | 
         
            +
                    super().__init__()
         
     | 
| 550 | 
         
            +
                    if use_linear_attn: attn_type = "linear"
         
     | 
| 551 | 
         
            +
                    self.ch = ch
         
     | 
| 552 | 
         
            +
                    self.temb_ch = 0
         
     | 
| 553 | 
         
            +
                    self.num_resolutions = len(ch_mult)
         
     | 
| 554 | 
         
            +
                    self.num_res_blocks = num_res_blocks
         
     | 
| 555 | 
         
            +
                    self.resolution = resolution
         
     | 
| 556 | 
         
            +
                    self.in_channels = in_channels
         
     | 
| 557 | 
         
            +
                    self.give_pre_end = give_pre_end
         
     | 
| 558 | 
         
            +
                    self.tanh_out = tanh_out
         
     | 
| 559 | 
         
            +
             
     | 
| 560 | 
         
            +
                    # compute in_ch_mult, block_in and curr_res at lowest res
         
     | 
| 561 | 
         
            +
                    in_ch_mult = (1,)+tuple(ch_mult)
         
     | 
| 562 | 
         
            +
                    block_in = ch*ch_mult[self.num_resolutions-1]
         
     | 
| 563 | 
         
            +
                    curr_res = resolution // 2**(self.num_resolutions-1)
         
     | 
| 564 | 
         
            +
                    self.z_shape = (1,z_channels,curr_res,curr_res)
         
     | 
| 565 | 
         
            +
                    print("Working with z of shape {} = {} dimensions.".format(
         
     | 
| 566 | 
         
            +
                        self.z_shape, np.prod(self.z_shape)))
         
     | 
| 567 | 
         
            +
             
     | 
| 568 | 
         
            +
                    # z to block_in
         
     | 
| 569 | 
         
            +
                    self.conv_in = ops.Conv2d(z_channels,
         
     | 
| 570 | 
         
            +
                                                   block_in,
         
     | 
| 571 | 
         
            +
                                                   kernel_size=3,
         
     | 
| 572 | 
         
            +
                                                   stride=1,
         
     | 
| 573 | 
         
            +
                                                   padding=1)
         
     | 
| 574 | 
         
            +
             
     | 
| 575 | 
         
            +
                    # middle
         
     | 
| 576 | 
         
            +
                    self.mid = nn.Module()
         
     | 
| 577 | 
         
            +
                    self.mid.block_1 = resnet_op(in_channels=block_in,
         
     | 
| 578 | 
         
            +
                                                   out_channels=block_in,
         
     | 
| 579 | 
         
            +
                                                   temb_channels=self.temb_ch,
         
     | 
| 580 | 
         
            +
                                                   dropout=dropout)
         
     | 
| 581 | 
         
            +
                    self.mid.attn_1 = attn_op(block_in)
         
     | 
| 582 | 
         
            +
                    self.mid.block_2 = resnet_op(in_channels=block_in,
         
     | 
| 583 | 
         
            +
                                                   out_channels=block_in,
         
     | 
| 584 | 
         
            +
                                                   temb_channels=self.temb_ch,
         
     | 
| 585 | 
         
            +
                                                   dropout=dropout)
         
     | 
| 586 | 
         
            +
             
     | 
| 587 | 
         
            +
                    # upsampling
         
     | 
| 588 | 
         
            +
                    self.up = nn.ModuleList()
         
     | 
| 589 | 
         
            +
                    for i_level in reversed(range(self.num_resolutions)):
         
     | 
| 590 | 
         
            +
                        block = nn.ModuleList()
         
     | 
| 591 | 
         
            +
                        attn = nn.ModuleList()
         
     | 
| 592 | 
         
            +
                        block_out = ch*ch_mult[i_level]
         
     | 
| 593 | 
         
            +
                        for i_block in range(self.num_res_blocks+1):
         
     | 
| 594 | 
         
            +
                            block.append(resnet_op(in_channels=block_in,
         
     | 
| 595 | 
         
            +
                                                     out_channels=block_out,
         
     | 
| 596 | 
         
            +
                                                     temb_channels=self.temb_ch,
         
     | 
| 597 | 
         
            +
                                                     dropout=dropout))
         
     | 
| 598 | 
         
            +
                            block_in = block_out
         
     | 
| 599 | 
         
            +
                            if curr_res in attn_resolutions:
         
     | 
| 600 | 
         
            +
                                attn.append(attn_op(block_in))
         
     | 
| 601 | 
         
            +
                        up = nn.Module()
         
     | 
| 602 | 
         
            +
                        up.block = block
         
     | 
| 603 | 
         
            +
                        up.attn = attn
         
     | 
| 604 | 
         
            +
                        if i_level != 0:
         
     | 
| 605 | 
         
            +
                            up.upsample = Upsample(block_in, resamp_with_conv)
         
     | 
| 606 | 
         
            +
                            curr_res = curr_res * 2
         
     | 
| 607 | 
         
            +
                        self.up.insert(0, up) # prepend to get consistent order
         
     | 
| 608 | 
         
            +
             
     | 
| 609 | 
         
            +
                    # end
         
     | 
| 610 | 
         
            +
                    self.norm_out = Normalize(block_in)
         
     | 
| 611 | 
         
            +
                    self.conv_out = conv_out_op(block_in,
         
     | 
| 612 | 
         
            +
                                                    out_ch,
         
     | 
| 613 | 
         
            +
                                                    kernel_size=3,
         
     | 
| 614 | 
         
            +
                                                    stride=1,
         
     | 
| 615 | 
         
            +
                                                    padding=1)
         
     | 
| 616 | 
         
            +
             
     | 
| 617 | 
         
            +
                def forward(self, z, **kwargs):
         
     | 
| 618 | 
         
            +
                    #assert z.shape[1:] == self.z_shape[1:]
         
     | 
| 619 | 
         
            +
                    self.last_z_shape = z.shape
         
     | 
| 620 | 
         
            +
             
     | 
| 621 | 
         
            +
                    # timestep embedding
         
     | 
| 622 | 
         
            +
                    temb = None
         
     | 
| 623 | 
         
            +
             
     | 
| 624 | 
         
            +
                    # z to block_in
         
     | 
| 625 | 
         
            +
                    h = self.conv_in(z)
         
     | 
| 626 | 
         
            +
             
     | 
| 627 | 
         
            +
                    # middle
         
     | 
| 628 | 
         
            +
                    h = self.mid.block_1(h, temb, **kwargs)
         
     | 
| 629 | 
         
            +
                    h = self.mid.attn_1(h, **kwargs)
         
     | 
| 630 | 
         
            +
                    h = self.mid.block_2(h, temb, **kwargs)
         
     | 
| 631 | 
         
            +
             
     | 
| 632 | 
         
            +
                    # upsampling
         
     | 
| 633 | 
         
            +
                    for i_level in reversed(range(self.num_resolutions)):
         
     | 
| 634 | 
         
            +
                        for i_block in range(self.num_res_blocks+1):
         
     | 
| 635 | 
         
            +
                            h = self.up[i_level].block[i_block](h, temb, **kwargs)
         
     | 
| 636 | 
         
            +
                            if len(self.up[i_level].attn) > 0:
         
     | 
| 637 | 
         
            +
                                h = self.up[i_level].attn[i_block](h, **kwargs)
         
     | 
| 638 | 
         
            +
                        if i_level != 0:
         
     | 
| 639 | 
         
            +
                            h = self.up[i_level].upsample(h)
         
     | 
| 640 | 
         
            +
             
     | 
| 641 | 
         
            +
                    # end
         
     | 
| 642 | 
         
            +
                    if self.give_pre_end:
         
     | 
| 643 | 
         
            +
                        return h
         
     | 
| 644 | 
         
            +
             
     | 
| 645 | 
         
            +
                    h = self.norm_out(h)
         
     | 
| 646 | 
         
            +
                    h = nonlinearity(h)
         
     | 
| 647 | 
         
            +
                    h = self.conv_out(h, **kwargs)
         
     | 
| 648 | 
         
            +
                    if self.tanh_out:
         
     | 
| 649 | 
         
            +
                        h = torch.tanh(h)
         
     | 
| 650 | 
         
            +
                    return h
         
     | 
    	
        comfy/ldm/modules/diffusionmodules/openaimodel.py
    ADDED
    
    | 
         @@ -0,0 +1,886 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from abc import abstractmethod
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
            import torch as th
         
     | 
| 4 | 
         
            +
            import torch.nn as nn
         
     | 
| 5 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 6 | 
         
            +
            from einops import rearrange
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            from .util import (
         
     | 
| 9 | 
         
            +
                checkpoint,
         
     | 
| 10 | 
         
            +
                avg_pool_nd,
         
     | 
| 11 | 
         
            +
                zero_module,
         
     | 
| 12 | 
         
            +
                timestep_embedding,
         
     | 
| 13 | 
         
            +
                AlphaBlender,
         
     | 
| 14 | 
         
            +
            )
         
     | 
| 15 | 
         
            +
            from ..attention import SpatialTransformer, SpatialVideoTransformer, default
         
     | 
| 16 | 
         
            +
            from comfy.ldm.util import exists
         
     | 
| 17 | 
         
            +
            import comfy.ops
         
     | 
| 18 | 
         
            +
            ops = comfy.ops.disable_weight_init
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            class TimestepBlock(nn.Module):
         
     | 
| 21 | 
         
            +
                """
         
     | 
| 22 | 
         
            +
                Any module where forward() takes timestep embeddings as a second argument.
         
     | 
| 23 | 
         
            +
                """
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
                @abstractmethod
         
     | 
| 26 | 
         
            +
                def forward(self, x, emb):
         
     | 
| 27 | 
         
            +
                    """
         
     | 
| 28 | 
         
            +
                    Apply the module to `x` given `emb` timestep embeddings.
         
     | 
| 29 | 
         
            +
                    """
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
            #This is needed because accelerate makes a copy of transformer_options which breaks "transformer_index"
         
     | 
| 32 | 
         
            +
            def forward_timestep_embed(ts, x, emb, context=None, transformer_options={}, output_shape=None, time_context=None, num_video_frames=None, image_only_indicator=None):
         
     | 
| 33 | 
         
            +
                for layer in ts:
         
     | 
| 34 | 
         
            +
                    if isinstance(layer, VideoResBlock):
         
     | 
| 35 | 
         
            +
                        x = layer(x, emb, num_video_frames, image_only_indicator)
         
     | 
| 36 | 
         
            +
                    elif isinstance(layer, TimestepBlock):
         
     | 
| 37 | 
         
            +
                        x = layer(x, emb)
         
     | 
| 38 | 
         
            +
                    elif isinstance(layer, SpatialVideoTransformer):
         
     | 
| 39 | 
         
            +
                        x = layer(x, context, time_context, num_video_frames, image_only_indicator, transformer_options)
         
     | 
| 40 | 
         
            +
                        if "transformer_index" in transformer_options:
         
     | 
| 41 | 
         
            +
                            transformer_options["transformer_index"] += 1
         
     | 
| 42 | 
         
            +
                    elif isinstance(layer, SpatialTransformer):
         
     | 
| 43 | 
         
            +
                        x = layer(x, context, transformer_options)
         
     | 
| 44 | 
         
            +
                        if "transformer_index" in transformer_options:
         
     | 
| 45 | 
         
            +
                            transformer_options["transformer_index"] += 1
         
     | 
| 46 | 
         
            +
                    elif isinstance(layer, Upsample):
         
     | 
| 47 | 
         
            +
                        x = layer(x, output_shape=output_shape)
         
     | 
| 48 | 
         
            +
                    else:
         
     | 
| 49 | 
         
            +
                        x = layer(x)
         
     | 
| 50 | 
         
            +
                return x
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
            class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
         
     | 
| 53 | 
         
            +
                """
         
     | 
| 54 | 
         
            +
                A sequential module that passes timestep embeddings to the children that
         
     | 
| 55 | 
         
            +
                support it as an extra input.
         
     | 
| 56 | 
         
            +
                """
         
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
                def forward(self, *args, **kwargs):
         
     | 
| 59 | 
         
            +
                    return forward_timestep_embed(self, *args, **kwargs)
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
            class Upsample(nn.Module):
         
     | 
| 62 | 
         
            +
                """
         
     | 
| 63 | 
         
            +
                An upsampling layer with an optional convolution.
         
     | 
| 64 | 
         
            +
                :param channels: channels in the inputs and outputs.
         
     | 
| 65 | 
         
            +
                :param use_conv: a bool determining if a convolution is applied.
         
     | 
| 66 | 
         
            +
                :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
         
     | 
| 67 | 
         
            +
                             upsampling occurs in the inner-two dimensions.
         
     | 
| 68 | 
         
            +
                """
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
                def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=ops):
         
     | 
| 71 | 
         
            +
                    super().__init__()
         
     | 
| 72 | 
         
            +
                    self.channels = channels
         
     | 
| 73 | 
         
            +
                    self.out_channels = out_channels or channels
         
     | 
| 74 | 
         
            +
                    self.use_conv = use_conv
         
     | 
| 75 | 
         
            +
                    self.dims = dims
         
     | 
| 76 | 
         
            +
                    if use_conv:
         
     | 
| 77 | 
         
            +
                        self.conv = operations.conv_nd(dims, self.channels, self.out_channels, 3, padding=padding, dtype=dtype, device=device)
         
     | 
| 78 | 
         
            +
             
     | 
| 79 | 
         
            +
                def forward(self, x, output_shape=None):
         
     | 
| 80 | 
         
            +
                    assert x.shape[1] == self.channels
         
     | 
| 81 | 
         
            +
                    if self.dims == 3:
         
     | 
| 82 | 
         
            +
                        shape = [x.shape[2], x.shape[3] * 2, x.shape[4] * 2]
         
     | 
| 83 | 
         
            +
                        if output_shape is not None:
         
     | 
| 84 | 
         
            +
                            shape[1] = output_shape[3]
         
     | 
| 85 | 
         
            +
                            shape[2] = output_shape[4]
         
     | 
| 86 | 
         
            +
                    else:
         
     | 
| 87 | 
         
            +
                        shape = [x.shape[2] * 2, x.shape[3] * 2]
         
     | 
| 88 | 
         
            +
                        if output_shape is not None:
         
     | 
| 89 | 
         
            +
                            shape[0] = output_shape[2]
         
     | 
| 90 | 
         
            +
                            shape[1] = output_shape[3]
         
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
                    x = F.interpolate(x, size=shape, mode="nearest")
         
     | 
| 93 | 
         
            +
                    if self.use_conv:
         
     | 
| 94 | 
         
            +
                        x = self.conv(x)
         
     | 
| 95 | 
         
            +
                    return x
         
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
            class Downsample(nn.Module):
         
     | 
| 98 | 
         
            +
                """
         
     | 
| 99 | 
         
            +
                A downsampling layer with an optional convolution.
         
     | 
| 100 | 
         
            +
                :param channels: channels in the inputs and outputs.
         
     | 
| 101 | 
         
            +
                :param use_conv: a bool determining if a convolution is applied.
         
     | 
| 102 | 
         
            +
                :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
         
     | 
| 103 | 
         
            +
                             downsampling occurs in the inner-two dimensions.
         
     | 
| 104 | 
         
            +
                """
         
     | 
| 105 | 
         
            +
             
     | 
| 106 | 
         
            +
                def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, dtype=None, device=None, operations=ops):
         
     | 
| 107 | 
         
            +
                    super().__init__()
         
     | 
| 108 | 
         
            +
                    self.channels = channels
         
     | 
| 109 | 
         
            +
                    self.out_channels = out_channels or channels
         
     | 
| 110 | 
         
            +
                    self.use_conv = use_conv
         
     | 
| 111 | 
         
            +
                    self.dims = dims
         
     | 
| 112 | 
         
            +
                    stride = 2 if dims != 3 else (1, 2, 2)
         
     | 
| 113 | 
         
            +
                    if use_conv:
         
     | 
| 114 | 
         
            +
                        self.op = operations.conv_nd(
         
     | 
| 115 | 
         
            +
                            dims, self.channels, self.out_channels, 3, stride=stride, padding=padding, dtype=dtype, device=device
         
     | 
| 116 | 
         
            +
                        )
         
     | 
| 117 | 
         
            +
                    else:
         
     | 
| 118 | 
         
            +
                        assert self.channels == self.out_channels
         
     | 
| 119 | 
         
            +
                        self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
         
     | 
| 120 | 
         
            +
             
     | 
| 121 | 
         
            +
                def forward(self, x):
         
     | 
| 122 | 
         
            +
                    assert x.shape[1] == self.channels
         
     | 
| 123 | 
         
            +
                    return self.op(x)
         
     | 
| 124 | 
         
            +
             
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
            class ResBlock(TimestepBlock):
         
     | 
| 127 | 
         
            +
                """
         
     | 
| 128 | 
         
            +
                A residual block that can optionally change the number of channels.
         
     | 
| 129 | 
         
            +
                :param channels: the number of input channels.
         
     | 
| 130 | 
         
            +
                :param emb_channels: the number of timestep embedding channels.
         
     | 
| 131 | 
         
            +
                :param dropout: the rate of dropout.
         
     | 
| 132 | 
         
            +
                :param out_channels: if specified, the number of out channels.
         
     | 
| 133 | 
         
            +
                :param use_conv: if True and out_channels is specified, use a spatial
         
     | 
| 134 | 
         
            +
                    convolution instead of a smaller 1x1 convolution to change the
         
     | 
| 135 | 
         
            +
                    channels in the skip connection.
         
     | 
| 136 | 
         
            +
                :param dims: determines if the signal is 1D, 2D, or 3D.
         
     | 
| 137 | 
         
            +
                :param use_checkpoint: if True, use gradient checkpointing on this module.
         
     | 
| 138 | 
         
            +
                :param up: if True, use this block for upsampling.
         
     | 
| 139 | 
         
            +
                :param down: if True, use this block for downsampling.
         
     | 
| 140 | 
         
            +
                """
         
     | 
| 141 | 
         
            +
             
     | 
| 142 | 
         
            +
                def __init__(
         
     | 
| 143 | 
         
            +
                    self,
         
     | 
| 144 | 
         
            +
                    channels,
         
     | 
| 145 | 
         
            +
                    emb_channels,
         
     | 
| 146 | 
         
            +
                    dropout,
         
     | 
| 147 | 
         
            +
                    out_channels=None,
         
     | 
| 148 | 
         
            +
                    use_conv=False,
         
     | 
| 149 | 
         
            +
                    use_scale_shift_norm=False,
         
     | 
| 150 | 
         
            +
                    dims=2,
         
     | 
| 151 | 
         
            +
                    use_checkpoint=False,
         
     | 
| 152 | 
         
            +
                    up=False,
         
     | 
| 153 | 
         
            +
                    down=False,
         
     | 
| 154 | 
         
            +
                    kernel_size=3,
         
     | 
| 155 | 
         
            +
                    exchange_temb_dims=False,
         
     | 
| 156 | 
         
            +
                    skip_t_emb=False,
         
     | 
| 157 | 
         
            +
                    dtype=None,
         
     | 
| 158 | 
         
            +
                    device=None,
         
     | 
| 159 | 
         
            +
                    operations=ops
         
     | 
| 160 | 
         
            +
                ):
         
     | 
| 161 | 
         
            +
                    super().__init__()
         
     | 
| 162 | 
         
            +
                    self.channels = channels
         
     | 
| 163 | 
         
            +
                    self.emb_channels = emb_channels
         
     | 
| 164 | 
         
            +
                    self.dropout = dropout
         
     | 
| 165 | 
         
            +
                    self.out_channels = out_channels or channels
         
     | 
| 166 | 
         
            +
                    self.use_conv = use_conv
         
     | 
| 167 | 
         
            +
                    self.use_checkpoint = use_checkpoint
         
     | 
| 168 | 
         
            +
                    self.use_scale_shift_norm = use_scale_shift_norm
         
     | 
| 169 | 
         
            +
                    self.exchange_temb_dims = exchange_temb_dims
         
     | 
| 170 | 
         
            +
             
     | 
| 171 | 
         
            +
                    if isinstance(kernel_size, list):
         
     | 
| 172 | 
         
            +
                        padding = [k // 2 for k in kernel_size]
         
     | 
| 173 | 
         
            +
                    else:
         
     | 
| 174 | 
         
            +
                        padding = kernel_size // 2
         
     | 
| 175 | 
         
            +
             
     | 
| 176 | 
         
            +
                    self.in_layers = nn.Sequential(
         
     | 
| 177 | 
         
            +
                        operations.GroupNorm(32, channels, dtype=dtype, device=device),
         
     | 
| 178 | 
         
            +
                        nn.SiLU(),
         
     | 
| 179 | 
         
            +
                        operations.conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device),
         
     | 
| 180 | 
         
            +
                    )
         
     | 
| 181 | 
         
            +
             
     | 
| 182 | 
         
            +
                    self.updown = up or down
         
     | 
| 183 | 
         
            +
             
     | 
| 184 | 
         
            +
                    if up:
         
     | 
| 185 | 
         
            +
                        self.h_upd = Upsample(channels, False, dims, dtype=dtype, device=device)
         
     | 
| 186 | 
         
            +
                        self.x_upd = Upsample(channels, False, dims, dtype=dtype, device=device)
         
     | 
| 187 | 
         
            +
                    elif down:
         
     | 
| 188 | 
         
            +
                        self.h_upd = Downsample(channels, False, dims, dtype=dtype, device=device)
         
     | 
| 189 | 
         
            +
                        self.x_upd = Downsample(channels, False, dims, dtype=dtype, device=device)
         
     | 
| 190 | 
         
            +
                    else:
         
     | 
| 191 | 
         
            +
                        self.h_upd = self.x_upd = nn.Identity()
         
     | 
| 192 | 
         
            +
             
     | 
| 193 | 
         
            +
                    self.skip_t_emb = skip_t_emb
         
     | 
| 194 | 
         
            +
                    if self.skip_t_emb:
         
     | 
| 195 | 
         
            +
                        self.emb_layers = None
         
     | 
| 196 | 
         
            +
                        self.exchange_temb_dims = False
         
     | 
| 197 | 
         
            +
                    else:
         
     | 
| 198 | 
         
            +
                        self.emb_layers = nn.Sequential(
         
     | 
| 199 | 
         
            +
                            nn.SiLU(),
         
     | 
| 200 | 
         
            +
                            operations.Linear(
         
     | 
| 201 | 
         
            +
                                emb_channels,
         
     | 
| 202 | 
         
            +
                                2 * self.out_channels if use_scale_shift_norm else self.out_channels, dtype=dtype, device=device
         
     | 
| 203 | 
         
            +
                            ),
         
     | 
| 204 | 
         
            +
                        )
         
     | 
| 205 | 
         
            +
                    self.out_layers = nn.Sequential(
         
     | 
| 206 | 
         
            +
                        operations.GroupNorm(32, self.out_channels, dtype=dtype, device=device),
         
     | 
| 207 | 
         
            +
                        nn.SiLU(),
         
     | 
| 208 | 
         
            +
                        nn.Dropout(p=dropout),
         
     | 
| 209 | 
         
            +
                        operations.conv_nd(dims, self.out_channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device)
         
     | 
| 210 | 
         
            +
                        ,
         
     | 
| 211 | 
         
            +
                    )
         
     | 
| 212 | 
         
            +
             
     | 
| 213 | 
         
            +
                    if self.out_channels == channels:
         
     | 
| 214 | 
         
            +
                        self.skip_connection = nn.Identity()
         
     | 
| 215 | 
         
            +
                    elif use_conv:
         
     | 
| 216 | 
         
            +
                        self.skip_connection = operations.conv_nd(
         
     | 
| 217 | 
         
            +
                            dims, channels, self.out_channels, kernel_size, padding=padding, dtype=dtype, device=device
         
     | 
| 218 | 
         
            +
                        )
         
     | 
| 219 | 
         
            +
                    else:
         
     | 
| 220 | 
         
            +
                        self.skip_connection = operations.conv_nd(dims, channels, self.out_channels, 1, dtype=dtype, device=device)
         
     | 
| 221 | 
         
            +
             
     | 
| 222 | 
         
            +
                def forward(self, x, emb):
         
     | 
| 223 | 
         
            +
                    """
         
     | 
| 224 | 
         
            +
                    Apply the block to a Tensor, conditioned on a timestep embedding.
         
     | 
| 225 | 
         
            +
                    :param x: an [N x C x ...] Tensor of features.
         
     | 
| 226 | 
         
            +
                    :param emb: an [N x emb_channels] Tensor of timestep embeddings.
         
     | 
| 227 | 
         
            +
                    :return: an [N x C x ...] Tensor of outputs.
         
     | 
| 228 | 
         
            +
                    """
         
     | 
| 229 | 
         
            +
                    return checkpoint(
         
     | 
| 230 | 
         
            +
                        self._forward, (x, emb), self.parameters(), self.use_checkpoint
         
     | 
| 231 | 
         
            +
                    )
         
     | 
| 232 | 
         
            +
             
     | 
| 233 | 
         
            +
             
     | 
| 234 | 
         
            +
                def _forward(self, x, emb):
         
     | 
| 235 | 
         
            +
                    if self.updown:
         
     | 
| 236 | 
         
            +
                        in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
         
     | 
| 237 | 
         
            +
                        h = in_rest(x)
         
     | 
| 238 | 
         
            +
                        h = self.h_upd(h)
         
     | 
| 239 | 
         
            +
                        x = self.x_upd(x)
         
     | 
| 240 | 
         
            +
                        h = in_conv(h)
         
     | 
| 241 | 
         
            +
                    else:
         
     | 
| 242 | 
         
            +
                        h = self.in_layers(x)
         
     | 
| 243 | 
         
            +
             
     | 
| 244 | 
         
            +
                    emb_out = None
         
     | 
| 245 | 
         
            +
                    if not self.skip_t_emb:
         
     | 
| 246 | 
         
            +
                        emb_out = self.emb_layers(emb).type(h.dtype)
         
     | 
| 247 | 
         
            +
                        while len(emb_out.shape) < len(h.shape):
         
     | 
| 248 | 
         
            +
                            emb_out = emb_out[..., None]
         
     | 
| 249 | 
         
            +
                    if self.use_scale_shift_norm:
         
     | 
| 250 | 
         
            +
                        out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
         
     | 
| 251 | 
         
            +
                        h = out_norm(h)
         
     | 
| 252 | 
         
            +
                        if emb_out is not None:
         
     | 
| 253 | 
         
            +
                            scale, shift = th.chunk(emb_out, 2, dim=1)
         
     | 
| 254 | 
         
            +
                            h *= (1 + scale)
         
     | 
| 255 | 
         
            +
                            h += shift
         
     | 
| 256 | 
         
            +
                        h = out_rest(h)
         
     | 
| 257 | 
         
            +
                    else:
         
     | 
| 258 | 
         
            +
                        if emb_out is not None:
         
     | 
| 259 | 
         
            +
                            if self.exchange_temb_dims:
         
     | 
| 260 | 
         
            +
                                emb_out = rearrange(emb_out, "b t c ... -> b c t ...")
         
     | 
| 261 | 
         
            +
                            h = h + emb_out
         
     | 
| 262 | 
         
            +
                        h = self.out_layers(h)
         
     | 
| 263 | 
         
            +
                    return self.skip_connection(x) + h
         
     | 
| 264 | 
         
            +
             
     | 
| 265 | 
         
            +
             
     | 
| 266 | 
         
            +
            class VideoResBlock(ResBlock):
         
     | 
| 267 | 
         
            +
                def __init__(
         
     | 
| 268 | 
         
            +
                    self,
         
     | 
| 269 | 
         
            +
                    channels: int,
         
     | 
| 270 | 
         
            +
                    emb_channels: int,
         
     | 
| 271 | 
         
            +
                    dropout: float,
         
     | 
| 272 | 
         
            +
                    video_kernel_size=3,
         
     | 
| 273 | 
         
            +
                    merge_strategy: str = "fixed",
         
     | 
| 274 | 
         
            +
                    merge_factor: float = 0.5,
         
     | 
| 275 | 
         
            +
                    out_channels=None,
         
     | 
| 276 | 
         
            +
                    use_conv: bool = False,
         
     | 
| 277 | 
         
            +
                    use_scale_shift_norm: bool = False,
         
     | 
| 278 | 
         
            +
                    dims: int = 2,
         
     | 
| 279 | 
         
            +
                    use_checkpoint: bool = False,
         
     | 
| 280 | 
         
            +
                    up: bool = False,
         
     | 
| 281 | 
         
            +
                    down: bool = False,
         
     | 
| 282 | 
         
            +
                    dtype=None,
         
     | 
| 283 | 
         
            +
                    device=None,
         
     | 
| 284 | 
         
            +
                    operations=ops
         
     | 
| 285 | 
         
            +
                ):
         
     | 
| 286 | 
         
            +
                    super().__init__(
         
     | 
| 287 | 
         
            +
                        channels,
         
     | 
| 288 | 
         
            +
                        emb_channels,
         
     | 
| 289 | 
         
            +
                        dropout,
         
     | 
| 290 | 
         
            +
                        out_channels=out_channels,
         
     | 
| 291 | 
         
            +
                        use_conv=use_conv,
         
     | 
| 292 | 
         
            +
                        use_scale_shift_norm=use_scale_shift_norm,
         
     | 
| 293 | 
         
            +
                        dims=dims,
         
     | 
| 294 | 
         
            +
                        use_checkpoint=use_checkpoint,
         
     | 
| 295 | 
         
            +
                        up=up,
         
     | 
| 296 | 
         
            +
                        down=down,
         
     | 
| 297 | 
         
            +
                        dtype=dtype,
         
     | 
| 298 | 
         
            +
                        device=device,
         
     | 
| 299 | 
         
            +
                        operations=operations
         
     | 
| 300 | 
         
            +
                    )
         
     | 
| 301 | 
         
            +
             
     | 
| 302 | 
         
            +
                    self.time_stack = ResBlock(
         
     | 
| 303 | 
         
            +
                        default(out_channels, channels),
         
     | 
| 304 | 
         
            +
                        emb_channels,
         
     | 
| 305 | 
         
            +
                        dropout=dropout,
         
     | 
| 306 | 
         
            +
                        dims=3,
         
     | 
| 307 | 
         
            +
                        out_channels=default(out_channels, channels),
         
     | 
| 308 | 
         
            +
                        use_scale_shift_norm=False,
         
     | 
| 309 | 
         
            +
                        use_conv=False,
         
     | 
| 310 | 
         
            +
                        up=False,
         
     | 
| 311 | 
         
            +
                        down=False,
         
     | 
| 312 | 
         
            +
                        kernel_size=video_kernel_size,
         
     | 
| 313 | 
         
            +
                        use_checkpoint=use_checkpoint,
         
     | 
| 314 | 
         
            +
                        exchange_temb_dims=True,
         
     | 
| 315 | 
         
            +
                        dtype=dtype,
         
     | 
| 316 | 
         
            +
                        device=device,
         
     | 
| 317 | 
         
            +
                        operations=operations
         
     | 
| 318 | 
         
            +
                    )
         
     | 
| 319 | 
         
            +
                    self.time_mixer = AlphaBlender(
         
     | 
| 320 | 
         
            +
                        alpha=merge_factor,
         
     | 
| 321 | 
         
            +
                        merge_strategy=merge_strategy,
         
     | 
| 322 | 
         
            +
                        rearrange_pattern="b t -> b 1 t 1 1",
         
     | 
| 323 | 
         
            +
                    )
         
     | 
| 324 | 
         
            +
             
     | 
| 325 | 
         
            +
                def forward(
         
     | 
| 326 | 
         
            +
                    self,
         
     | 
| 327 | 
         
            +
                    x: th.Tensor,
         
     | 
| 328 | 
         
            +
                    emb: th.Tensor,
         
     | 
| 329 | 
         
            +
                    num_video_frames: int,
         
     | 
| 330 | 
         
            +
                    image_only_indicator = None,
         
     | 
| 331 | 
         
            +
                ) -> th.Tensor:
         
     | 
| 332 | 
         
            +
                    x = super().forward(x, emb)
         
     | 
| 333 | 
         
            +
             
     | 
| 334 | 
         
            +
                    x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames)
         
     | 
| 335 | 
         
            +
                    x = rearrange(x, "(b t) c h w -> b c t h w", t=num_video_frames)
         
     | 
| 336 | 
         
            +
             
     | 
| 337 | 
         
            +
                    x = self.time_stack(
         
     | 
| 338 | 
         
            +
                        x, rearrange(emb, "(b t) ... -> b t ...", t=num_video_frames)
         
     | 
| 339 | 
         
            +
                    )
         
     | 
| 340 | 
         
            +
                    x = self.time_mixer(
         
     | 
| 341 | 
         
            +
                        x_spatial=x_mix, x_temporal=x, image_only_indicator=image_only_indicator
         
     | 
| 342 | 
         
            +
                    )
         
     | 
| 343 | 
         
            +
                    x = rearrange(x, "b c t h w -> (b t) c h w")
         
     | 
| 344 | 
         
            +
                    return x
         
     | 
| 345 | 
         
            +
             
     | 
| 346 | 
         
            +
             
     | 
| 347 | 
         
            +
            class Timestep(nn.Module):
         
     | 
| 348 | 
         
            +
                def __init__(self, dim):
         
     | 
| 349 | 
         
            +
                    super().__init__()
         
     | 
| 350 | 
         
            +
                    self.dim = dim
         
     | 
| 351 | 
         
            +
             
     | 
| 352 | 
         
            +
                def forward(self, t):
         
     | 
| 353 | 
         
            +
                    return timestep_embedding(t, self.dim)
         
     | 
| 354 | 
         
            +
             
     | 
| 355 | 
         
            +
            def apply_control(h, control, name):
         
     | 
| 356 | 
         
            +
                if control is not None and name in control and len(control[name]) > 0:
         
     | 
| 357 | 
         
            +
                    ctrl = control[name].pop()
         
     | 
| 358 | 
         
            +
                    if ctrl is not None:
         
     | 
| 359 | 
         
            +
                        try:
         
     | 
| 360 | 
         
            +
                            h += ctrl
         
     | 
| 361 | 
         
            +
                        except:
         
     | 
| 362 | 
         
            +
                            print("warning control could not be applied", h.shape, ctrl.shape)
         
     | 
| 363 | 
         
            +
                return h
         
     | 
| 364 | 
         
            +
             
     | 
| 365 | 
         
            +
            class UNetModel(nn.Module):
         
     | 
| 366 | 
         
            +
                """
         
     | 
| 367 | 
         
            +
                The full UNet model with attention and timestep embedding.
         
     | 
| 368 | 
         
            +
                :param in_channels: channels in the input Tensor.
         
     | 
| 369 | 
         
            +
                :param model_channels: base channel count for the model.
         
     | 
| 370 | 
         
            +
                :param out_channels: channels in the output Tensor.
         
     | 
| 371 | 
         
            +
                :param num_res_blocks: number of residual blocks per downsample.
         
     | 
| 372 | 
         
            +
                :param dropout: the dropout probability.
         
     | 
| 373 | 
         
            +
                :param channel_mult: channel multiplier for each level of the UNet.
         
     | 
| 374 | 
         
            +
                :param conv_resample: if True, use learned convolutions for upsampling and
         
     | 
| 375 | 
         
            +
                    downsampling.
         
     | 
| 376 | 
         
            +
                :param dims: determines if the signal is 1D, 2D, or 3D.
         
     | 
| 377 | 
         
            +
                :param num_classes: if specified (as an int), then this model will be
         
     | 
| 378 | 
         
            +
                    class-conditional with `num_classes` classes.
         
     | 
| 379 | 
         
            +
                :param use_checkpoint: use gradient checkpointing to reduce memory usage.
         
     | 
| 380 | 
         
            +
                :param num_heads: the number of attention heads in each attention layer.
         
     | 
| 381 | 
         
            +
                :param num_heads_channels: if specified, ignore num_heads and instead use
         
     | 
| 382 | 
         
            +
                                           a fixed channel width per attention head.
         
     | 
| 383 | 
         
            +
                :param num_heads_upsample: works with num_heads to set a different number
         
     | 
| 384 | 
         
            +
                                           of heads for upsampling. Deprecated.
         
     | 
| 385 | 
         
            +
                :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
         
     | 
| 386 | 
         
            +
                :param resblock_updown: use residual blocks for up/downsampling.
         
     | 
| 387 | 
         
            +
                :param use_new_attention_order: use a different attention pattern for potentially
         
     | 
| 388 | 
         
            +
                                                increased efficiency.
         
     | 
| 389 | 
         
            +
                """
         
     | 
| 390 | 
         
            +
             
     | 
| 391 | 
         
            +
                def __init__(
         
     | 
| 392 | 
         
            +
                    self,
         
     | 
| 393 | 
         
            +
                    image_size,
         
     | 
| 394 | 
         
            +
                    in_channels,
         
     | 
| 395 | 
         
            +
                    model_channels,
         
     | 
| 396 | 
         
            +
                    out_channels,
         
     | 
| 397 | 
         
            +
                    num_res_blocks,
         
     | 
| 398 | 
         
            +
                    dropout=0,
         
     | 
| 399 | 
         
            +
                    channel_mult=(1, 2, 4, 8),
         
     | 
| 400 | 
         
            +
                    conv_resample=True,
         
     | 
| 401 | 
         
            +
                    dims=2,
         
     | 
| 402 | 
         
            +
                    num_classes=None,
         
     | 
| 403 | 
         
            +
                    use_checkpoint=False,
         
     | 
| 404 | 
         
            +
                    dtype=th.float32,
         
     | 
| 405 | 
         
            +
                    num_heads=-1,
         
     | 
| 406 | 
         
            +
                    num_head_channels=-1,
         
     | 
| 407 | 
         
            +
                    num_heads_upsample=-1,
         
     | 
| 408 | 
         
            +
                    use_scale_shift_norm=False,
         
     | 
| 409 | 
         
            +
                    resblock_updown=False,
         
     | 
| 410 | 
         
            +
                    use_new_attention_order=False,
         
     | 
| 411 | 
         
            +
                    use_spatial_transformer=False,    # custom transformer support
         
     | 
| 412 | 
         
            +
                    transformer_depth=1,              # custom transformer support
         
     | 
| 413 | 
         
            +
                    context_dim=None,                 # custom transformer support
         
     | 
| 414 | 
         
            +
                    n_embed=None,                     # custom support for prediction of discrete ids into codebook of first stage vq model
         
     | 
| 415 | 
         
            +
                    legacy=True,
         
     | 
| 416 | 
         
            +
                    disable_self_attentions=None,
         
     | 
| 417 | 
         
            +
                    num_attention_blocks=None,
         
     | 
| 418 | 
         
            +
                    disable_middle_self_attn=False,
         
     | 
| 419 | 
         
            +
                    use_linear_in_transformer=False,
         
     | 
| 420 | 
         
            +
                    adm_in_channels=None,
         
     | 
| 421 | 
         
            +
                    transformer_depth_middle=None,
         
     | 
| 422 | 
         
            +
                    transformer_depth_output=None,
         
     | 
| 423 | 
         
            +
                    use_temporal_resblock=False,
         
     | 
| 424 | 
         
            +
                    use_temporal_attention=False,
         
     | 
| 425 | 
         
            +
                    time_context_dim=None,
         
     | 
| 426 | 
         
            +
                    extra_ff_mix_layer=False,
         
     | 
| 427 | 
         
            +
                    use_spatial_context=False,
         
     | 
| 428 | 
         
            +
                    merge_strategy=None,
         
     | 
| 429 | 
         
            +
                    merge_factor=0.0,
         
     | 
| 430 | 
         
            +
                    video_kernel_size=None,
         
     | 
| 431 | 
         
            +
                    disable_temporal_crossattention=False,
         
     | 
| 432 | 
         
            +
                    max_ddpm_temb_period=10000,
         
     | 
| 433 | 
         
            +
                    device=None,
         
     | 
| 434 | 
         
            +
                    operations=ops,
         
     | 
| 435 | 
         
            +
                ):
         
     | 
| 436 | 
         
            +
                    super().__init__()
         
     | 
| 437 | 
         
            +
             
     | 
| 438 | 
         
            +
                    if context_dim is not None:
         
     | 
| 439 | 
         
            +
                        assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
         
     | 
| 440 | 
         
            +
                        # from omegaconf.listconfig import ListConfig
         
     | 
| 441 | 
         
            +
                        # if type(context_dim) == ListConfig:
         
     | 
| 442 | 
         
            +
                        #     context_dim = list(context_dim)
         
     | 
| 443 | 
         
            +
             
     | 
| 444 | 
         
            +
                    if num_heads_upsample == -1:
         
     | 
| 445 | 
         
            +
                        num_heads_upsample = num_heads
         
     | 
| 446 | 
         
            +
             
     | 
| 447 | 
         
            +
                    if num_heads == -1:
         
     | 
| 448 | 
         
            +
                        assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
         
     | 
| 449 | 
         
            +
             
     | 
| 450 | 
         
            +
                    if num_head_channels == -1:
         
     | 
| 451 | 
         
            +
                        assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
         
     | 
| 452 | 
         
            +
             
     | 
| 453 | 
         
            +
                    self.in_channels = in_channels
         
     | 
| 454 | 
         
            +
                    self.model_channels = model_channels
         
     | 
| 455 | 
         
            +
                    self.out_channels = out_channels
         
     | 
| 456 | 
         
            +
             
     | 
| 457 | 
         
            +
                    if isinstance(num_res_blocks, int):
         
     | 
| 458 | 
         
            +
                        self.num_res_blocks = len(channel_mult) * [num_res_blocks]
         
     | 
| 459 | 
         
            +
                    else:
         
     | 
| 460 | 
         
            +
                        if len(num_res_blocks) != len(channel_mult):
         
     | 
| 461 | 
         
            +
                            raise ValueError("provide num_res_blocks either as an int (globally constant) or "
         
     | 
| 462 | 
         
            +
                                             "as a list/tuple (per-level) with the same length as channel_mult")
         
     | 
| 463 | 
         
            +
                        self.num_res_blocks = num_res_blocks
         
     | 
| 464 | 
         
            +
             
     | 
| 465 | 
         
            +
                    if disable_self_attentions is not None:
         
     | 
| 466 | 
         
            +
                        # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
         
     | 
| 467 | 
         
            +
                        assert len(disable_self_attentions) == len(channel_mult)
         
     | 
| 468 | 
         
            +
                    if num_attention_blocks is not None:
         
     | 
| 469 | 
         
            +
                        assert len(num_attention_blocks) == len(self.num_res_blocks)
         
     | 
| 470 | 
         
            +
             
     | 
| 471 | 
         
            +
                    transformer_depth = transformer_depth[:]
         
     | 
| 472 | 
         
            +
                    transformer_depth_output = transformer_depth_output[:]
         
     | 
| 473 | 
         
            +
             
     | 
| 474 | 
         
            +
                    self.dropout = dropout
         
     | 
| 475 | 
         
            +
                    self.channel_mult = channel_mult
         
     | 
| 476 | 
         
            +
                    self.conv_resample = conv_resample
         
     | 
| 477 | 
         
            +
                    self.num_classes = num_classes
         
     | 
| 478 | 
         
            +
                    self.use_checkpoint = use_checkpoint
         
     | 
| 479 | 
         
            +
                    self.dtype = dtype
         
     | 
| 480 | 
         
            +
                    self.num_heads = num_heads
         
     | 
| 481 | 
         
            +
                    self.num_head_channels = num_head_channels
         
     | 
| 482 | 
         
            +
                    self.num_heads_upsample = num_heads_upsample
         
     | 
| 483 | 
         
            +
                    self.use_temporal_resblocks = use_temporal_resblock
         
     | 
| 484 | 
         
            +
                    self.predict_codebook_ids = n_embed is not None
         
     | 
| 485 | 
         
            +
             
     | 
| 486 | 
         
            +
                    self.default_num_video_frames = None
         
     | 
| 487 | 
         
            +
                    self.default_image_only_indicator = None
         
     | 
| 488 | 
         
            +
             
     | 
| 489 | 
         
            +
                    time_embed_dim = model_channels * 4
         
     | 
| 490 | 
         
            +
                    self.time_embed = nn.Sequential(
         
     | 
| 491 | 
         
            +
                        operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
         
     | 
| 492 | 
         
            +
                        nn.SiLU(),
         
     | 
| 493 | 
         
            +
                        operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
         
     | 
| 494 | 
         
            +
                    )
         
     | 
| 495 | 
         
            +
             
     | 
| 496 | 
         
            +
                    if self.num_classes is not None:
         
     | 
| 497 | 
         
            +
                        if isinstance(self.num_classes, int):
         
     | 
| 498 | 
         
            +
                            self.label_emb = nn.Embedding(num_classes, time_embed_dim, dtype=self.dtype, device=device)
         
     | 
| 499 | 
         
            +
                        elif self.num_classes == "continuous":
         
     | 
| 500 | 
         
            +
                            print("setting up linear c_adm embedding layer")
         
     | 
| 501 | 
         
            +
                            self.label_emb = nn.Linear(1, time_embed_dim)
         
     | 
| 502 | 
         
            +
                        elif self.num_classes == "sequential":
         
     | 
| 503 | 
         
            +
                            assert adm_in_channels is not None
         
     | 
| 504 | 
         
            +
                            self.label_emb = nn.Sequential(
         
     | 
| 505 | 
         
            +
                                nn.Sequential(
         
     | 
| 506 | 
         
            +
                                    operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
         
     | 
| 507 | 
         
            +
                                    nn.SiLU(),
         
     | 
| 508 | 
         
            +
                                    operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
         
     | 
| 509 | 
         
            +
                                )
         
     | 
| 510 | 
         
            +
                            )
         
     | 
| 511 | 
         
            +
                        else:
         
     | 
| 512 | 
         
            +
                            raise ValueError()
         
     | 
| 513 | 
         
            +
             
     | 
| 514 | 
         
            +
                    self.input_blocks = nn.ModuleList(
         
     | 
| 515 | 
         
            +
                        [
         
     | 
| 516 | 
         
            +
                            TimestepEmbedSequential(
         
     | 
| 517 | 
         
            +
                                operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
         
     | 
| 518 | 
         
            +
                            )
         
     | 
| 519 | 
         
            +
                        ]
         
     | 
| 520 | 
         
            +
                    )
         
     | 
| 521 | 
         
            +
                    self._feature_size = model_channels
         
     | 
| 522 | 
         
            +
                    input_block_chans = [model_channels]
         
     | 
| 523 | 
         
            +
                    ch = model_channels
         
     | 
| 524 | 
         
            +
                    ds = 1
         
     | 
| 525 | 
         
            +
             
     | 
| 526 | 
         
            +
                    def get_attention_layer(
         
     | 
| 527 | 
         
            +
                        ch,
         
     | 
| 528 | 
         
            +
                        num_heads,
         
     | 
| 529 | 
         
            +
                        dim_head,
         
     | 
| 530 | 
         
            +
                        depth=1,
         
     | 
| 531 | 
         
            +
                        context_dim=None,
         
     | 
| 532 | 
         
            +
                        use_checkpoint=False,
         
     | 
| 533 | 
         
            +
                        disable_self_attn=False,
         
     | 
| 534 | 
         
            +
                    ):
         
     | 
| 535 | 
         
            +
                        if use_temporal_attention:
         
     | 
| 536 | 
         
            +
                            return SpatialVideoTransformer(
         
     | 
| 537 | 
         
            +
                                ch,
         
     | 
| 538 | 
         
            +
                                num_heads,
         
     | 
| 539 | 
         
            +
                                dim_head,
         
     | 
| 540 | 
         
            +
                                depth=depth,
         
     | 
| 541 | 
         
            +
                                context_dim=context_dim,
         
     | 
| 542 | 
         
            +
                                time_context_dim=time_context_dim,
         
     | 
| 543 | 
         
            +
                                dropout=dropout,
         
     | 
| 544 | 
         
            +
                                ff_in=extra_ff_mix_layer,
         
     | 
| 545 | 
         
            +
                                use_spatial_context=use_spatial_context,
         
     | 
| 546 | 
         
            +
                                merge_strategy=merge_strategy,
         
     | 
| 547 | 
         
            +
                                merge_factor=merge_factor,
         
     | 
| 548 | 
         
            +
                                checkpoint=use_checkpoint,
         
     | 
| 549 | 
         
            +
                                use_linear=use_linear_in_transformer,
         
     | 
| 550 | 
         
            +
                                disable_self_attn=disable_self_attn,
         
     | 
| 551 | 
         
            +
                                disable_temporal_crossattention=disable_temporal_crossattention,
         
     | 
| 552 | 
         
            +
                                max_time_embed_period=max_ddpm_temb_period,
         
     | 
| 553 | 
         
            +
                                dtype=self.dtype, device=device, operations=operations
         
     | 
| 554 | 
         
            +
                            )
         
     | 
| 555 | 
         
            +
                        else:
         
     | 
| 556 | 
         
            +
                            return SpatialTransformer(
         
     | 
| 557 | 
         
            +
                                            ch, num_heads, dim_head, depth=depth, context_dim=context_dim,
         
     | 
| 558 | 
         
            +
                                            disable_self_attn=disable_self_attn, use_linear=use_linear_in_transformer,
         
     | 
| 559 | 
         
            +
                                            use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
         
     | 
| 560 | 
         
            +
                                        )
         
     | 
| 561 | 
         
            +
             
     | 
| 562 | 
         
            +
                    def get_resblock(
         
     | 
| 563 | 
         
            +
                        merge_factor,
         
     | 
| 564 | 
         
            +
                        merge_strategy,
         
     | 
| 565 | 
         
            +
                        video_kernel_size,
         
     | 
| 566 | 
         
            +
                        ch,
         
     | 
| 567 | 
         
            +
                        time_embed_dim,
         
     | 
| 568 | 
         
            +
                        dropout,
         
     | 
| 569 | 
         
            +
                        out_channels,
         
     | 
| 570 | 
         
            +
                        dims,
         
     | 
| 571 | 
         
            +
                        use_checkpoint,
         
     | 
| 572 | 
         
            +
                        use_scale_shift_norm,
         
     | 
| 573 | 
         
            +
                        down=False,
         
     | 
| 574 | 
         
            +
                        up=False,
         
     | 
| 575 | 
         
            +
                        dtype=None,
         
     | 
| 576 | 
         
            +
                        device=None,
         
     | 
| 577 | 
         
            +
                        operations=ops
         
     | 
| 578 | 
         
            +
                    ):
         
     | 
| 579 | 
         
            +
                        if self.use_temporal_resblocks:
         
     | 
| 580 | 
         
            +
                            return VideoResBlock(
         
     | 
| 581 | 
         
            +
                                merge_factor=merge_factor,
         
     | 
| 582 | 
         
            +
                                merge_strategy=merge_strategy,
         
     | 
| 583 | 
         
            +
                                video_kernel_size=video_kernel_size,
         
     | 
| 584 | 
         
            +
                                channels=ch,
         
     | 
| 585 | 
         
            +
                                emb_channels=time_embed_dim,
         
     | 
| 586 | 
         
            +
                                dropout=dropout,
         
     | 
| 587 | 
         
            +
                                out_channels=out_channels,
         
     | 
| 588 | 
         
            +
                                dims=dims,
         
     | 
| 589 | 
         
            +
                                use_checkpoint=use_checkpoint,
         
     | 
| 590 | 
         
            +
                                use_scale_shift_norm=use_scale_shift_norm,
         
     | 
| 591 | 
         
            +
                                down=down,
         
     | 
| 592 | 
         
            +
                                up=up,
         
     | 
| 593 | 
         
            +
                                dtype=dtype,
         
     | 
| 594 | 
         
            +
                                device=device,
         
     | 
| 595 | 
         
            +
                                operations=operations
         
     | 
| 596 | 
         
            +
                            )
         
     | 
| 597 | 
         
            +
                        else:
         
     | 
| 598 | 
         
            +
                            return ResBlock(
         
     | 
| 599 | 
         
            +
                                channels=ch,
         
     | 
| 600 | 
         
            +
                                emb_channels=time_embed_dim,
         
     | 
| 601 | 
         
            +
                                dropout=dropout,
         
     | 
| 602 | 
         
            +
                                out_channels=out_channels,
         
     | 
| 603 | 
         
            +
                                use_checkpoint=use_checkpoint,
         
     | 
| 604 | 
         
            +
                                dims=dims,
         
     | 
| 605 | 
         
            +
                                use_scale_shift_norm=use_scale_shift_norm,
         
     | 
| 606 | 
         
            +
                                down=down,
         
     | 
| 607 | 
         
            +
                                up=up,
         
     | 
| 608 | 
         
            +
                                dtype=dtype,
         
     | 
| 609 | 
         
            +
                                device=device,
         
     | 
| 610 | 
         
            +
                                operations=operations
         
     | 
| 611 | 
         
            +
                            )
         
     | 
| 612 | 
         
            +
             
     | 
| 613 | 
         
            +
                    for level, mult in enumerate(channel_mult):
         
     | 
| 614 | 
         
            +
                        for nr in range(self.num_res_blocks[level]):
         
     | 
| 615 | 
         
            +
                            layers = [
         
     | 
| 616 | 
         
            +
                                get_resblock(
         
     | 
| 617 | 
         
            +
                                    merge_factor=merge_factor,
         
     | 
| 618 | 
         
            +
                                    merge_strategy=merge_strategy,
         
     | 
| 619 | 
         
            +
                                    video_kernel_size=video_kernel_size,
         
     | 
| 620 | 
         
            +
                                    ch=ch,
         
     | 
| 621 | 
         
            +
                                    time_embed_dim=time_embed_dim,
         
     | 
| 622 | 
         
            +
                                    dropout=dropout,
         
     | 
| 623 | 
         
            +
                                    out_channels=mult * model_channels,
         
     | 
| 624 | 
         
            +
                                    dims=dims,
         
     | 
| 625 | 
         
            +
                                    use_checkpoint=use_checkpoint,
         
     | 
| 626 | 
         
            +
                                    use_scale_shift_norm=use_scale_shift_norm,
         
     | 
| 627 | 
         
            +
                                    dtype=self.dtype,
         
     | 
| 628 | 
         
            +
                                    device=device,
         
     | 
| 629 | 
         
            +
                                    operations=operations,
         
     | 
| 630 | 
         
            +
                                )
         
     | 
| 631 | 
         
            +
                            ]
         
     | 
| 632 | 
         
            +
                            ch = mult * model_channels
         
     | 
| 633 | 
         
            +
                            num_transformers = transformer_depth.pop(0)
         
     | 
| 634 | 
         
            +
                            if num_transformers > 0:
         
     | 
| 635 | 
         
            +
                                if num_head_channels == -1:
         
     | 
| 636 | 
         
            +
                                    dim_head = ch // num_heads
         
     | 
| 637 | 
         
            +
                                else:
         
     | 
| 638 | 
         
            +
                                    num_heads = ch // num_head_channels
         
     | 
| 639 | 
         
            +
                                    dim_head = num_head_channels
         
     | 
| 640 | 
         
            +
                                if legacy:
         
     | 
| 641 | 
         
            +
                                    #num_heads = 1
         
     | 
| 642 | 
         
            +
                                    dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
         
     | 
| 643 | 
         
            +
                                if exists(disable_self_attentions):
         
     | 
| 644 | 
         
            +
                                    disabled_sa = disable_self_attentions[level]
         
     | 
| 645 | 
         
            +
                                else:
         
     | 
| 646 | 
         
            +
                                    disabled_sa = False
         
     | 
| 647 | 
         
            +
             
     | 
| 648 | 
         
            +
                                if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
         
     | 
| 649 | 
         
            +
                                    layers.append(get_attention_layer(
         
     | 
| 650 | 
         
            +
                                            ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
         
     | 
| 651 | 
         
            +
                                            disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint)
         
     | 
| 652 | 
         
            +
                                    )
         
     | 
| 653 | 
         
            +
                            self.input_blocks.append(TimestepEmbedSequential(*layers))
         
     | 
| 654 | 
         
            +
                            self._feature_size += ch
         
     | 
| 655 | 
         
            +
                            input_block_chans.append(ch)
         
     | 
| 656 | 
         
            +
                        if level != len(channel_mult) - 1:
         
     | 
| 657 | 
         
            +
                            out_ch = ch
         
     | 
| 658 | 
         
            +
                            self.input_blocks.append(
         
     | 
| 659 | 
         
            +
                                TimestepEmbedSequential(
         
     | 
| 660 | 
         
            +
                                    get_resblock(
         
     | 
| 661 | 
         
            +
                                        merge_factor=merge_factor,
         
     | 
| 662 | 
         
            +
                                        merge_strategy=merge_strategy,
         
     | 
| 663 | 
         
            +
                                        video_kernel_size=video_kernel_size,
         
     | 
| 664 | 
         
            +
                                        ch=ch,
         
     | 
| 665 | 
         
            +
                                        time_embed_dim=time_embed_dim,
         
     | 
| 666 | 
         
            +
                                        dropout=dropout,
         
     | 
| 667 | 
         
            +
                                        out_channels=out_ch,
         
     | 
| 668 | 
         
            +
                                        dims=dims,
         
     | 
| 669 | 
         
            +
                                        use_checkpoint=use_checkpoint,
         
     | 
| 670 | 
         
            +
                                        use_scale_shift_norm=use_scale_shift_norm,
         
     | 
| 671 | 
         
            +
                                        down=True,
         
     | 
| 672 | 
         
            +
                                        dtype=self.dtype,
         
     | 
| 673 | 
         
            +
                                        device=device,
         
     | 
| 674 | 
         
            +
                                        operations=operations
         
     | 
| 675 | 
         
            +
                                    )
         
     | 
| 676 | 
         
            +
                                    if resblock_updown
         
     | 
| 677 | 
         
            +
                                    else Downsample(
         
     | 
| 678 | 
         
            +
                                        ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations
         
     | 
| 679 | 
         
            +
                                    )
         
     | 
| 680 | 
         
            +
                                )
         
     | 
| 681 | 
         
            +
                            )
         
     | 
| 682 | 
         
            +
                            ch = out_ch
         
     | 
| 683 | 
         
            +
                            input_block_chans.append(ch)
         
     | 
| 684 | 
         
            +
                            ds *= 2
         
     | 
| 685 | 
         
            +
                            self._feature_size += ch
         
     | 
| 686 | 
         
            +
             
     | 
| 687 | 
         
            +
                    if num_head_channels == -1:
         
     | 
| 688 | 
         
            +
                        dim_head = ch // num_heads
         
     | 
| 689 | 
         
            +
                    else:
         
     | 
| 690 | 
         
            +
                        num_heads = ch // num_head_channels
         
     | 
| 691 | 
         
            +
                        dim_head = num_head_channels
         
     | 
| 692 | 
         
            +
                    if legacy:
         
     | 
| 693 | 
         
            +
                        #num_heads = 1
         
     | 
| 694 | 
         
            +
                        dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
         
     | 
| 695 | 
         
            +
                    mid_block = [
         
     | 
| 696 | 
         
            +
                        get_resblock(
         
     | 
| 697 | 
         
            +
                            merge_factor=merge_factor,
         
     | 
| 698 | 
         
            +
                            merge_strategy=merge_strategy,
         
     | 
| 699 | 
         
            +
                            video_kernel_size=video_kernel_size,
         
     | 
| 700 | 
         
            +
                            ch=ch,
         
     | 
| 701 | 
         
            +
                            time_embed_dim=time_embed_dim,
         
     | 
| 702 | 
         
            +
                            dropout=dropout,
         
     | 
| 703 | 
         
            +
                            out_channels=None,
         
     | 
| 704 | 
         
            +
                            dims=dims,
         
     | 
| 705 | 
         
            +
                            use_checkpoint=use_checkpoint,
         
     | 
| 706 | 
         
            +
                            use_scale_shift_norm=use_scale_shift_norm,
         
     | 
| 707 | 
         
            +
                            dtype=self.dtype,
         
     | 
| 708 | 
         
            +
                            device=device,
         
     | 
| 709 | 
         
            +
                            operations=operations
         
     | 
| 710 | 
         
            +
                        )]
         
     | 
| 711 | 
         
            +
                    if transformer_depth_middle >= 0:
         
     | 
| 712 | 
         
            +
                        mid_block += [get_attention_layer(  # always uses a self-attn
         
     | 
| 713 | 
         
            +
                                        ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
         
     | 
| 714 | 
         
            +
                                        disable_self_attn=disable_middle_self_attn, use_checkpoint=use_checkpoint
         
     | 
| 715 | 
         
            +
                                    ),
         
     | 
| 716 | 
         
            +
                        get_resblock(
         
     | 
| 717 | 
         
            +
                            merge_factor=merge_factor,
         
     | 
| 718 | 
         
            +
                            merge_strategy=merge_strategy,
         
     | 
| 719 | 
         
            +
                            video_kernel_size=video_kernel_size,
         
     | 
| 720 | 
         
            +
                            ch=ch,
         
     | 
| 721 | 
         
            +
                            time_embed_dim=time_embed_dim,
         
     | 
| 722 | 
         
            +
                            dropout=dropout,
         
     | 
| 723 | 
         
            +
                            out_channels=None,
         
     | 
| 724 | 
         
            +
                            dims=dims,
         
     | 
| 725 | 
         
            +
                            use_checkpoint=use_checkpoint,
         
     | 
| 726 | 
         
            +
                            use_scale_shift_norm=use_scale_shift_norm,
         
     | 
| 727 | 
         
            +
                            dtype=self.dtype,
         
     | 
| 728 | 
         
            +
                            device=device,
         
     | 
| 729 | 
         
            +
                            operations=operations
         
     | 
| 730 | 
         
            +
                        )]
         
     | 
| 731 | 
         
            +
                    self.middle_block = TimestepEmbedSequential(*mid_block)
         
     | 
| 732 | 
         
            +
                    self._feature_size += ch
         
     | 
| 733 | 
         
            +
             
     | 
| 734 | 
         
            +
                    self.output_blocks = nn.ModuleList([])
         
     | 
| 735 | 
         
            +
                    for level, mult in list(enumerate(channel_mult))[::-1]:
         
     | 
| 736 | 
         
            +
                        for i in range(self.num_res_blocks[level] + 1):
         
     | 
| 737 | 
         
            +
                            ich = input_block_chans.pop()
         
     | 
| 738 | 
         
            +
                            layers = [
         
     | 
| 739 | 
         
            +
                                get_resblock(
         
     | 
| 740 | 
         
            +
                                    merge_factor=merge_factor,
         
     | 
| 741 | 
         
            +
                                    merge_strategy=merge_strategy,
         
     | 
| 742 | 
         
            +
                                    video_kernel_size=video_kernel_size,
         
     | 
| 743 | 
         
            +
                                    ch=ch + ich,
         
     | 
| 744 | 
         
            +
                                    time_embed_dim=time_embed_dim,
         
     | 
| 745 | 
         
            +
                                    dropout=dropout,
         
     | 
| 746 | 
         
            +
                                    out_channels=model_channels * mult,
         
     | 
| 747 | 
         
            +
                                    dims=dims,
         
     | 
| 748 | 
         
            +
                                    use_checkpoint=use_checkpoint,
         
     | 
| 749 | 
         
            +
                                    use_scale_shift_norm=use_scale_shift_norm,
         
     | 
| 750 | 
         
            +
                                    dtype=self.dtype,
         
     | 
| 751 | 
         
            +
                                    device=device,
         
     | 
| 752 | 
         
            +
                                    operations=operations
         
     | 
| 753 | 
         
            +
                                )
         
     | 
| 754 | 
         
            +
                            ]
         
     | 
| 755 | 
         
            +
                            ch = model_channels * mult
         
     | 
| 756 | 
         
            +
                            num_transformers = transformer_depth_output.pop()
         
     | 
| 757 | 
         
            +
                            if num_transformers > 0:
         
     | 
| 758 | 
         
            +
                                if num_head_channels == -1:
         
     | 
| 759 | 
         
            +
                                    dim_head = ch // num_heads
         
     | 
| 760 | 
         
            +
                                else:
         
     | 
| 761 | 
         
            +
                                    num_heads = ch // num_head_channels
         
     | 
| 762 | 
         
            +
                                    dim_head = num_head_channels
         
     | 
| 763 | 
         
            +
                                if legacy:
         
     | 
| 764 | 
         
            +
                                    #num_heads = 1
         
     | 
| 765 | 
         
            +
                                    dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
         
     | 
| 766 | 
         
            +
                                if exists(disable_self_attentions):
         
     | 
| 767 | 
         
            +
                                    disabled_sa = disable_self_attentions[level]
         
     | 
| 768 | 
         
            +
                                else:
         
     | 
| 769 | 
         
            +
                                    disabled_sa = False
         
     | 
| 770 | 
         
            +
             
     | 
| 771 | 
         
            +
                                if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
         
     | 
| 772 | 
         
            +
                                    layers.append(
         
     | 
| 773 | 
         
            +
                                        get_attention_layer(
         
     | 
| 774 | 
         
            +
                                            ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
         
     | 
| 775 | 
         
            +
                                            disable_self_attn=disabled_sa, use_checkpoint=use_checkpoint
         
     | 
| 776 | 
         
            +
                                        )
         
     | 
| 777 | 
         
            +
                                    )
         
     | 
| 778 | 
         
            +
                            if level and i == self.num_res_blocks[level]:
         
     | 
| 779 | 
         
            +
                                out_ch = ch
         
     | 
| 780 | 
         
            +
                                layers.append(
         
     | 
| 781 | 
         
            +
                                    get_resblock(
         
     | 
| 782 | 
         
            +
                                        merge_factor=merge_factor,
         
     | 
| 783 | 
         
            +
                                        merge_strategy=merge_strategy,
         
     | 
| 784 | 
         
            +
                                        video_kernel_size=video_kernel_size,
         
     | 
| 785 | 
         
            +
                                        ch=ch,
         
     | 
| 786 | 
         
            +
                                        time_embed_dim=time_embed_dim,
         
     | 
| 787 | 
         
            +
                                        dropout=dropout,
         
     | 
| 788 | 
         
            +
                                        out_channels=out_ch,
         
     | 
| 789 | 
         
            +
                                        dims=dims,
         
     | 
| 790 | 
         
            +
                                        use_checkpoint=use_checkpoint,
         
     | 
| 791 | 
         
            +
                                        use_scale_shift_norm=use_scale_shift_norm,
         
     | 
| 792 | 
         
            +
                                        up=True,
         
     | 
| 793 | 
         
            +
                                        dtype=self.dtype,
         
     | 
| 794 | 
         
            +
                                        device=device,
         
     | 
| 795 | 
         
            +
                                        operations=operations
         
     | 
| 796 | 
         
            +
                                    )
         
     | 
| 797 | 
         
            +
                                    if resblock_updown
         
     | 
| 798 | 
         
            +
                                    else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations)
         
     | 
| 799 | 
         
            +
                                )
         
     | 
| 800 | 
         
            +
                                ds //= 2
         
     | 
| 801 | 
         
            +
                            self.output_blocks.append(TimestepEmbedSequential(*layers))
         
     | 
| 802 | 
         
            +
                            self._feature_size += ch
         
     | 
| 803 | 
         
            +
             
     | 
| 804 | 
         
            +
                    self.out = nn.Sequential(
         
     | 
| 805 | 
         
            +
                        operations.GroupNorm(32, ch, dtype=self.dtype, device=device),
         
     | 
| 806 | 
         
            +
                        nn.SiLU(),
         
     | 
| 807 | 
         
            +
                        zero_module(operations.conv_nd(dims, model_channels, out_channels, 3, padding=1, dtype=self.dtype, device=device)),
         
     | 
| 808 | 
         
            +
                    )
         
     | 
| 809 | 
         
            +
                    if self.predict_codebook_ids:
         
     | 
| 810 | 
         
            +
                        self.id_predictor = nn.Sequential(
         
     | 
| 811 | 
         
            +
                        operations.GroupNorm(32, ch, dtype=self.dtype, device=device),
         
     | 
| 812 | 
         
            +
                        operations.conv_nd(dims, model_channels, n_embed, 1, dtype=self.dtype, device=device),
         
     | 
| 813 | 
         
            +
                        #nn.LogSoftmax(dim=1)  # change to cross_entropy and produce non-normalized logits
         
     | 
| 814 | 
         
            +
                    )
         
     | 
| 815 | 
         
            +
             
     | 
| 816 | 
         
            +
                def forward(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs):
         
     | 
| 817 | 
         
            +
                    """
         
     | 
| 818 | 
         
            +
                    Apply the model to an input batch.
         
     | 
| 819 | 
         
            +
                    :param x: an [N x C x ...] Tensor of inputs.
         
     | 
| 820 | 
         
            +
                    :param timesteps: a 1-D batch of timesteps.
         
     | 
| 821 | 
         
            +
                    :param context: conditioning plugged in via crossattn
         
     | 
| 822 | 
         
            +
                    :param y: an [N] Tensor of labels, if class-conditional.
         
     | 
| 823 | 
         
            +
                    :return: an [N x C x ...] Tensor of outputs.
         
     | 
| 824 | 
         
            +
                    """
         
     | 
| 825 | 
         
            +
                    transformer_options["original_shape"] = list(x.shape)
         
     | 
| 826 | 
         
            +
                    transformer_options["transformer_index"] = 0
         
     | 
| 827 | 
         
            +
                    transformer_patches = transformer_options.get("patches", {})
         
     | 
| 828 | 
         
            +
             
     | 
| 829 | 
         
            +
                    num_video_frames = kwargs.get("num_video_frames", self.default_num_video_frames)
         
     | 
| 830 | 
         
            +
                    image_only_indicator = kwargs.get("image_only_indicator", self.default_image_only_indicator)
         
     | 
| 831 | 
         
            +
                    time_context = kwargs.get("time_context", None)
         
     | 
| 832 | 
         
            +
             
     | 
| 833 | 
         
            +
                    assert (y is not None) == (
         
     | 
| 834 | 
         
            +
                        self.num_classes is not None
         
     | 
| 835 | 
         
            +
                    ), "must specify y if and only if the model is class-conditional"
         
     | 
| 836 | 
         
            +
                    hs = []
         
     | 
| 837 | 
         
            +
                    t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
         
     | 
| 838 | 
         
            +
                    emb = self.time_embed(t_emb)
         
     | 
| 839 | 
         
            +
             
     | 
| 840 | 
         
            +
                    if self.num_classes is not None:
         
     | 
| 841 | 
         
            +
                        assert y.shape[0] == x.shape[0]
         
     | 
| 842 | 
         
            +
                        emb = emb + self.label_emb(y)
         
     | 
| 843 | 
         
            +
             
     | 
| 844 | 
         
            +
                    h = x
         
     | 
| 845 | 
         
            +
                    for id, module in enumerate(self.input_blocks):
         
     | 
| 846 | 
         
            +
                        transformer_options["block"] = ("input", id)
         
     | 
| 847 | 
         
            +
                        h = forward_timestep_embed(module, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
         
     | 
| 848 | 
         
            +
                        h = apply_control(h, control, 'input')
         
     | 
| 849 | 
         
            +
                        if "input_block_patch" in transformer_patches:
         
     | 
| 850 | 
         
            +
                            patch = transformer_patches["input_block_patch"]
         
     | 
| 851 | 
         
            +
                            for p in patch:
         
     | 
| 852 | 
         
            +
                                h = p(h, transformer_options)
         
     | 
| 853 | 
         
            +
             
     | 
| 854 | 
         
            +
                        hs.append(h)
         
     | 
| 855 | 
         
            +
                        if "input_block_patch_after_skip" in transformer_patches:
         
     | 
| 856 | 
         
            +
                            patch = transformer_patches["input_block_patch_after_skip"]
         
     | 
| 857 | 
         
            +
                            for p in patch:
         
     | 
| 858 | 
         
            +
                                h = p(h, transformer_options)
         
     | 
| 859 | 
         
            +
             
     | 
| 860 | 
         
            +
                    transformer_options["block"] = ("middle", 0)
         
     | 
| 861 | 
         
            +
                    h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
         
     | 
| 862 | 
         
            +
                    h = apply_control(h, control, 'middle')
         
     | 
| 863 | 
         
            +
             
     | 
| 864 | 
         
            +
             
     | 
| 865 | 
         
            +
                    for id, module in enumerate(self.output_blocks):
         
     | 
| 866 | 
         
            +
                        transformer_options["block"] = ("output", id)
         
     | 
| 867 | 
         
            +
                        hsp = hs.pop()
         
     | 
| 868 | 
         
            +
                        hsp = apply_control(hsp, control, 'output')
         
     | 
| 869 | 
         
            +
             
     | 
| 870 | 
         
            +
                        if "output_block_patch" in transformer_patches:
         
     | 
| 871 | 
         
            +
                            patch = transformer_patches["output_block_patch"]
         
     | 
| 872 | 
         
            +
                            for p in patch:
         
     | 
| 873 | 
         
            +
                                h, hsp = p(h, hsp, transformer_options)
         
     | 
| 874 | 
         
            +
             
     | 
| 875 | 
         
            +
                        h = th.cat([h, hsp], dim=1)
         
     | 
| 876 | 
         
            +
                        del hsp
         
     | 
| 877 | 
         
            +
                        if len(hs) > 0:
         
     | 
| 878 | 
         
            +
                            output_shape = hs[-1].shape
         
     | 
| 879 | 
         
            +
                        else:
         
     | 
| 880 | 
         
            +
                            output_shape = None
         
     | 
| 881 | 
         
            +
                        h = forward_timestep_embed(module, h, emb, context, transformer_options, output_shape, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
         
     | 
| 882 | 
         
            +
                    h = h.type(x.dtype)
         
     | 
| 883 | 
         
            +
                    if self.predict_codebook_ids:
         
     | 
| 884 | 
         
            +
                        return self.id_predictor(h)
         
     | 
| 885 | 
         
            +
                    else:
         
     | 
| 886 | 
         
            +
                        return self.out(h)
         
     | 
    	
        comfy/ldm/modules/diffusionmodules/upscaling.py
    ADDED
    
    | 
         @@ -0,0 +1,85 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            import torch.nn as nn
         
     | 
| 3 | 
         
            +
            import numpy as np
         
     | 
| 4 | 
         
            +
            from functools import partial
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            from .util import extract_into_tensor, make_beta_schedule
         
     | 
| 7 | 
         
            +
            from comfy.ldm.util import default
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            class AbstractLowScaleModel(nn.Module):
         
     | 
| 11 | 
         
            +
                # for concatenating a downsampled image to the latent representation
         
     | 
| 12 | 
         
            +
                def __init__(self, noise_schedule_config=None):
         
     | 
| 13 | 
         
            +
                    super(AbstractLowScaleModel, self).__init__()
         
     | 
| 14 | 
         
            +
                    if noise_schedule_config is not None:
         
     | 
| 15 | 
         
            +
                        self.register_schedule(**noise_schedule_config)
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
                def register_schedule(self, beta_schedule="linear", timesteps=1000,
         
     | 
| 18 | 
         
            +
                                      linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
         
     | 
| 19 | 
         
            +
                    betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
         
     | 
| 20 | 
         
            +
                                               cosine_s=cosine_s)
         
     | 
| 21 | 
         
            +
                    alphas = 1. - betas
         
     | 
| 22 | 
         
            +
                    alphas_cumprod = np.cumprod(alphas, axis=0)
         
     | 
| 23 | 
         
            +
                    alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
                    timesteps, = betas.shape
         
     | 
| 26 | 
         
            +
                    self.num_timesteps = int(timesteps)
         
     | 
| 27 | 
         
            +
                    self.linear_start = linear_start
         
     | 
| 28 | 
         
            +
                    self.linear_end = linear_end
         
     | 
| 29 | 
         
            +
                    assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
                    to_torch = partial(torch.tensor, dtype=torch.float32)
         
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
                    self.register_buffer('betas', to_torch(betas))
         
     | 
| 34 | 
         
            +
                    self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
         
     | 
| 35 | 
         
            +
                    self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
                    # calculations for diffusion q(x_t | x_{t-1}) and others
         
     | 
| 38 | 
         
            +
                    self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
         
     | 
| 39 | 
         
            +
                    self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
         
     | 
| 40 | 
         
            +
                    self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
         
     | 
| 41 | 
         
            +
                    self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
         
     | 
| 42 | 
         
            +
                    self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
                def q_sample(self, x_start, t, noise=None, seed=None):
         
     | 
| 45 | 
         
            +
                    if noise is None:
         
     | 
| 46 | 
         
            +
                        if seed is None:
         
     | 
| 47 | 
         
            +
                            noise = torch.randn_like(x_start)
         
     | 
| 48 | 
         
            +
                        else:
         
     | 
| 49 | 
         
            +
                            noise = torch.randn(x_start.size(), dtype=x_start.dtype, layout=x_start.layout, generator=torch.manual_seed(seed)).to(x_start.device)
         
     | 
| 50 | 
         
            +
                    return (extract_into_tensor(self.sqrt_alphas_cumprod.to(x_start.device), t, x_start.shape) * x_start +
         
     | 
| 51 | 
         
            +
                            extract_into_tensor(self.sqrt_one_minus_alphas_cumprod.to(x_start.device), t, x_start.shape) * noise)
         
     | 
| 52 | 
         
            +
             
     | 
| 53 | 
         
            +
                def forward(self, x):
         
     | 
| 54 | 
         
            +
                    return x, None
         
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
                def decode(self, x):
         
     | 
| 57 | 
         
            +
                    return x
         
     | 
| 58 | 
         
            +
             
     | 
| 59 | 
         
            +
             
     | 
| 60 | 
         
            +
            class SimpleImageConcat(AbstractLowScaleModel):
         
     | 
| 61 | 
         
            +
                # no noise level conditioning
         
     | 
| 62 | 
         
            +
                def __init__(self):
         
     | 
| 63 | 
         
            +
                    super(SimpleImageConcat, self).__init__(noise_schedule_config=None)
         
     | 
| 64 | 
         
            +
                    self.max_noise_level = 0
         
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
                def forward(self, x):
         
     | 
| 67 | 
         
            +
                    # fix to constant noise level
         
     | 
| 68 | 
         
            +
                    return x, torch.zeros(x.shape[0], device=x.device).long()
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
            class ImageConcatWithNoiseAugmentation(AbstractLowScaleModel):
         
     | 
| 72 | 
         
            +
                def __init__(self, noise_schedule_config, max_noise_level=1000, to_cuda=False):
         
     | 
| 73 | 
         
            +
                    super().__init__(noise_schedule_config=noise_schedule_config)
         
     | 
| 74 | 
         
            +
                    self.max_noise_level = max_noise_level
         
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
                def forward(self, x, noise_level=None, seed=None):
         
     | 
| 77 | 
         
            +
                    if noise_level is None:
         
     | 
| 78 | 
         
            +
                        noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long()
         
     | 
| 79 | 
         
            +
                    else:
         
     | 
| 80 | 
         
            +
                        assert isinstance(noise_level, torch.Tensor)
         
     | 
| 81 | 
         
            +
                    z = self.q_sample(x, noise_level, seed=seed)
         
     | 
| 82 | 
         
            +
                    return z, noise_level
         
     | 
| 83 | 
         
            +
             
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
             
     | 
    	
        comfy/ldm/modules/diffusionmodules/util.py
    ADDED
    
    | 
         @@ -0,0 +1,304 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # adopted from
         
     | 
| 2 | 
         
            +
            # https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
         
     | 
| 3 | 
         
            +
            # and
         
     | 
| 4 | 
         
            +
            # https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
         
     | 
| 5 | 
         
            +
            # and
         
     | 
| 6 | 
         
            +
            # https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
         
     | 
| 7 | 
         
            +
            #
         
     | 
| 8 | 
         
            +
            # thanks!
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            import os
         
     | 
| 12 | 
         
            +
            import math
         
     | 
| 13 | 
         
            +
            import torch
         
     | 
| 14 | 
         
            +
            import torch.nn as nn
         
     | 
| 15 | 
         
            +
            import numpy as np
         
     | 
| 16 | 
         
            +
            from einops import repeat, rearrange
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            from comfy.ldm.util import instantiate_from_config
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            class AlphaBlender(nn.Module):
         
     | 
| 21 | 
         
            +
                strategies = ["learned", "fixed", "learned_with_images"]
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
                def __init__(
         
     | 
| 24 | 
         
            +
                    self,
         
     | 
| 25 | 
         
            +
                    alpha: float,
         
     | 
| 26 | 
         
            +
                    merge_strategy: str = "learned_with_images",
         
     | 
| 27 | 
         
            +
                    rearrange_pattern: str = "b t -> (b t) 1 1",
         
     | 
| 28 | 
         
            +
                ):
         
     | 
| 29 | 
         
            +
                    super().__init__()
         
     | 
| 30 | 
         
            +
                    self.merge_strategy = merge_strategy
         
     | 
| 31 | 
         
            +
                    self.rearrange_pattern = rearrange_pattern
         
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
                    assert (
         
     | 
| 34 | 
         
            +
                        merge_strategy in self.strategies
         
     | 
| 35 | 
         
            +
                    ), f"merge_strategy needs to be in {self.strategies}"
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
                    if self.merge_strategy == "fixed":
         
     | 
| 38 | 
         
            +
                        self.register_buffer("mix_factor", torch.Tensor([alpha]))
         
     | 
| 39 | 
         
            +
                    elif (
         
     | 
| 40 | 
         
            +
                        self.merge_strategy == "learned"
         
     | 
| 41 | 
         
            +
                        or self.merge_strategy == "learned_with_images"
         
     | 
| 42 | 
         
            +
                    ):
         
     | 
| 43 | 
         
            +
                        self.register_parameter(
         
     | 
| 44 | 
         
            +
                            "mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))
         
     | 
| 45 | 
         
            +
                        )
         
     | 
| 46 | 
         
            +
                    else:
         
     | 
| 47 | 
         
            +
                        raise ValueError(f"unknown merge strategy {self.merge_strategy}")
         
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
                def get_alpha(self, image_only_indicator: torch.Tensor) -> torch.Tensor:
         
     | 
| 50 | 
         
            +
                    # skip_time_mix = rearrange(repeat(skip_time_mix, 'b -> (b t) () () ()', t=t), '(b t) 1 ... -> b 1 t ...', t=t)
         
     | 
| 51 | 
         
            +
                    if self.merge_strategy == "fixed":
         
     | 
| 52 | 
         
            +
                        # make shape compatible
         
     | 
| 53 | 
         
            +
                        # alpha = repeat(self.mix_factor, '1 -> b () t  () ()', t=t, b=bs)
         
     | 
| 54 | 
         
            +
                        alpha = self.mix_factor.to(image_only_indicator.device)
         
     | 
| 55 | 
         
            +
                    elif self.merge_strategy == "learned":
         
     | 
| 56 | 
         
            +
                        alpha = torch.sigmoid(self.mix_factor.to(image_only_indicator.device))
         
     | 
| 57 | 
         
            +
                        # make shape compatible
         
     | 
| 58 | 
         
            +
                        # alpha = repeat(alpha, '1 -> s () ()', s = t * bs)
         
     | 
| 59 | 
         
            +
                    elif self.merge_strategy == "learned_with_images":
         
     | 
| 60 | 
         
            +
                        assert image_only_indicator is not None, "need image_only_indicator ..."
         
     | 
| 61 | 
         
            +
                        alpha = torch.where(
         
     | 
| 62 | 
         
            +
                            image_only_indicator.bool(),
         
     | 
| 63 | 
         
            +
                            torch.ones(1, 1, device=image_only_indicator.device),
         
     | 
| 64 | 
         
            +
                            rearrange(torch.sigmoid(self.mix_factor.to(image_only_indicator.device)), "... -> ... 1"),
         
     | 
| 65 | 
         
            +
                        )
         
     | 
| 66 | 
         
            +
                        alpha = rearrange(alpha, self.rearrange_pattern)
         
     | 
| 67 | 
         
            +
                        # make shape compatible
         
     | 
| 68 | 
         
            +
                        # alpha = repeat(alpha, '1 -> s () ()', s = t * bs)
         
     | 
| 69 | 
         
            +
                    else:
         
     | 
| 70 | 
         
            +
                        raise NotImplementedError()
         
     | 
| 71 | 
         
            +
                    return alpha
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
                def forward(
         
     | 
| 74 | 
         
            +
                    self,
         
     | 
| 75 | 
         
            +
                    x_spatial,
         
     | 
| 76 | 
         
            +
                    x_temporal,
         
     | 
| 77 | 
         
            +
                    image_only_indicator=None,
         
     | 
| 78 | 
         
            +
                ) -> torch.Tensor:
         
     | 
| 79 | 
         
            +
                    alpha = self.get_alpha(image_only_indicator)
         
     | 
| 80 | 
         
            +
                    x = (
         
     | 
| 81 | 
         
            +
                        alpha.to(x_spatial.dtype) * x_spatial
         
     | 
| 82 | 
         
            +
                        + (1.0 - alpha).to(x_spatial.dtype) * x_temporal
         
     | 
| 83 | 
         
            +
                    )
         
     | 
| 84 | 
         
            +
                    return x
         
     | 
| 85 | 
         
            +
             
     | 
| 86 | 
         
            +
             
     | 
| 87 | 
         
            +
            def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
         
     | 
| 88 | 
         
            +
                if schedule == "linear":
         
     | 
| 89 | 
         
            +
                    betas = (
         
     | 
| 90 | 
         
            +
                            torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
         
     | 
| 91 | 
         
            +
                    )
         
     | 
| 92 | 
         
            +
             
     | 
| 93 | 
         
            +
                elif schedule == "cosine":
         
     | 
| 94 | 
         
            +
                    timesteps = (
         
     | 
| 95 | 
         
            +
                            torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
         
     | 
| 96 | 
         
            +
                    )
         
     | 
| 97 | 
         
            +
                    alphas = timesteps / (1 + cosine_s) * np.pi / 2
         
     | 
| 98 | 
         
            +
                    alphas = torch.cos(alphas).pow(2)
         
     | 
| 99 | 
         
            +
                    alphas = alphas / alphas[0]
         
     | 
| 100 | 
         
            +
                    betas = 1 - alphas[1:] / alphas[:-1]
         
     | 
| 101 | 
         
            +
                    betas = torch.clamp(betas, min=0, max=0.999)
         
     | 
| 102 | 
         
            +
             
     | 
| 103 | 
         
            +
                elif schedule == "squaredcos_cap_v2":  # used for karlo prior
         
     | 
| 104 | 
         
            +
                    # return early
         
     | 
| 105 | 
         
            +
                    return betas_for_alpha_bar(
         
     | 
| 106 | 
         
            +
                        n_timestep,
         
     | 
| 107 | 
         
            +
                        lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
         
     | 
| 108 | 
         
            +
                    )
         
     | 
| 109 | 
         
            +
             
     | 
| 110 | 
         
            +
                elif schedule == "sqrt_linear":
         
     | 
| 111 | 
         
            +
                    betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
         
     | 
| 112 | 
         
            +
                elif schedule == "sqrt":
         
     | 
| 113 | 
         
            +
                    betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
         
     | 
| 114 | 
         
            +
                else:
         
     | 
| 115 | 
         
            +
                    raise ValueError(f"schedule '{schedule}' unknown.")
         
     | 
| 116 | 
         
            +
                return betas
         
     | 
| 117 | 
         
            +
             
     | 
| 118 | 
         
            +
             
     | 
| 119 | 
         
            +
            def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
         
     | 
| 120 | 
         
            +
                if ddim_discr_method == 'uniform':
         
     | 
| 121 | 
         
            +
                    c = num_ddpm_timesteps // num_ddim_timesteps
         
     | 
| 122 | 
         
            +
                    ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
         
     | 
| 123 | 
         
            +
                elif ddim_discr_method == 'quad':
         
     | 
| 124 | 
         
            +
                    ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
         
     | 
| 125 | 
         
            +
                else:
         
     | 
| 126 | 
         
            +
                    raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
         
     | 
| 127 | 
         
            +
             
     | 
| 128 | 
         
            +
                # assert ddim_timesteps.shape[0] == num_ddim_timesteps
         
     | 
| 129 | 
         
            +
                # add one to get the final alpha values right (the ones from first scale to data during sampling)
         
     | 
| 130 | 
         
            +
                steps_out = ddim_timesteps + 1
         
     | 
| 131 | 
         
            +
                if verbose:
         
     | 
| 132 | 
         
            +
                    print(f'Selected timesteps for ddim sampler: {steps_out}')
         
     | 
| 133 | 
         
            +
                return steps_out
         
     | 
| 134 | 
         
            +
             
     | 
| 135 | 
         
            +
             
     | 
| 136 | 
         
            +
            def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
         
     | 
| 137 | 
         
            +
                # select alphas for computing the variance schedule
         
     | 
| 138 | 
         
            +
                alphas = alphacums[ddim_timesteps]
         
     | 
| 139 | 
         
            +
                alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
         
     | 
| 140 | 
         
            +
             
     | 
| 141 | 
         
            +
                # according the the formula provided in https://arxiv.org/abs/2010.02502
         
     | 
| 142 | 
         
            +
                sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
         
     | 
| 143 | 
         
            +
                if verbose:
         
     | 
| 144 | 
         
            +
                    print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
         
     | 
| 145 | 
         
            +
                    print(f'For the chosen value of eta, which is {eta}, '
         
     | 
| 146 | 
         
            +
                          f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
         
     | 
| 147 | 
         
            +
                return sigmas, alphas, alphas_prev
         
     | 
| 148 | 
         
            +
             
     | 
| 149 | 
         
            +
             
     | 
| 150 | 
         
            +
            def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
         
     | 
| 151 | 
         
            +
                """
         
     | 
| 152 | 
         
            +
                Create a beta schedule that discretizes the given alpha_t_bar function,
         
     | 
| 153 | 
         
            +
                which defines the cumulative product of (1-beta) over time from t = [0,1].
         
     | 
| 154 | 
         
            +
                :param num_diffusion_timesteps: the number of betas to produce.
         
     | 
| 155 | 
         
            +
                :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
         
     | 
| 156 | 
         
            +
                                  produces the cumulative product of (1-beta) up to that
         
     | 
| 157 | 
         
            +
                                  part of the diffusion process.
         
     | 
| 158 | 
         
            +
                :param max_beta: the maximum beta to use; use values lower than 1 to
         
     | 
| 159 | 
         
            +
                                 prevent singularities.
         
     | 
| 160 | 
         
            +
                """
         
     | 
| 161 | 
         
            +
                betas = []
         
     | 
| 162 | 
         
            +
                for i in range(num_diffusion_timesteps):
         
     | 
| 163 | 
         
            +
                    t1 = i / num_diffusion_timesteps
         
     | 
| 164 | 
         
            +
                    t2 = (i + 1) / num_diffusion_timesteps
         
     | 
| 165 | 
         
            +
                    betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
         
     | 
| 166 | 
         
            +
                return np.array(betas)
         
     | 
| 167 | 
         
            +
             
     | 
| 168 | 
         
            +
             
     | 
| 169 | 
         
            +
            def extract_into_tensor(a, t, x_shape):
         
     | 
| 170 | 
         
            +
                b, *_ = t.shape
         
     | 
| 171 | 
         
            +
                out = a.gather(-1, t)
         
     | 
| 172 | 
         
            +
                return out.reshape(b, *((1,) * (len(x_shape) - 1)))
         
     | 
| 173 | 
         
            +
             
     | 
| 174 | 
         
            +
             
     | 
| 175 | 
         
            +
            def checkpoint(func, inputs, params, flag):
         
     | 
| 176 | 
         
            +
                """
         
     | 
| 177 | 
         
            +
                Evaluate a function without caching intermediate activations, allowing for
         
     | 
| 178 | 
         
            +
                reduced memory at the expense of extra compute in the backward pass.
         
     | 
| 179 | 
         
            +
                :param func: the function to evaluate.
         
     | 
| 180 | 
         
            +
                :param inputs: the argument sequence to pass to `func`.
         
     | 
| 181 | 
         
            +
                :param params: a sequence of parameters `func` depends on but does not
         
     | 
| 182 | 
         
            +
                               explicitly take as arguments.
         
     | 
| 183 | 
         
            +
                :param flag: if False, disable gradient checkpointing.
         
     | 
| 184 | 
         
            +
                """
         
     | 
| 185 | 
         
            +
                if flag:
         
     | 
| 186 | 
         
            +
                    args = tuple(inputs) + tuple(params)
         
     | 
| 187 | 
         
            +
                    return CheckpointFunction.apply(func, len(inputs), *args)
         
     | 
| 188 | 
         
            +
                else:
         
     | 
| 189 | 
         
            +
                    return func(*inputs)
         
     | 
| 190 | 
         
            +
             
     | 
| 191 | 
         
            +
             
     | 
| 192 | 
         
            +
            class CheckpointFunction(torch.autograd.Function):
         
     | 
| 193 | 
         
            +
                @staticmethod
         
     | 
| 194 | 
         
            +
                def forward(ctx, run_function, length, *args):
         
     | 
| 195 | 
         
            +
                    ctx.run_function = run_function
         
     | 
| 196 | 
         
            +
                    ctx.input_tensors = list(args[:length])
         
     | 
| 197 | 
         
            +
                    ctx.input_params = list(args[length:])
         
     | 
| 198 | 
         
            +
                    ctx.gpu_autocast_kwargs = {"enabled": torch.is_autocast_enabled(),
         
     | 
| 199 | 
         
            +
                                               "dtype": torch.get_autocast_gpu_dtype(),
         
     | 
| 200 | 
         
            +
                                               "cache_enabled": torch.is_autocast_cache_enabled()}
         
     | 
| 201 | 
         
            +
                    with torch.no_grad():
         
     | 
| 202 | 
         
            +
                        output_tensors = ctx.run_function(*ctx.input_tensors)
         
     | 
| 203 | 
         
            +
                    return output_tensors
         
     | 
| 204 | 
         
            +
             
     | 
| 205 | 
         
            +
                @staticmethod
         
     | 
| 206 | 
         
            +
                def backward(ctx, *output_grads):
         
     | 
| 207 | 
         
            +
                    ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
         
     | 
| 208 | 
         
            +
                    with torch.enable_grad(), \
         
     | 
| 209 | 
         
            +
                            torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs):
         
     | 
| 210 | 
         
            +
                        # Fixes a bug where the first op in run_function modifies the
         
     | 
| 211 | 
         
            +
                        # Tensor storage in place, which is not allowed for detach()'d
         
     | 
| 212 | 
         
            +
                        # Tensors.
         
     | 
| 213 | 
         
            +
                        shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
         
     | 
| 214 | 
         
            +
                        output_tensors = ctx.run_function(*shallow_copies)
         
     | 
| 215 | 
         
            +
                    input_grads = torch.autograd.grad(
         
     | 
| 216 | 
         
            +
                        output_tensors,
         
     | 
| 217 | 
         
            +
                        ctx.input_tensors + ctx.input_params,
         
     | 
| 218 | 
         
            +
                        output_grads,
         
     | 
| 219 | 
         
            +
                        allow_unused=True,
         
     | 
| 220 | 
         
            +
                    )
         
     | 
| 221 | 
         
            +
                    del ctx.input_tensors
         
     | 
| 222 | 
         
            +
                    del ctx.input_params
         
     | 
| 223 | 
         
            +
                    del output_tensors
         
     | 
| 224 | 
         
            +
                    return (None, None) + input_grads
         
     | 
| 225 | 
         
            +
             
     | 
| 226 | 
         
            +
             
     | 
| 227 | 
         
            +
            def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
         
     | 
| 228 | 
         
            +
                """
         
     | 
| 229 | 
         
            +
                Create sinusoidal timestep embeddings.
         
     | 
| 230 | 
         
            +
                :param timesteps: a 1-D Tensor of N indices, one per batch element.
         
     | 
| 231 | 
         
            +
                                  These may be fractional.
         
     | 
| 232 | 
         
            +
                :param dim: the dimension of the output.
         
     | 
| 233 | 
         
            +
                :param max_period: controls the minimum frequency of the embeddings.
         
     | 
| 234 | 
         
            +
                :return: an [N x dim] Tensor of positional embeddings.
         
     | 
| 235 | 
         
            +
                """
         
     | 
| 236 | 
         
            +
                if not repeat_only:
         
     | 
| 237 | 
         
            +
                    half = dim // 2
         
     | 
| 238 | 
         
            +
                    freqs = torch.exp(
         
     | 
| 239 | 
         
            +
                        -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=timesteps.device) / half
         
     | 
| 240 | 
         
            +
                    )
         
     | 
| 241 | 
         
            +
                    args = timesteps[:, None].float() * freqs[None]
         
     | 
| 242 | 
         
            +
                    embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
         
     | 
| 243 | 
         
            +
                    if dim % 2:
         
     | 
| 244 | 
         
            +
                        embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
         
     | 
| 245 | 
         
            +
                else:
         
     | 
| 246 | 
         
            +
                    embedding = repeat(timesteps, 'b -> b d', d=dim)
         
     | 
| 247 | 
         
            +
                return embedding
         
     | 
| 248 | 
         
            +
             
     | 
| 249 | 
         
            +
             
     | 
| 250 | 
         
            +
            def zero_module(module):
         
     | 
| 251 | 
         
            +
                """
         
     | 
| 252 | 
         
            +
                Zero out the parameters of a module and return it.
         
     | 
| 253 | 
         
            +
                """
         
     | 
| 254 | 
         
            +
                for p in module.parameters():
         
     | 
| 255 | 
         
            +
                    p.detach().zero_()
         
     | 
| 256 | 
         
            +
                return module
         
     | 
| 257 | 
         
            +
             
     | 
| 258 | 
         
            +
             
     | 
| 259 | 
         
            +
            def scale_module(module, scale):
         
     | 
| 260 | 
         
            +
                """
         
     | 
| 261 | 
         
            +
                Scale the parameters of a module and return it.
         
     | 
| 262 | 
         
            +
                """
         
     | 
| 263 | 
         
            +
                for p in module.parameters():
         
     | 
| 264 | 
         
            +
                    p.detach().mul_(scale)
         
     | 
| 265 | 
         
            +
                return module
         
     | 
| 266 | 
         
            +
             
     | 
| 267 | 
         
            +
             
     | 
| 268 | 
         
            +
            def mean_flat(tensor):
         
     | 
| 269 | 
         
            +
                """
         
     | 
| 270 | 
         
            +
                Take the mean over all non-batch dimensions.
         
     | 
| 271 | 
         
            +
                """
         
     | 
| 272 | 
         
            +
                return tensor.mean(dim=list(range(1, len(tensor.shape))))
         
     | 
| 273 | 
         
            +
             
     | 
| 274 | 
         
            +
             
     | 
| 275 | 
         
            +
            def avg_pool_nd(dims, *args, **kwargs):
         
     | 
| 276 | 
         
            +
                """
         
     | 
| 277 | 
         
            +
                Create a 1D, 2D, or 3D average pooling module.
         
     | 
| 278 | 
         
            +
                """
         
     | 
| 279 | 
         
            +
                if dims == 1:
         
     | 
| 280 | 
         
            +
                    return nn.AvgPool1d(*args, **kwargs)
         
     | 
| 281 | 
         
            +
                elif dims == 2:
         
     | 
| 282 | 
         
            +
                    return nn.AvgPool2d(*args, **kwargs)
         
     | 
| 283 | 
         
            +
                elif dims == 3:
         
     | 
| 284 | 
         
            +
                    return nn.AvgPool3d(*args, **kwargs)
         
     | 
| 285 | 
         
            +
                raise ValueError(f"unsupported dimensions: {dims}")
         
     | 
| 286 | 
         
            +
             
     | 
| 287 | 
         
            +
             
     | 
| 288 | 
         
            +
            class HybridConditioner(nn.Module):
         
     | 
| 289 | 
         
            +
             
     | 
| 290 | 
         
            +
                def __init__(self, c_concat_config, c_crossattn_config):
         
     | 
| 291 | 
         
            +
                    super().__init__()
         
     | 
| 292 | 
         
            +
                    self.concat_conditioner = instantiate_from_config(c_concat_config)
         
     | 
| 293 | 
         
            +
                    self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
         
     | 
| 294 | 
         
            +
             
     | 
| 295 | 
         
            +
                def forward(self, c_concat, c_crossattn):
         
     | 
| 296 | 
         
            +
                    c_concat = self.concat_conditioner(c_concat)
         
     | 
| 297 | 
         
            +
                    c_crossattn = self.crossattn_conditioner(c_crossattn)
         
     | 
| 298 | 
         
            +
                    return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
         
     | 
| 299 | 
         
            +
             
     | 
| 300 | 
         
            +
             
     | 
| 301 | 
         
            +
            def noise_like(shape, device, repeat=False):
         
     | 
| 302 | 
         
            +
                repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
         
     | 
| 303 | 
         
            +
                noise = lambda: torch.randn(shape, device=device)
         
     | 
| 304 | 
         
            +
                return repeat_noise() if repeat else noise()
         
     | 
    	
        comfy/ldm/modules/distributions/__init__.py
    ADDED
    
    | 
         
            File without changes
         
     | 
    	
        comfy/ldm/modules/distributions/distributions.py
    ADDED
    
    | 
         @@ -0,0 +1,92 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            import numpy as np
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            class AbstractDistribution:
         
     | 
| 6 | 
         
            +
                def sample(self):
         
     | 
| 7 | 
         
            +
                    raise NotImplementedError()
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
                def mode(self):
         
     | 
| 10 | 
         
            +
                    raise NotImplementedError()
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            class DiracDistribution(AbstractDistribution):
         
     | 
| 14 | 
         
            +
                def __init__(self, value):
         
     | 
| 15 | 
         
            +
                    self.value = value
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
                def sample(self):
         
     | 
| 18 | 
         
            +
                    return self.value
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
                def mode(self):
         
     | 
| 21 | 
         
            +
                    return self.value
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
            class DiagonalGaussianDistribution(object):
         
     | 
| 25 | 
         
            +
                def __init__(self, parameters, deterministic=False):
         
     | 
| 26 | 
         
            +
                    self.parameters = parameters
         
     | 
| 27 | 
         
            +
                    self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
         
     | 
| 28 | 
         
            +
                    self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
         
     | 
| 29 | 
         
            +
                    self.deterministic = deterministic
         
     | 
| 30 | 
         
            +
                    self.std = torch.exp(0.5 * self.logvar)
         
     | 
| 31 | 
         
            +
                    self.var = torch.exp(self.logvar)
         
     | 
| 32 | 
         
            +
                    if self.deterministic:
         
     | 
| 33 | 
         
            +
                        self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
         
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
                def sample(self):
         
     | 
| 36 | 
         
            +
                    x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
         
     | 
| 37 | 
         
            +
                    return x
         
     | 
| 38 | 
         
            +
             
     | 
| 39 | 
         
            +
                def kl(self, other=None):
         
     | 
| 40 | 
         
            +
                    if self.deterministic:
         
     | 
| 41 | 
         
            +
                        return torch.Tensor([0.])
         
     | 
| 42 | 
         
            +
                    else:
         
     | 
| 43 | 
         
            +
                        if other is None:
         
     | 
| 44 | 
         
            +
                            return 0.5 * torch.sum(torch.pow(self.mean, 2)
         
     | 
| 45 | 
         
            +
                                                   + self.var - 1.0 - self.logvar,
         
     | 
| 46 | 
         
            +
                                                   dim=[1, 2, 3])
         
     | 
| 47 | 
         
            +
                        else:
         
     | 
| 48 | 
         
            +
                            return 0.5 * torch.sum(
         
     | 
| 49 | 
         
            +
                                torch.pow(self.mean - other.mean, 2) / other.var
         
     | 
| 50 | 
         
            +
                                + self.var / other.var - 1.0 - self.logvar + other.logvar,
         
     | 
| 51 | 
         
            +
                                dim=[1, 2, 3])
         
     | 
| 52 | 
         
            +
             
     | 
| 53 | 
         
            +
                def nll(self, sample, dims=[1,2,3]):
         
     | 
| 54 | 
         
            +
                    if self.deterministic:
         
     | 
| 55 | 
         
            +
                        return torch.Tensor([0.])
         
     | 
| 56 | 
         
            +
                    logtwopi = np.log(2.0 * np.pi)
         
     | 
| 57 | 
         
            +
                    return 0.5 * torch.sum(
         
     | 
| 58 | 
         
            +
                        logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
         
     | 
| 59 | 
         
            +
                        dim=dims)
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
                def mode(self):
         
     | 
| 62 | 
         
            +
                    return self.mean
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
             
     | 
| 65 | 
         
            +
            def normal_kl(mean1, logvar1, mean2, logvar2):
         
     | 
| 66 | 
         
            +
                """
         
     | 
| 67 | 
         
            +
                source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
         
     | 
| 68 | 
         
            +
                Compute the KL divergence between two gaussians.
         
     | 
| 69 | 
         
            +
                Shapes are automatically broadcasted, so batches can be compared to
         
     | 
| 70 | 
         
            +
                scalars, among other use cases.
         
     | 
| 71 | 
         
            +
                """
         
     | 
| 72 | 
         
            +
                tensor = None
         
     | 
| 73 | 
         
            +
                for obj in (mean1, logvar1, mean2, logvar2):
         
     | 
| 74 | 
         
            +
                    if isinstance(obj, torch.Tensor):
         
     | 
| 75 | 
         
            +
                        tensor = obj
         
     | 
| 76 | 
         
            +
                        break
         
     | 
| 77 | 
         
            +
                assert tensor is not None, "at least one argument must be a Tensor"
         
     | 
| 78 | 
         
            +
             
     | 
| 79 | 
         
            +
                # Force variances to be Tensors. Broadcasting helps convert scalars to
         
     | 
| 80 | 
         
            +
                # Tensors, but it does not work for torch.exp().
         
     | 
| 81 | 
         
            +
                logvar1, logvar2 = [
         
     | 
| 82 | 
         
            +
                    x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
         
     | 
| 83 | 
         
            +
                    for x in (logvar1, logvar2)
         
     | 
| 84 | 
         
            +
                ]
         
     | 
| 85 | 
         
            +
             
     | 
| 86 | 
         
            +
                return 0.5 * (
         
     | 
| 87 | 
         
            +
                    -1.0
         
     | 
| 88 | 
         
            +
                    + logvar2
         
     | 
| 89 | 
         
            +
                    - logvar1
         
     | 
| 90 | 
         
            +
                    + torch.exp(logvar1 - logvar2)
         
     | 
| 91 | 
         
            +
                    + ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
         
     | 
| 92 | 
         
            +
                )
         
     | 
    	
        comfy/ldm/modules/ema.py
    ADDED
    
    | 
         @@ -0,0 +1,80 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            from torch import nn
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            class LitEma(nn.Module):
         
     | 
| 6 | 
         
            +
                def __init__(self, model, decay=0.9999, use_num_upates=True):
         
     | 
| 7 | 
         
            +
                    super().__init__()
         
     | 
| 8 | 
         
            +
                    if decay < 0.0 or decay > 1.0:
         
     | 
| 9 | 
         
            +
                        raise ValueError('Decay must be between 0 and 1')
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
                    self.m_name2s_name = {}
         
     | 
| 12 | 
         
            +
                    self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
         
     | 
| 13 | 
         
            +
                    self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int) if use_num_upates
         
     | 
| 14 | 
         
            +
                    else torch.tensor(-1, dtype=torch.int))
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
                    for name, p in model.named_parameters():
         
     | 
| 17 | 
         
            +
                        if p.requires_grad:
         
     | 
| 18 | 
         
            +
                            # remove as '.'-character is not allowed in buffers
         
     | 
| 19 | 
         
            +
                            s_name = name.replace('.', '')
         
     | 
| 20 | 
         
            +
                            self.m_name2s_name.update({name: s_name})
         
     | 
| 21 | 
         
            +
                            self.register_buffer(s_name, p.clone().detach().data)
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
                    self.collected_params = []
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
                def reset_num_updates(self):
         
     | 
| 26 | 
         
            +
                    del self.num_updates
         
     | 
| 27 | 
         
            +
                    self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int))
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
                def forward(self, model):
         
     | 
| 30 | 
         
            +
                    decay = self.decay
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
                    if self.num_updates >= 0:
         
     | 
| 33 | 
         
            +
                        self.num_updates += 1
         
     | 
| 34 | 
         
            +
                        decay = min(self.decay, (1 + self.num_updates) / (10 + self.num_updates))
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
                    one_minus_decay = 1.0 - decay
         
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
                    with torch.no_grad():
         
     | 
| 39 | 
         
            +
                        m_param = dict(model.named_parameters())
         
     | 
| 40 | 
         
            +
                        shadow_params = dict(self.named_buffers())
         
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
                        for key in m_param:
         
     | 
| 43 | 
         
            +
                            if m_param[key].requires_grad:
         
     | 
| 44 | 
         
            +
                                sname = self.m_name2s_name[key]
         
     | 
| 45 | 
         
            +
                                shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
         
     | 
| 46 | 
         
            +
                                shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
         
     | 
| 47 | 
         
            +
                            else:
         
     | 
| 48 | 
         
            +
                                assert not key in self.m_name2s_name
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
                def copy_to(self, model):
         
     | 
| 51 | 
         
            +
                    m_param = dict(model.named_parameters())
         
     | 
| 52 | 
         
            +
                    shadow_params = dict(self.named_buffers())
         
     | 
| 53 | 
         
            +
                    for key in m_param:
         
     | 
| 54 | 
         
            +
                        if m_param[key].requires_grad:
         
     | 
| 55 | 
         
            +
                            m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
         
     | 
| 56 | 
         
            +
                        else:
         
     | 
| 57 | 
         
            +
                            assert not key in self.m_name2s_name
         
     | 
| 58 | 
         
            +
             
     | 
| 59 | 
         
            +
                def store(self, parameters):
         
     | 
| 60 | 
         
            +
                    """
         
     | 
| 61 | 
         
            +
                    Save the current parameters for restoring later.
         
     | 
| 62 | 
         
            +
                    Args:
         
     | 
| 63 | 
         
            +
                      parameters: Iterable of `torch.nn.Parameter`; the parameters to be
         
     | 
| 64 | 
         
            +
                        temporarily stored.
         
     | 
| 65 | 
         
            +
                    """
         
     | 
| 66 | 
         
            +
                    self.collected_params = [param.clone() for param in parameters]
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
                def restore(self, parameters):
         
     | 
| 69 | 
         
            +
                    """
         
     | 
| 70 | 
         
            +
                    Restore the parameters stored with the `store` method.
         
     | 
| 71 | 
         
            +
                    Useful to validate the model with EMA parameters without affecting the
         
     | 
| 72 | 
         
            +
                    original optimization process. Store the parameters before the
         
     | 
| 73 | 
         
            +
                    `copy_to` method. After validation (or model saving), use this to
         
     | 
| 74 | 
         
            +
                    restore the former parameters.
         
     | 
| 75 | 
         
            +
                    Args:
         
     | 
| 76 | 
         
            +
                      parameters: Iterable of `torch.nn.Parameter`; the parameters to be
         
     | 
| 77 | 
         
            +
                        updated with the stored parameters.
         
     | 
| 78 | 
         
            +
                    """
         
     | 
| 79 | 
         
            +
                    for c_param, param in zip(self.collected_params, parameters):
         
     | 
| 80 | 
         
            +
                        param.data.copy_(c_param.data)
         
     | 
    	
        comfy/ldm/modules/encoders/__init__.py
    ADDED
    
    | 
         
            File without changes
         
     | 
    	
        comfy/ldm/modules/encoders/noise_aug_modules.py
    ADDED
    
    | 
         @@ -0,0 +1,35 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from ..diffusionmodules.upscaling import ImageConcatWithNoiseAugmentation
         
     | 
| 2 | 
         
            +
            from ..diffusionmodules.openaimodel import Timestep
         
     | 
| 3 | 
         
            +
            import torch
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            class CLIPEmbeddingNoiseAugmentation(ImageConcatWithNoiseAugmentation):
         
     | 
| 6 | 
         
            +
                def __init__(self, *args, clip_stats_path=None, timestep_dim=256, **kwargs):
         
     | 
| 7 | 
         
            +
                    super().__init__(*args, **kwargs)
         
     | 
| 8 | 
         
            +
                    if clip_stats_path is None:
         
     | 
| 9 | 
         
            +
                        clip_mean, clip_std = torch.zeros(timestep_dim), torch.ones(timestep_dim)
         
     | 
| 10 | 
         
            +
                    else:
         
     | 
| 11 | 
         
            +
                        clip_mean, clip_std = torch.load(clip_stats_path, map_location="cpu")
         
     | 
| 12 | 
         
            +
                    self.register_buffer("data_mean", clip_mean[None, :], persistent=False)
         
     | 
| 13 | 
         
            +
                    self.register_buffer("data_std", clip_std[None, :], persistent=False)
         
     | 
| 14 | 
         
            +
                    self.time_embed = Timestep(timestep_dim)
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
                def scale(self, x):
         
     | 
| 17 | 
         
            +
                    # re-normalize to centered mean and unit variance
         
     | 
| 18 | 
         
            +
                    x = (x - self.data_mean.to(x.device)) * 1. / self.data_std.to(x.device)
         
     | 
| 19 | 
         
            +
                    return x
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
                def unscale(self, x):
         
     | 
| 22 | 
         
            +
                    # back to original data stats
         
     | 
| 23 | 
         
            +
                    x = (x * self.data_std.to(x.device)) + self.data_mean.to(x.device)
         
     | 
| 24 | 
         
            +
                    return x
         
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
                def forward(self, x, noise_level=None, seed=None):
         
     | 
| 27 | 
         
            +
                    if noise_level is None:
         
     | 
| 28 | 
         
            +
                        noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long()
         
     | 
| 29 | 
         
            +
                    else:
         
     | 
| 30 | 
         
            +
                        assert isinstance(noise_level, torch.Tensor)
         
     | 
| 31 | 
         
            +
                    x = self.scale(x)
         
     | 
| 32 | 
         
            +
                    z = self.q_sample(x, noise_level, seed=seed)
         
     | 
| 33 | 
         
            +
                    z = self.unscale(z)
         
     | 
| 34 | 
         
            +
                    noise_level = self.time_embed(noise_level)
         
     | 
| 35 | 
         
            +
                    return z, noise_level
         
     | 
    	
        comfy/ldm/modules/sub_quadratic_attention.py
    ADDED
    
    | 
         @@ -0,0 +1,273 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # original source:
         
     | 
| 2 | 
         
            +
            #   https://github.com/AminRezaei0x443/memory-efficient-attention/blob/1bc0d9e6ac5f82ea43a375135c4e1d3896ee1694/memory_efficient_attention/attention_torch.py
         
     | 
| 3 | 
         
            +
            # license:
         
     | 
| 4 | 
         
            +
            #   MIT
         
     | 
| 5 | 
         
            +
            # credit:
         
     | 
| 6 | 
         
            +
            #   Amin Rezaei (original author)
         
     | 
| 7 | 
         
            +
            #   Alex Birch (optimized algorithm for 3D tensors, at the expense of removing bias, masking and callbacks)
         
     | 
| 8 | 
         
            +
            # implementation of:
         
     | 
| 9 | 
         
            +
            #   Self-attention Does Not Need O(n2) Memory":
         
     | 
| 10 | 
         
            +
            #   https://arxiv.org/abs/2112.05682v2
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
            from functools import partial
         
     | 
| 13 | 
         
            +
            import torch
         
     | 
| 14 | 
         
            +
            from torch import Tensor
         
     | 
| 15 | 
         
            +
            from torch.utils.checkpoint import checkpoint
         
     | 
| 16 | 
         
            +
            import math
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            try:
         
     | 
| 19 | 
         
            +
            	from typing import Optional, NamedTuple, List, Protocol
         
     | 
| 20 | 
         
            +
            except ImportError:
         
     | 
| 21 | 
         
            +
            	from typing import Optional, NamedTuple, List
         
     | 
| 22 | 
         
            +
            	from typing_extensions import Protocol
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
            from torch import Tensor
         
     | 
| 25 | 
         
            +
            from typing import List
         
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
            from comfy import model_management
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
            def dynamic_slice(
         
     | 
| 30 | 
         
            +
                x: Tensor,
         
     | 
| 31 | 
         
            +
                starts: List[int],
         
     | 
| 32 | 
         
            +
                sizes: List[int],
         
     | 
| 33 | 
         
            +
            ) -> Tensor:
         
     | 
| 34 | 
         
            +
                slicing = [slice(start, start + size) for start, size in zip(starts, sizes)]
         
     | 
| 35 | 
         
            +
                return x[slicing]
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
            class AttnChunk(NamedTuple):
         
     | 
| 38 | 
         
            +
                exp_values: Tensor
         
     | 
| 39 | 
         
            +
                exp_weights_sum: Tensor
         
     | 
| 40 | 
         
            +
                max_score: Tensor
         
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
            class SummarizeChunk(Protocol):
         
     | 
| 43 | 
         
            +
                @staticmethod
         
     | 
| 44 | 
         
            +
                def __call__(
         
     | 
| 45 | 
         
            +
                    query: Tensor,
         
     | 
| 46 | 
         
            +
                    key_t: Tensor,
         
     | 
| 47 | 
         
            +
                    value: Tensor,
         
     | 
| 48 | 
         
            +
                ) -> AttnChunk: ...
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
            class ComputeQueryChunkAttn(Protocol):
         
     | 
| 51 | 
         
            +
                @staticmethod
         
     | 
| 52 | 
         
            +
                def __call__(
         
     | 
| 53 | 
         
            +
                    query: Tensor,
         
     | 
| 54 | 
         
            +
                    key_t: Tensor,
         
     | 
| 55 | 
         
            +
                    value: Tensor,
         
     | 
| 56 | 
         
            +
                ) -> Tensor: ...
         
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
            def _summarize_chunk(
         
     | 
| 59 | 
         
            +
                query: Tensor,
         
     | 
| 60 | 
         
            +
                key_t: Tensor,
         
     | 
| 61 | 
         
            +
                value: Tensor,
         
     | 
| 62 | 
         
            +
                scale: float,
         
     | 
| 63 | 
         
            +
                upcast_attention: bool,
         
     | 
| 64 | 
         
            +
                mask,
         
     | 
| 65 | 
         
            +
            ) -> AttnChunk:
         
     | 
| 66 | 
         
            +
                if upcast_attention:
         
     | 
| 67 | 
         
            +
                    with torch.autocast(enabled=False, device_type = 'cuda'):
         
     | 
| 68 | 
         
            +
                        query = query.float()
         
     | 
| 69 | 
         
            +
                        key_t = key_t.float()
         
     | 
| 70 | 
         
            +
                        attn_weights = torch.baddbmm(
         
     | 
| 71 | 
         
            +
                            torch.empty(1, 1, 1, device=query.device, dtype=query.dtype),
         
     | 
| 72 | 
         
            +
                            query,
         
     | 
| 73 | 
         
            +
                            key_t,
         
     | 
| 74 | 
         
            +
                            alpha=scale,
         
     | 
| 75 | 
         
            +
                            beta=0,
         
     | 
| 76 | 
         
            +
                        )
         
     | 
| 77 | 
         
            +
                else:
         
     | 
| 78 | 
         
            +
                    attn_weights = torch.baddbmm(
         
     | 
| 79 | 
         
            +
                        torch.empty(1, 1, 1, device=query.device, dtype=query.dtype),
         
     | 
| 80 | 
         
            +
                        query,
         
     | 
| 81 | 
         
            +
                        key_t,
         
     | 
| 82 | 
         
            +
                        alpha=scale,
         
     | 
| 83 | 
         
            +
                        beta=0,
         
     | 
| 84 | 
         
            +
                    )
         
     | 
| 85 | 
         
            +
                max_score, _ = torch.max(attn_weights, -1, keepdim=True)
         
     | 
| 86 | 
         
            +
                max_score = max_score.detach()
         
     | 
| 87 | 
         
            +
                attn_weights -= max_score
         
     | 
| 88 | 
         
            +
                if mask is not None:
         
     | 
| 89 | 
         
            +
                    attn_weights += mask
         
     | 
| 90 | 
         
            +
                torch.exp(attn_weights, out=attn_weights)
         
     | 
| 91 | 
         
            +
                exp_weights = attn_weights.to(value.dtype)
         
     | 
| 92 | 
         
            +
                exp_values = torch.bmm(exp_weights, value)
         
     | 
| 93 | 
         
            +
                max_score = max_score.squeeze(-1)
         
     | 
| 94 | 
         
            +
                return AttnChunk(exp_values, exp_weights.sum(dim=-1), max_score)
         
     | 
| 95 | 
         
            +
             
     | 
| 96 | 
         
            +
            def _query_chunk_attention(
         
     | 
| 97 | 
         
            +
                query: Tensor,
         
     | 
| 98 | 
         
            +
                key_t: Tensor,
         
     | 
| 99 | 
         
            +
                value: Tensor,
         
     | 
| 100 | 
         
            +
                summarize_chunk: SummarizeChunk,
         
     | 
| 101 | 
         
            +
                kv_chunk_size: int,
         
     | 
| 102 | 
         
            +
                mask,
         
     | 
| 103 | 
         
            +
            ) -> Tensor:
         
     | 
| 104 | 
         
            +
                batch_x_heads, k_channels_per_head, k_tokens = key_t.shape
         
     | 
| 105 | 
         
            +
                _, _, v_channels_per_head = value.shape
         
     | 
| 106 | 
         
            +
             
     | 
| 107 | 
         
            +
                def chunk_scanner(chunk_idx: int, mask) -> AttnChunk:
         
     | 
| 108 | 
         
            +
                    key_chunk = dynamic_slice(
         
     | 
| 109 | 
         
            +
                        key_t,
         
     | 
| 110 | 
         
            +
                        (0, 0, chunk_idx),
         
     | 
| 111 | 
         
            +
                        (batch_x_heads, k_channels_per_head, kv_chunk_size)
         
     | 
| 112 | 
         
            +
                    )
         
     | 
| 113 | 
         
            +
                    value_chunk = dynamic_slice(
         
     | 
| 114 | 
         
            +
                        value,
         
     | 
| 115 | 
         
            +
                        (0, chunk_idx, 0),
         
     | 
| 116 | 
         
            +
                        (batch_x_heads, kv_chunk_size, v_channels_per_head)
         
     | 
| 117 | 
         
            +
                    )
         
     | 
| 118 | 
         
            +
                    if mask is not None:
         
     | 
| 119 | 
         
            +
                        mask = mask[:,:,chunk_idx:chunk_idx + kv_chunk_size]
         
     | 
| 120 | 
         
            +
             
     | 
| 121 | 
         
            +
                    return summarize_chunk(query, key_chunk, value_chunk, mask=mask)
         
     | 
| 122 | 
         
            +
             
     | 
| 123 | 
         
            +
                chunks: List[AttnChunk] = [
         
     | 
| 124 | 
         
            +
                    chunk_scanner(chunk, mask) for chunk in torch.arange(0, k_tokens, kv_chunk_size)
         
     | 
| 125 | 
         
            +
                ]
         
     | 
| 126 | 
         
            +
                acc_chunk = AttnChunk(*map(torch.stack, zip(*chunks)))
         
     | 
| 127 | 
         
            +
                chunk_values, chunk_weights, chunk_max = acc_chunk
         
     | 
| 128 | 
         
            +
             
     | 
| 129 | 
         
            +
                global_max, _ = torch.max(chunk_max, 0, keepdim=True)
         
     | 
| 130 | 
         
            +
                max_diffs = torch.exp(chunk_max - global_max)
         
     | 
| 131 | 
         
            +
                chunk_values *= torch.unsqueeze(max_diffs, -1)
         
     | 
| 132 | 
         
            +
                chunk_weights *= max_diffs
         
     | 
| 133 | 
         
            +
             
     | 
| 134 | 
         
            +
                all_values = chunk_values.sum(dim=0)
         
     | 
| 135 | 
         
            +
                all_weights = torch.unsqueeze(chunk_weights, -1).sum(dim=0)
         
     | 
| 136 | 
         
            +
                return all_values / all_weights
         
     | 
| 137 | 
         
            +
             
     | 
| 138 | 
         
            +
            # TODO: refactor CrossAttention#get_attention_scores to share code with this
         
     | 
| 139 | 
         
            +
            def _get_attention_scores_no_kv_chunking(
         
     | 
| 140 | 
         
            +
                query: Tensor,
         
     | 
| 141 | 
         
            +
                key_t: Tensor,
         
     | 
| 142 | 
         
            +
                value: Tensor,
         
     | 
| 143 | 
         
            +
                scale: float,
         
     | 
| 144 | 
         
            +
                upcast_attention: bool,
         
     | 
| 145 | 
         
            +
                mask,
         
     | 
| 146 | 
         
            +
            ) -> Tensor:
         
     | 
| 147 | 
         
            +
                if upcast_attention:
         
     | 
| 148 | 
         
            +
                    with torch.autocast(enabled=False, device_type = 'cuda'):
         
     | 
| 149 | 
         
            +
                        query = query.float()
         
     | 
| 150 | 
         
            +
                        key_t = key_t.float()
         
     | 
| 151 | 
         
            +
                        attn_scores = torch.baddbmm(
         
     | 
| 152 | 
         
            +
                            torch.empty(1, 1, 1, device=query.device, dtype=query.dtype),
         
     | 
| 153 | 
         
            +
                            query,
         
     | 
| 154 | 
         
            +
                            key_t,
         
     | 
| 155 | 
         
            +
                            alpha=scale,
         
     | 
| 156 | 
         
            +
                            beta=0,
         
     | 
| 157 | 
         
            +
                        )
         
     | 
| 158 | 
         
            +
                else:
         
     | 
| 159 | 
         
            +
                    attn_scores = torch.baddbmm(
         
     | 
| 160 | 
         
            +
                        torch.empty(1, 1, 1, device=query.device, dtype=query.dtype),
         
     | 
| 161 | 
         
            +
                        query,
         
     | 
| 162 | 
         
            +
                        key_t,
         
     | 
| 163 | 
         
            +
                        alpha=scale,
         
     | 
| 164 | 
         
            +
                        beta=0,
         
     | 
| 165 | 
         
            +
                    )
         
     | 
| 166 | 
         
            +
             
     | 
| 167 | 
         
            +
                if mask is not None:
         
     | 
| 168 | 
         
            +
                    attn_scores += mask
         
     | 
| 169 | 
         
            +
                try:
         
     | 
| 170 | 
         
            +
                    attn_probs = attn_scores.softmax(dim=-1)
         
     | 
| 171 | 
         
            +
                    del attn_scores
         
     | 
| 172 | 
         
            +
                except model_management.OOM_EXCEPTION:
         
     | 
| 173 | 
         
            +
                    print("ran out of memory while running softmax in  _get_attention_scores_no_kv_chunking, trying slower in place softmax instead")
         
     | 
| 174 | 
         
            +
                    attn_scores -= attn_scores.max(dim=-1, keepdim=True).values
         
     | 
| 175 | 
         
            +
                    torch.exp(attn_scores, out=attn_scores)
         
     | 
| 176 | 
         
            +
                    summed = torch.sum(attn_scores, dim=-1, keepdim=True)
         
     | 
| 177 | 
         
            +
                    attn_scores /= summed
         
     | 
| 178 | 
         
            +
                    attn_probs = attn_scores
         
     | 
| 179 | 
         
            +
             
     | 
| 180 | 
         
            +
                hidden_states_slice = torch.bmm(attn_probs.to(value.dtype), value)
         
     | 
| 181 | 
         
            +
                return hidden_states_slice
         
     | 
| 182 | 
         
            +
             
     | 
| 183 | 
         
            +
            class ScannedChunk(NamedTuple):
         
     | 
| 184 | 
         
            +
                chunk_idx: int
         
     | 
| 185 | 
         
            +
                attn_chunk: AttnChunk
         
     | 
| 186 | 
         
            +
             
     | 
| 187 | 
         
            +
            def efficient_dot_product_attention(
         
     | 
| 188 | 
         
            +
                query: Tensor,
         
     | 
| 189 | 
         
            +
                key_t: Tensor,
         
     | 
| 190 | 
         
            +
                value: Tensor,
         
     | 
| 191 | 
         
            +
                query_chunk_size=1024,
         
     | 
| 192 | 
         
            +
                kv_chunk_size: Optional[int] = None,
         
     | 
| 193 | 
         
            +
                kv_chunk_size_min: Optional[int] = None,
         
     | 
| 194 | 
         
            +
                use_checkpoint=True,
         
     | 
| 195 | 
         
            +
                upcast_attention=False,
         
     | 
| 196 | 
         
            +
                mask = None,
         
     | 
| 197 | 
         
            +
            ):
         
     | 
| 198 | 
         
            +
                """Computes efficient dot-product attention given query, transposed key, and value.
         
     | 
| 199 | 
         
            +
                  This is efficient version of attention presented in
         
     | 
| 200 | 
         
            +
                  https://arxiv.org/abs/2112.05682v2 which comes with O(sqrt(n)) memory requirements.
         
     | 
| 201 | 
         
            +
                  Args:
         
     | 
| 202 | 
         
            +
                    query: queries for calculating attention with shape of
         
     | 
| 203 | 
         
            +
                      `[batch * num_heads, tokens, channels_per_head]`.
         
     | 
| 204 | 
         
            +
                    key_t: keys for calculating attention with shape of
         
     | 
| 205 | 
         
            +
                      `[batch * num_heads, channels_per_head, tokens]`.
         
     | 
| 206 | 
         
            +
                    value: values to be used in attention with shape of
         
     | 
| 207 | 
         
            +
                      `[batch * num_heads, tokens, channels_per_head]`.
         
     | 
| 208 | 
         
            +
                    query_chunk_size: int: query chunks size
         
     | 
| 209 | 
         
            +
                    kv_chunk_size: Optional[int]: key/value chunks size. if None: defaults to sqrt(key_tokens)
         
     | 
| 210 | 
         
            +
                    kv_chunk_size_min: Optional[int]: key/value minimum chunk size. only considered when kv_chunk_size is None. changes `sqrt(key_tokens)` into `max(sqrt(key_tokens), kv_chunk_size_min)`, to ensure our chunk sizes don't get too small (smaller chunks = more chunks = less concurrent work done).
         
     | 
| 211 | 
         
            +
                    use_checkpoint: bool: whether to use checkpointing (recommended True for training, False for inference)
         
     | 
| 212 | 
         
            +
                  Returns:
         
     | 
| 213 | 
         
            +
                    Output of shape `[batch * num_heads, query_tokens, channels_per_head]`.
         
     | 
| 214 | 
         
            +
                  """
         
     | 
| 215 | 
         
            +
                batch_x_heads, q_tokens, q_channels_per_head = query.shape
         
     | 
| 216 | 
         
            +
                _, _, k_tokens = key_t.shape
         
     | 
| 217 | 
         
            +
                scale = q_channels_per_head ** -0.5
         
     | 
| 218 | 
         
            +
             
     | 
| 219 | 
         
            +
                kv_chunk_size = min(kv_chunk_size or int(math.sqrt(k_tokens)), k_tokens)
         
     | 
| 220 | 
         
            +
                if kv_chunk_size_min is not None:
         
     | 
| 221 | 
         
            +
                    kv_chunk_size = max(kv_chunk_size, kv_chunk_size_min)
         
     | 
| 222 | 
         
            +
             
     | 
| 223 | 
         
            +
                if mask is not None and len(mask.shape) == 2:
         
     | 
| 224 | 
         
            +
                    mask = mask.unsqueeze(0)
         
     | 
| 225 | 
         
            +
             
     | 
| 226 | 
         
            +
                def get_query_chunk(chunk_idx: int) -> Tensor:
         
     | 
| 227 | 
         
            +
                    return dynamic_slice(
         
     | 
| 228 | 
         
            +
                        query,
         
     | 
| 229 | 
         
            +
                        (0, chunk_idx, 0),
         
     | 
| 230 | 
         
            +
                        (batch_x_heads, min(query_chunk_size, q_tokens), q_channels_per_head)
         
     | 
| 231 | 
         
            +
                    )
         
     | 
| 232 | 
         
            +
             
     | 
| 233 | 
         
            +
                def get_mask_chunk(chunk_idx: int) -> Tensor:
         
     | 
| 234 | 
         
            +
                    if mask is None:
         
     | 
| 235 | 
         
            +
                        return None
         
     | 
| 236 | 
         
            +
                    chunk = min(query_chunk_size, q_tokens)
         
     | 
| 237 | 
         
            +
                    return mask[:,chunk_idx:chunk_idx + chunk]
         
     | 
| 238 | 
         
            +
             
     | 
| 239 | 
         
            +
                summarize_chunk: SummarizeChunk = partial(_summarize_chunk, scale=scale, upcast_attention=upcast_attention)
         
     | 
| 240 | 
         
            +
                summarize_chunk: SummarizeChunk = partial(checkpoint, summarize_chunk) if use_checkpoint else summarize_chunk
         
     | 
| 241 | 
         
            +
                compute_query_chunk_attn: ComputeQueryChunkAttn = partial(
         
     | 
| 242 | 
         
            +
                    _get_attention_scores_no_kv_chunking,
         
     | 
| 243 | 
         
            +
                    scale=scale,
         
     | 
| 244 | 
         
            +
                    upcast_attention=upcast_attention
         
     | 
| 245 | 
         
            +
                ) if k_tokens <= kv_chunk_size else (
         
     | 
| 246 | 
         
            +
                    # fast-path for when there's just 1 key-value chunk per query chunk (this is just sliced attention btw)
         
     | 
| 247 | 
         
            +
                    partial(
         
     | 
| 248 | 
         
            +
                        _query_chunk_attention,
         
     | 
| 249 | 
         
            +
                        kv_chunk_size=kv_chunk_size,
         
     | 
| 250 | 
         
            +
                        summarize_chunk=summarize_chunk,
         
     | 
| 251 | 
         
            +
                    )
         
     | 
| 252 | 
         
            +
                )
         
     | 
| 253 | 
         
            +
             
     | 
| 254 | 
         
            +
                if q_tokens <= query_chunk_size:
         
     | 
| 255 | 
         
            +
                    # fast-path for when there's just 1 query chunk
         
     | 
| 256 | 
         
            +
                    return compute_query_chunk_attn(
         
     | 
| 257 | 
         
            +
                        query=query,
         
     | 
| 258 | 
         
            +
                        key_t=key_t,
         
     | 
| 259 | 
         
            +
                        value=value,
         
     | 
| 260 | 
         
            +
                        mask=mask,
         
     | 
| 261 | 
         
            +
                    )
         
     | 
| 262 | 
         
            +
                
         
     | 
| 263 | 
         
            +
                # TODO: maybe we should use torch.empty_like(query) to allocate storage in-advance,
         
     | 
| 264 | 
         
            +
                # and pass slices to be mutated, instead of torch.cat()ing the returned slices
         
     | 
| 265 | 
         
            +
                res = torch.cat([
         
     | 
| 266 | 
         
            +
                    compute_query_chunk_attn(
         
     | 
| 267 | 
         
            +
                        query=get_query_chunk(i * query_chunk_size),
         
     | 
| 268 | 
         
            +
                        key_t=key_t,
         
     | 
| 269 | 
         
            +
                        value=value,
         
     | 
| 270 | 
         
            +
                        mask=get_mask_chunk(i * query_chunk_size)
         
     | 
| 271 | 
         
            +
                    ) for i in range(math.ceil(q_tokens / query_chunk_size))
         
     | 
| 272 | 
         
            +
                ], dim=1)
         
     | 
| 273 | 
         
            +
                return res
         
     | 
    	
        comfy/ldm/modules/temporal_ae.py
    ADDED
    
    | 
         @@ -0,0 +1,245 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import functools
         
     | 
| 2 | 
         
            +
            from typing import Callable, Iterable, Union
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            import torch
         
     | 
| 5 | 
         
            +
            from einops import rearrange, repeat
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
            import comfy.ops
         
     | 
| 8 | 
         
            +
            ops = comfy.ops.disable_weight_init
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            from .diffusionmodules.model import (
         
     | 
| 11 | 
         
            +
                AttnBlock,
         
     | 
| 12 | 
         
            +
                Decoder,
         
     | 
| 13 | 
         
            +
                ResnetBlock,
         
     | 
| 14 | 
         
            +
            )
         
     | 
| 15 | 
         
            +
            from .diffusionmodules.openaimodel import ResBlock, timestep_embedding
         
     | 
| 16 | 
         
            +
            from .attention import BasicTransformerBlock
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            def partialclass(cls, *args, **kwargs):
         
     | 
| 19 | 
         
            +
                class NewCls(cls):
         
     | 
| 20 | 
         
            +
                    __init__ = functools.partialmethod(cls.__init__, *args, **kwargs)
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
                return NewCls
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
            class VideoResBlock(ResnetBlock):
         
     | 
| 26 | 
         
            +
                def __init__(
         
     | 
| 27 | 
         
            +
                    self,
         
     | 
| 28 | 
         
            +
                    out_channels,
         
     | 
| 29 | 
         
            +
                    *args,
         
     | 
| 30 | 
         
            +
                    dropout=0.0,
         
     | 
| 31 | 
         
            +
                    video_kernel_size=3,
         
     | 
| 32 | 
         
            +
                    alpha=0.0,
         
     | 
| 33 | 
         
            +
                    merge_strategy="learned",
         
     | 
| 34 | 
         
            +
                    **kwargs,
         
     | 
| 35 | 
         
            +
                ):
         
     | 
| 36 | 
         
            +
                    super().__init__(out_channels=out_channels, dropout=dropout, *args, **kwargs)
         
     | 
| 37 | 
         
            +
                    if video_kernel_size is None:
         
     | 
| 38 | 
         
            +
                        video_kernel_size = [3, 1, 1]
         
     | 
| 39 | 
         
            +
                    self.time_stack = ResBlock(
         
     | 
| 40 | 
         
            +
                        channels=out_channels,
         
     | 
| 41 | 
         
            +
                        emb_channels=0,
         
     | 
| 42 | 
         
            +
                        dropout=dropout,
         
     | 
| 43 | 
         
            +
                        dims=3,
         
     | 
| 44 | 
         
            +
                        use_scale_shift_norm=False,
         
     | 
| 45 | 
         
            +
                        use_conv=False,
         
     | 
| 46 | 
         
            +
                        up=False,
         
     | 
| 47 | 
         
            +
                        down=False,
         
     | 
| 48 | 
         
            +
                        kernel_size=video_kernel_size,
         
     | 
| 49 | 
         
            +
                        use_checkpoint=False,
         
     | 
| 50 | 
         
            +
                        skip_t_emb=True,
         
     | 
| 51 | 
         
            +
                    )
         
     | 
| 52 | 
         
            +
             
     | 
| 53 | 
         
            +
                    self.merge_strategy = merge_strategy
         
     | 
| 54 | 
         
            +
                    if self.merge_strategy == "fixed":
         
     | 
| 55 | 
         
            +
                        self.register_buffer("mix_factor", torch.Tensor([alpha]))
         
     | 
| 56 | 
         
            +
                    elif self.merge_strategy == "learned":
         
     | 
| 57 | 
         
            +
                        self.register_parameter(
         
     | 
| 58 | 
         
            +
                            "mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))
         
     | 
| 59 | 
         
            +
                        )
         
     | 
| 60 | 
         
            +
                    else:
         
     | 
| 61 | 
         
            +
                        raise ValueError(f"unknown merge strategy {self.merge_strategy}")
         
     | 
| 62 | 
         
            +
             
     | 
| 63 | 
         
            +
                def get_alpha(self, bs):
         
     | 
| 64 | 
         
            +
                    if self.merge_strategy == "fixed":
         
     | 
| 65 | 
         
            +
                        return self.mix_factor
         
     | 
| 66 | 
         
            +
                    elif self.merge_strategy == "learned":
         
     | 
| 67 | 
         
            +
                        return torch.sigmoid(self.mix_factor)
         
     | 
| 68 | 
         
            +
                    else:
         
     | 
| 69 | 
         
            +
                        raise NotImplementedError()
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
                def forward(self, x, temb, skip_video=False, timesteps=None):
         
     | 
| 72 | 
         
            +
                    b, c, h, w = x.shape
         
     | 
| 73 | 
         
            +
                    if timesteps is None:
         
     | 
| 74 | 
         
            +
                        timesteps = b
         
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
                    x = super().forward(x, temb)
         
     | 
| 77 | 
         
            +
             
     | 
| 78 | 
         
            +
                    if not skip_video:
         
     | 
| 79 | 
         
            +
                        x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
                        x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)
         
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
                        x = self.time_stack(x, temb)
         
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
                        alpha = self.get_alpha(bs=b // timesteps).to(x.device)
         
     | 
| 86 | 
         
            +
                        x = alpha * x + (1.0 - alpha) * x_mix
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
                        x = rearrange(x, "b c t h w -> (b t) c h w")
         
     | 
| 89 | 
         
            +
                    return x
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
            class AE3DConv(ops.Conv2d):
         
     | 
| 93 | 
         
            +
                def __init__(self, in_channels, out_channels, video_kernel_size=3, *args, **kwargs):
         
     | 
| 94 | 
         
            +
                    super().__init__(in_channels, out_channels, *args, **kwargs)
         
     | 
| 95 | 
         
            +
                    if isinstance(video_kernel_size, Iterable):
         
     | 
| 96 | 
         
            +
                        padding = [int(k // 2) for k in video_kernel_size]
         
     | 
| 97 | 
         
            +
                    else:
         
     | 
| 98 | 
         
            +
                        padding = int(video_kernel_size // 2)
         
     | 
| 99 | 
         
            +
             
     | 
| 100 | 
         
            +
                    self.time_mix_conv = ops.Conv3d(
         
     | 
| 101 | 
         
            +
                        in_channels=out_channels,
         
     | 
| 102 | 
         
            +
                        out_channels=out_channels,
         
     | 
| 103 | 
         
            +
                        kernel_size=video_kernel_size,
         
     | 
| 104 | 
         
            +
                        padding=padding,
         
     | 
| 105 | 
         
            +
                    )
         
     | 
| 106 | 
         
            +
             
     | 
| 107 | 
         
            +
                def forward(self, input, timesteps=None, skip_video=False):
         
     | 
| 108 | 
         
            +
                    if timesteps is None:
         
     | 
| 109 | 
         
            +
                        timesteps = input.shape[0]
         
     | 
| 110 | 
         
            +
                    x = super().forward(input)
         
     | 
| 111 | 
         
            +
                    if skip_video:
         
     | 
| 112 | 
         
            +
                        return x
         
     | 
| 113 | 
         
            +
                    x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)
         
     | 
| 114 | 
         
            +
                    x = self.time_mix_conv(x)
         
     | 
| 115 | 
         
            +
                    return rearrange(x, "b c t h w -> (b t) c h w")
         
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
             
     | 
| 118 | 
         
            +
            class AttnVideoBlock(AttnBlock):
         
     | 
| 119 | 
         
            +
                def __init__(
         
     | 
| 120 | 
         
            +
                    self, in_channels: int, alpha: float = 0, merge_strategy: str = "learned"
         
     | 
| 121 | 
         
            +
                ):
         
     | 
| 122 | 
         
            +
                    super().__init__(in_channels)
         
     | 
| 123 | 
         
            +
                    # no context, single headed, as in base class
         
     | 
| 124 | 
         
            +
                    self.time_mix_block = BasicTransformerBlock(
         
     | 
| 125 | 
         
            +
                        dim=in_channels,
         
     | 
| 126 | 
         
            +
                        n_heads=1,
         
     | 
| 127 | 
         
            +
                        d_head=in_channels,
         
     | 
| 128 | 
         
            +
                        checkpoint=False,
         
     | 
| 129 | 
         
            +
                        ff_in=True,
         
     | 
| 130 | 
         
            +
                    )
         
     | 
| 131 | 
         
            +
             
     | 
| 132 | 
         
            +
                    time_embed_dim = self.in_channels * 4
         
     | 
| 133 | 
         
            +
                    self.video_time_embed = torch.nn.Sequential(
         
     | 
| 134 | 
         
            +
                        ops.Linear(self.in_channels, time_embed_dim),
         
     | 
| 135 | 
         
            +
                        torch.nn.SiLU(),
         
     | 
| 136 | 
         
            +
                        ops.Linear(time_embed_dim, self.in_channels),
         
     | 
| 137 | 
         
            +
                    )
         
     | 
| 138 | 
         
            +
             
     | 
| 139 | 
         
            +
                    self.merge_strategy = merge_strategy
         
     | 
| 140 | 
         
            +
                    if self.merge_strategy == "fixed":
         
     | 
| 141 | 
         
            +
                        self.register_buffer("mix_factor", torch.Tensor([alpha]))
         
     | 
| 142 | 
         
            +
                    elif self.merge_strategy == "learned":
         
     | 
| 143 | 
         
            +
                        self.register_parameter(
         
     | 
| 144 | 
         
            +
                            "mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))
         
     | 
| 145 | 
         
            +
                        )
         
     | 
| 146 | 
         
            +
                    else:
         
     | 
| 147 | 
         
            +
                        raise ValueError(f"unknown merge strategy {self.merge_strategy}")
         
     | 
| 148 | 
         
            +
             
     | 
| 149 | 
         
            +
                def forward(self, x, timesteps=None, skip_time_block=False):
         
     | 
| 150 | 
         
            +
                    if skip_time_block:
         
     | 
| 151 | 
         
            +
                        return super().forward(x)
         
     | 
| 152 | 
         
            +
             
     | 
| 153 | 
         
            +
                    if timesteps is None:
         
     | 
| 154 | 
         
            +
                        timesteps = x.shape[0]
         
     | 
| 155 | 
         
            +
             
     | 
| 156 | 
         
            +
                    x_in = x
         
     | 
| 157 | 
         
            +
                    x = self.attention(x)
         
     | 
| 158 | 
         
            +
                    h, w = x.shape[2:]
         
     | 
| 159 | 
         
            +
                    x = rearrange(x, "b c h w -> b (h w) c")
         
     | 
| 160 | 
         
            +
             
     | 
| 161 | 
         
            +
                    x_mix = x
         
     | 
| 162 | 
         
            +
                    num_frames = torch.arange(timesteps, device=x.device)
         
     | 
| 163 | 
         
            +
                    num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps)
         
     | 
| 164 | 
         
            +
                    num_frames = rearrange(num_frames, "b t -> (b t)")
         
     | 
| 165 | 
         
            +
                    t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False)
         
     | 
| 166 | 
         
            +
                    emb = self.video_time_embed(t_emb)  # b, n_channels
         
     | 
| 167 | 
         
            +
                    emb = emb[:, None, :]
         
     | 
| 168 | 
         
            +
                    x_mix = x_mix + emb
         
     | 
| 169 | 
         
            +
             
     | 
| 170 | 
         
            +
                    alpha = self.get_alpha().to(x.device)
         
     | 
| 171 | 
         
            +
                    x_mix = self.time_mix_block(x_mix, timesteps=timesteps)
         
     | 
| 172 | 
         
            +
                    x = alpha * x + (1.0 - alpha) * x_mix  # alpha merge
         
     | 
| 173 | 
         
            +
             
     | 
| 174 | 
         
            +
                    x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
         
     | 
| 175 | 
         
            +
                    x = self.proj_out(x)
         
     | 
| 176 | 
         
            +
             
     | 
| 177 | 
         
            +
                    return x_in + x
         
     | 
| 178 | 
         
            +
             
     | 
| 179 | 
         
            +
                def get_alpha(
         
     | 
| 180 | 
         
            +
                    self,
         
     | 
| 181 | 
         
            +
                ):
         
     | 
| 182 | 
         
            +
                    if self.merge_strategy == "fixed":
         
     | 
| 183 | 
         
            +
                        return self.mix_factor
         
     | 
| 184 | 
         
            +
                    elif self.merge_strategy == "learned":
         
     | 
| 185 | 
         
            +
                        return torch.sigmoid(self.mix_factor)
         
     | 
| 186 | 
         
            +
                    else:
         
     | 
| 187 | 
         
            +
                        raise NotImplementedError(f"unknown merge strategy {self.merge_strategy}")
         
     | 
| 188 | 
         
            +
             
     | 
| 189 | 
         
            +
             
     | 
| 190 | 
         
            +
             
     | 
| 191 | 
         
            +
            def make_time_attn(
         
     | 
| 192 | 
         
            +
                in_channels,
         
     | 
| 193 | 
         
            +
                attn_type="vanilla",
         
     | 
| 194 | 
         
            +
                attn_kwargs=None,
         
     | 
| 195 | 
         
            +
                alpha: float = 0,
         
     | 
| 196 | 
         
            +
                merge_strategy: str = "learned",
         
     | 
| 197 | 
         
            +
            ):
         
     | 
| 198 | 
         
            +
                return partialclass(
         
     | 
| 199 | 
         
            +
                    AttnVideoBlock, in_channels, alpha=alpha, merge_strategy=merge_strategy
         
     | 
| 200 | 
         
            +
                )
         
     | 
| 201 | 
         
            +
             
     | 
| 202 | 
         
            +
             
     | 
| 203 | 
         
            +
            class Conv2DWrapper(torch.nn.Conv2d):
         
     | 
| 204 | 
         
            +
                def forward(self, input: torch.Tensor, **kwargs) -> torch.Tensor:
         
     | 
| 205 | 
         
            +
                    return super().forward(input)
         
     | 
| 206 | 
         
            +
             
     | 
| 207 | 
         
            +
             
     | 
| 208 | 
         
            +
            class VideoDecoder(Decoder):
         
     | 
| 209 | 
         
            +
                available_time_modes = ["all", "conv-only", "attn-only"]
         
     | 
| 210 | 
         
            +
             
     | 
| 211 | 
         
            +
                def __init__(
         
     | 
| 212 | 
         
            +
                    self,
         
     | 
| 213 | 
         
            +
                    *args,
         
     | 
| 214 | 
         
            +
                    video_kernel_size: Union[int, list] = 3,
         
     | 
| 215 | 
         
            +
                    alpha: float = 0.0,
         
     | 
| 216 | 
         
            +
                    merge_strategy: str = "learned",
         
     | 
| 217 | 
         
            +
                    time_mode: str = "conv-only",
         
     | 
| 218 | 
         
            +
                    **kwargs,
         
     | 
| 219 | 
         
            +
                ):
         
     | 
| 220 | 
         
            +
                    self.video_kernel_size = video_kernel_size
         
     | 
| 221 | 
         
            +
                    self.alpha = alpha
         
     | 
| 222 | 
         
            +
                    self.merge_strategy = merge_strategy
         
     | 
| 223 | 
         
            +
                    self.time_mode = time_mode
         
     | 
| 224 | 
         
            +
                    assert (
         
     | 
| 225 | 
         
            +
                        self.time_mode in self.available_time_modes
         
     | 
| 226 | 
         
            +
                    ), f"time_mode parameter has to be in {self.available_time_modes}"
         
     | 
| 227 | 
         
            +
             
     | 
| 228 | 
         
            +
                    if self.time_mode != "attn-only":
         
     | 
| 229 | 
         
            +
                        kwargs["conv_out_op"] = partialclass(AE3DConv, video_kernel_size=self.video_kernel_size)
         
     | 
| 230 | 
         
            +
                    if self.time_mode not in ["conv-only", "only-last-conv"]:
         
     | 
| 231 | 
         
            +
                        kwargs["attn_op"] = partialclass(make_time_attn, alpha=self.alpha, merge_strategy=self.merge_strategy)
         
     | 
| 232 | 
         
            +
                    if self.time_mode not in ["attn-only", "only-last-conv"]:
         
     | 
| 233 | 
         
            +
                        kwargs["resnet_op"] = partialclass(VideoResBlock, video_kernel_size=self.video_kernel_size, alpha=self.alpha, merge_strategy=self.merge_strategy)
         
     | 
| 234 | 
         
            +
             
     | 
| 235 | 
         
            +
                    super().__init__(*args, **kwargs)
         
     | 
| 236 | 
         
            +
             
     | 
| 237 | 
         
            +
                def get_last_layer(self, skip_time_mix=False, **kwargs):
         
     | 
| 238 | 
         
            +
                    if self.time_mode == "attn-only":
         
     | 
| 239 | 
         
            +
                        raise NotImplementedError("TODO")
         
     | 
| 240 | 
         
            +
                    else:
         
     | 
| 241 | 
         
            +
                        return (
         
     | 
| 242 | 
         
            +
                            self.conv_out.time_mix_conv.weight
         
     | 
| 243 | 
         
            +
                            if not skip_time_mix
         
     | 
| 244 | 
         
            +
                            else self.conv_out.weight
         
     | 
| 245 | 
         
            +
                        )
         
     | 
    	
        comfy/ldm/util.py
    ADDED
    
    | 
         @@ -0,0 +1,197 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import importlib
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
            import torch
         
     | 
| 4 | 
         
            +
            from torch import optim
         
     | 
| 5 | 
         
            +
            import numpy as np
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
            from inspect import isfunction
         
     | 
| 8 | 
         
            +
            from PIL import Image, ImageDraw, ImageFont
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            def log_txt_as_img(wh, xc, size=10):
         
     | 
| 12 | 
         
            +
                # wh a tuple of (width, height)
         
     | 
| 13 | 
         
            +
                # xc a list of captions to plot
         
     | 
| 14 | 
         
            +
                b = len(xc)
         
     | 
| 15 | 
         
            +
                txts = list()
         
     | 
| 16 | 
         
            +
                for bi in range(b):
         
     | 
| 17 | 
         
            +
                    txt = Image.new("RGB", wh, color="white")
         
     | 
| 18 | 
         
            +
                    draw = ImageDraw.Draw(txt)
         
     | 
| 19 | 
         
            +
                    font = ImageFont.truetype('data/DejaVuSans.ttf', size=size)
         
     | 
| 20 | 
         
            +
                    nc = int(40 * (wh[0] / 256))
         
     | 
| 21 | 
         
            +
                    lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc))
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
                    try:
         
     | 
| 24 | 
         
            +
                        draw.text((0, 0), lines, fill="black", font=font)
         
     | 
| 25 | 
         
            +
                    except UnicodeEncodeError:
         
     | 
| 26 | 
         
            +
                        print("Cant encode string for logging. Skipping.")
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
                    txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
         
     | 
| 29 | 
         
            +
                    txts.append(txt)
         
     | 
| 30 | 
         
            +
                txts = np.stack(txts)
         
     | 
| 31 | 
         
            +
                txts = torch.tensor(txts)
         
     | 
| 32 | 
         
            +
                return txts
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
            def ismap(x):
         
     | 
| 36 | 
         
            +
                if not isinstance(x, torch.Tensor):
         
     | 
| 37 | 
         
            +
                    return False
         
     | 
| 38 | 
         
            +
                return (len(x.shape) == 4) and (x.shape[1] > 3)
         
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
            def isimage(x):
         
     | 
| 42 | 
         
            +
                if not isinstance(x,torch.Tensor):
         
     | 
| 43 | 
         
            +
                    return False
         
     | 
| 44 | 
         
            +
                return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
         
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
            def exists(x):
         
     | 
| 48 | 
         
            +
                return x is not None
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
            def default(val, d):
         
     | 
| 52 | 
         
            +
                if exists(val):
         
     | 
| 53 | 
         
            +
                    return val
         
     | 
| 54 | 
         
            +
                return d() if isfunction(d) else d
         
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
             
     | 
| 57 | 
         
            +
            def mean_flat(tensor):
         
     | 
| 58 | 
         
            +
                """
         
     | 
| 59 | 
         
            +
                https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86
         
     | 
| 60 | 
         
            +
                Take the mean over all non-batch dimensions.
         
     | 
| 61 | 
         
            +
                """
         
     | 
| 62 | 
         
            +
                return tensor.mean(dim=list(range(1, len(tensor.shape))))
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
             
     | 
| 65 | 
         
            +
            def count_params(model, verbose=False):
         
     | 
| 66 | 
         
            +
                total_params = sum(p.numel() for p in model.parameters())
         
     | 
| 67 | 
         
            +
                if verbose:
         
     | 
| 68 | 
         
            +
                    print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.")
         
     | 
| 69 | 
         
            +
                return total_params
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
             
     | 
| 72 | 
         
            +
            def instantiate_from_config(config):
         
     | 
| 73 | 
         
            +
                if not "target" in config:
         
     | 
| 74 | 
         
            +
                    if config == '__is_first_stage__':
         
     | 
| 75 | 
         
            +
                        return None
         
     | 
| 76 | 
         
            +
                    elif config == "__is_unconditional__":
         
     | 
| 77 | 
         
            +
                        return None
         
     | 
| 78 | 
         
            +
                    raise KeyError("Expected key `target` to instantiate.")
         
     | 
| 79 | 
         
            +
                return get_obj_from_str(config["target"])(**config.get("params", dict()))
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
             
     | 
| 82 | 
         
            +
            def get_obj_from_str(string, reload=False):
         
     | 
| 83 | 
         
            +
                module, cls = string.rsplit(".", 1)
         
     | 
| 84 | 
         
            +
                if reload:
         
     | 
| 85 | 
         
            +
                    module_imp = importlib.import_module(module)
         
     | 
| 86 | 
         
            +
                    importlib.reload(module_imp)
         
     | 
| 87 | 
         
            +
                return getattr(importlib.import_module(module, package=None), cls)
         
     | 
| 88 | 
         
            +
             
     | 
| 89 | 
         
            +
             
     | 
| 90 | 
         
            +
            class AdamWwithEMAandWings(optim.Optimizer):
         
     | 
| 91 | 
         
            +
                # credit to https://gist.github.com/crowsonkb/65f7265353f403714fce3b2595e0b298
         
     | 
| 92 | 
         
            +
                def __init__(self, params, lr=1.e-3, betas=(0.9, 0.999), eps=1.e-8,  # TODO: check hyperparameters before using
         
     | 
| 93 | 
         
            +
                             weight_decay=1.e-2, amsgrad=False, ema_decay=0.9999,   # ema decay to match previous code
         
     | 
| 94 | 
         
            +
                             ema_power=1., param_names=()):
         
     | 
| 95 | 
         
            +
                    """AdamW that saves EMA versions of the parameters."""
         
     | 
| 96 | 
         
            +
                    if not 0.0 <= lr:
         
     | 
| 97 | 
         
            +
                        raise ValueError("Invalid learning rate: {}".format(lr))
         
     | 
| 98 | 
         
            +
                    if not 0.0 <= eps:
         
     | 
| 99 | 
         
            +
                        raise ValueError("Invalid epsilon value: {}".format(eps))
         
     | 
| 100 | 
         
            +
                    if not 0.0 <= betas[0] < 1.0:
         
     | 
| 101 | 
         
            +
                        raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
         
     | 
| 102 | 
         
            +
                    if not 0.0 <= betas[1] < 1.0:
         
     | 
| 103 | 
         
            +
                        raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
         
     | 
| 104 | 
         
            +
                    if not 0.0 <= weight_decay:
         
     | 
| 105 | 
         
            +
                        raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
         
     | 
| 106 | 
         
            +
                    if not 0.0 <= ema_decay <= 1.0:
         
     | 
| 107 | 
         
            +
                        raise ValueError("Invalid ema_decay value: {}".format(ema_decay))
         
     | 
| 108 | 
         
            +
                    defaults = dict(lr=lr, betas=betas, eps=eps,
         
     | 
| 109 | 
         
            +
                                    weight_decay=weight_decay, amsgrad=amsgrad, ema_decay=ema_decay,
         
     | 
| 110 | 
         
            +
                                    ema_power=ema_power, param_names=param_names)
         
     | 
| 111 | 
         
            +
                    super().__init__(params, defaults)
         
     | 
| 112 | 
         
            +
             
     | 
| 113 | 
         
            +
                def __setstate__(self, state):
         
     | 
| 114 | 
         
            +
                    super().__setstate__(state)
         
     | 
| 115 | 
         
            +
                    for group in self.param_groups:
         
     | 
| 116 | 
         
            +
                        group.setdefault('amsgrad', False)
         
     | 
| 117 | 
         
            +
             
     | 
| 118 | 
         
            +
                @torch.no_grad()
         
     | 
| 119 | 
         
            +
                def step(self, closure=None):
         
     | 
| 120 | 
         
            +
                    """Performs a single optimization step.
         
     | 
| 121 | 
         
            +
                    Args:
         
     | 
| 122 | 
         
            +
                        closure (callable, optional): A closure that reevaluates the model
         
     | 
| 123 | 
         
            +
                            and returns the loss.
         
     | 
| 124 | 
         
            +
                    """
         
     | 
| 125 | 
         
            +
                    loss = None
         
     | 
| 126 | 
         
            +
                    if closure is not None:
         
     | 
| 127 | 
         
            +
                        with torch.enable_grad():
         
     | 
| 128 | 
         
            +
                            loss = closure()
         
     | 
| 129 | 
         
            +
             
     | 
| 130 | 
         
            +
                    for group in self.param_groups:
         
     | 
| 131 | 
         
            +
                        params_with_grad = []
         
     | 
| 132 | 
         
            +
                        grads = []
         
     | 
| 133 | 
         
            +
                        exp_avgs = []
         
     | 
| 134 | 
         
            +
                        exp_avg_sqs = []
         
     | 
| 135 | 
         
            +
                        ema_params_with_grad = []
         
     | 
| 136 | 
         
            +
                        state_sums = []
         
     | 
| 137 | 
         
            +
                        max_exp_avg_sqs = []
         
     | 
| 138 | 
         
            +
                        state_steps = []
         
     | 
| 139 | 
         
            +
                        amsgrad = group['amsgrad']
         
     | 
| 140 | 
         
            +
                        beta1, beta2 = group['betas']
         
     | 
| 141 | 
         
            +
                        ema_decay = group['ema_decay']
         
     | 
| 142 | 
         
            +
                        ema_power = group['ema_power']
         
     | 
| 143 | 
         
            +
             
     | 
| 144 | 
         
            +
                        for p in group['params']:
         
     | 
| 145 | 
         
            +
                            if p.grad is None:
         
     | 
| 146 | 
         
            +
                                continue
         
     | 
| 147 | 
         
            +
                            params_with_grad.append(p)
         
     | 
| 148 | 
         
            +
                            if p.grad.is_sparse:
         
     | 
| 149 | 
         
            +
                                raise RuntimeError('AdamW does not support sparse gradients')
         
     | 
| 150 | 
         
            +
                            grads.append(p.grad)
         
     | 
| 151 | 
         
            +
             
     | 
| 152 | 
         
            +
                            state = self.state[p]
         
     | 
| 153 | 
         
            +
             
     | 
| 154 | 
         
            +
                            # State initialization
         
     | 
| 155 | 
         
            +
                            if len(state) == 0:
         
     | 
| 156 | 
         
            +
                                state['step'] = 0
         
     | 
| 157 | 
         
            +
                                # Exponential moving average of gradient values
         
     | 
| 158 | 
         
            +
                                state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
         
     | 
| 159 | 
         
            +
                                # Exponential moving average of squared gradient values
         
     | 
| 160 | 
         
            +
                                state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
         
     | 
| 161 | 
         
            +
                                if amsgrad:
         
     | 
| 162 | 
         
            +
                                    # Maintains max of all exp. moving avg. of sq. grad. values
         
     | 
| 163 | 
         
            +
                                    state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
         
     | 
| 164 | 
         
            +
                                # Exponential moving average of parameter values
         
     | 
| 165 | 
         
            +
                                state['param_exp_avg'] = p.detach().float().clone()
         
     | 
| 166 | 
         
            +
             
     | 
| 167 | 
         
            +
                            exp_avgs.append(state['exp_avg'])
         
     | 
| 168 | 
         
            +
                            exp_avg_sqs.append(state['exp_avg_sq'])
         
     | 
| 169 | 
         
            +
                            ema_params_with_grad.append(state['param_exp_avg'])
         
     | 
| 170 | 
         
            +
             
     | 
| 171 | 
         
            +
                            if amsgrad:
         
     | 
| 172 | 
         
            +
                                max_exp_avg_sqs.append(state['max_exp_avg_sq'])
         
     | 
| 173 | 
         
            +
             
     | 
| 174 | 
         
            +
                            # update the steps for each param group update
         
     | 
| 175 | 
         
            +
                            state['step'] += 1
         
     | 
| 176 | 
         
            +
                            # record the step after step update
         
     | 
| 177 | 
         
            +
                            state_steps.append(state['step'])
         
     | 
| 178 | 
         
            +
             
     | 
| 179 | 
         
            +
                        optim._functional.adamw(params_with_grad,
         
     | 
| 180 | 
         
            +
                                grads,
         
     | 
| 181 | 
         
            +
                                exp_avgs,
         
     | 
| 182 | 
         
            +
                                exp_avg_sqs,
         
     | 
| 183 | 
         
            +
                                max_exp_avg_sqs,
         
     | 
| 184 | 
         
            +
                                state_steps,
         
     | 
| 185 | 
         
            +
                                amsgrad=amsgrad,
         
     | 
| 186 | 
         
            +
                                beta1=beta1,
         
     | 
| 187 | 
         
            +
                                beta2=beta2,
         
     | 
| 188 | 
         
            +
                                lr=group['lr'],
         
     | 
| 189 | 
         
            +
                                weight_decay=group['weight_decay'],
         
     | 
| 190 | 
         
            +
                                eps=group['eps'],
         
     | 
| 191 | 
         
            +
                                maximize=False)
         
     | 
| 192 | 
         
            +
             
     | 
| 193 | 
         
            +
                        cur_ema_decay = min(ema_decay, 1 - state['step'] ** -ema_power)
         
     | 
| 194 | 
         
            +
                        for param, ema_param in zip(params_with_grad, ema_params_with_grad):
         
     | 
| 195 | 
         
            +
                            ema_param.mul_(cur_ema_decay).add_(param.float(), alpha=1 - cur_ema_decay)
         
     | 
| 196 | 
         
            +
             
     | 
| 197 | 
         
            +
                    return loss
         
     | 
    	
        comfy/lora.py
    ADDED
    
    | 
         @@ -0,0 +1,224 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import comfy.utils
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
            LORA_CLIP_MAP = {
         
     | 
| 4 | 
         
            +
                "mlp.fc1": "mlp_fc1",
         
     | 
| 5 | 
         
            +
                "mlp.fc2": "mlp_fc2",
         
     | 
| 6 | 
         
            +
                "self_attn.k_proj": "self_attn_k_proj",
         
     | 
| 7 | 
         
            +
                "self_attn.q_proj": "self_attn_q_proj",
         
     | 
| 8 | 
         
            +
                "self_attn.v_proj": "self_attn_v_proj",
         
     | 
| 9 | 
         
            +
                "self_attn.out_proj": "self_attn_out_proj",
         
     | 
| 10 | 
         
            +
            }
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            def load_lora(lora, to_load):
         
     | 
| 14 | 
         
            +
                patch_dict = {}
         
     | 
| 15 | 
         
            +
                loaded_keys = set()
         
     | 
| 16 | 
         
            +
                for x in to_load:
         
     | 
| 17 | 
         
            +
                    alpha_name = "{}.alpha".format(x)
         
     | 
| 18 | 
         
            +
                    alpha = None
         
     | 
| 19 | 
         
            +
                    if alpha_name in lora.keys():
         
     | 
| 20 | 
         
            +
                        alpha = lora[alpha_name].item()
         
     | 
| 21 | 
         
            +
                        loaded_keys.add(alpha_name)
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
                    regular_lora = "{}.lora_up.weight".format(x)
         
     | 
| 24 | 
         
            +
                    diffusers_lora = "{}_lora.up.weight".format(x)
         
     | 
| 25 | 
         
            +
                    transformers_lora = "{}.lora_linear_layer.up.weight".format(x)
         
     | 
| 26 | 
         
            +
                    A_name = None
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
                    if regular_lora in lora.keys():
         
     | 
| 29 | 
         
            +
                        A_name = regular_lora
         
     | 
| 30 | 
         
            +
                        B_name = "{}.lora_down.weight".format(x)
         
     | 
| 31 | 
         
            +
                        mid_name = "{}.lora_mid.weight".format(x)
         
     | 
| 32 | 
         
            +
                    elif diffusers_lora in lora.keys():
         
     | 
| 33 | 
         
            +
                        A_name = diffusers_lora
         
     | 
| 34 | 
         
            +
                        B_name = "{}_lora.down.weight".format(x)
         
     | 
| 35 | 
         
            +
                        mid_name = None
         
     | 
| 36 | 
         
            +
                    elif transformers_lora in lora.keys():
         
     | 
| 37 | 
         
            +
                        A_name = transformers_lora
         
     | 
| 38 | 
         
            +
                        B_name ="{}.lora_linear_layer.down.weight".format(x)
         
     | 
| 39 | 
         
            +
                        mid_name = None
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
                    if A_name is not None:
         
     | 
| 42 | 
         
            +
                        mid = None
         
     | 
| 43 | 
         
            +
                        if mid_name is not None and mid_name in lora.keys():
         
     | 
| 44 | 
         
            +
                            mid = lora[mid_name]
         
     | 
| 45 | 
         
            +
                            loaded_keys.add(mid_name)
         
     | 
| 46 | 
         
            +
                        patch_dict[to_load[x]] = ("lora", (lora[A_name], lora[B_name], alpha, mid))
         
     | 
| 47 | 
         
            +
                        loaded_keys.add(A_name)
         
     | 
| 48 | 
         
            +
                        loaded_keys.add(B_name)
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
                    ######## loha
         
     | 
| 52 | 
         
            +
                    hada_w1_a_name = "{}.hada_w1_a".format(x)
         
     | 
| 53 | 
         
            +
                    hada_w1_b_name = "{}.hada_w1_b".format(x)
         
     | 
| 54 | 
         
            +
                    hada_w2_a_name = "{}.hada_w2_a".format(x)
         
     | 
| 55 | 
         
            +
                    hada_w2_b_name = "{}.hada_w2_b".format(x)
         
     | 
| 56 | 
         
            +
                    hada_t1_name = "{}.hada_t1".format(x)
         
     | 
| 57 | 
         
            +
                    hada_t2_name = "{}.hada_t2".format(x)
         
     | 
| 58 | 
         
            +
                    if hada_w1_a_name in lora.keys():
         
     | 
| 59 | 
         
            +
                        hada_t1 = None
         
     | 
| 60 | 
         
            +
                        hada_t2 = None
         
     | 
| 61 | 
         
            +
                        if hada_t1_name in lora.keys():
         
     | 
| 62 | 
         
            +
                            hada_t1 = lora[hada_t1_name]
         
     | 
| 63 | 
         
            +
                            hada_t2 = lora[hada_t2_name]
         
     | 
| 64 | 
         
            +
                            loaded_keys.add(hada_t1_name)
         
     | 
| 65 | 
         
            +
                            loaded_keys.add(hada_t2_name)
         
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
                        patch_dict[to_load[x]] = ("loha", (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2))
         
     | 
| 68 | 
         
            +
                        loaded_keys.add(hada_w1_a_name)
         
     | 
| 69 | 
         
            +
                        loaded_keys.add(hada_w1_b_name)
         
     | 
| 70 | 
         
            +
                        loaded_keys.add(hada_w2_a_name)
         
     | 
| 71 | 
         
            +
                        loaded_keys.add(hada_w2_b_name)
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
                    ######## lokr
         
     | 
| 75 | 
         
            +
                    lokr_w1_name = "{}.lokr_w1".format(x)
         
     | 
| 76 | 
         
            +
                    lokr_w2_name = "{}.lokr_w2".format(x)
         
     | 
| 77 | 
         
            +
                    lokr_w1_a_name = "{}.lokr_w1_a".format(x)
         
     | 
| 78 | 
         
            +
                    lokr_w1_b_name = "{}.lokr_w1_b".format(x)
         
     | 
| 79 | 
         
            +
                    lokr_t2_name = "{}.lokr_t2".format(x)
         
     | 
| 80 | 
         
            +
                    lokr_w2_a_name = "{}.lokr_w2_a".format(x)
         
     | 
| 81 | 
         
            +
                    lokr_w2_b_name = "{}.lokr_w2_b".format(x)
         
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
                    lokr_w1 = None
         
     | 
| 84 | 
         
            +
                    if lokr_w1_name in lora.keys():
         
     | 
| 85 | 
         
            +
                        lokr_w1 = lora[lokr_w1_name]
         
     | 
| 86 | 
         
            +
                        loaded_keys.add(lokr_w1_name)
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
                    lokr_w2 = None
         
     | 
| 89 | 
         
            +
                    if lokr_w2_name in lora.keys():
         
     | 
| 90 | 
         
            +
                        lokr_w2 = lora[lokr_w2_name]
         
     | 
| 91 | 
         
            +
                        loaded_keys.add(lokr_w2_name)
         
     | 
| 92 | 
         
            +
             
     | 
| 93 | 
         
            +
                    lokr_w1_a = None
         
     | 
| 94 | 
         
            +
                    if lokr_w1_a_name in lora.keys():
         
     | 
| 95 | 
         
            +
                        lokr_w1_a = lora[lokr_w1_a_name]
         
     | 
| 96 | 
         
            +
                        loaded_keys.add(lokr_w1_a_name)
         
     | 
| 97 | 
         
            +
             
     | 
| 98 | 
         
            +
                    lokr_w1_b = None
         
     | 
| 99 | 
         
            +
                    if lokr_w1_b_name in lora.keys():
         
     | 
| 100 | 
         
            +
                        lokr_w1_b = lora[lokr_w1_b_name]
         
     | 
| 101 | 
         
            +
                        loaded_keys.add(lokr_w1_b_name)
         
     | 
| 102 | 
         
            +
             
     | 
| 103 | 
         
            +
                    lokr_w2_a = None
         
     | 
| 104 | 
         
            +
                    if lokr_w2_a_name in lora.keys():
         
     | 
| 105 | 
         
            +
                        lokr_w2_a = lora[lokr_w2_a_name]
         
     | 
| 106 | 
         
            +
                        loaded_keys.add(lokr_w2_a_name)
         
     | 
| 107 | 
         
            +
             
     | 
| 108 | 
         
            +
                    lokr_w2_b = None
         
     | 
| 109 | 
         
            +
                    if lokr_w2_b_name in lora.keys():
         
     | 
| 110 | 
         
            +
                        lokr_w2_b = lora[lokr_w2_b_name]
         
     | 
| 111 | 
         
            +
                        loaded_keys.add(lokr_w2_b_name)
         
     | 
| 112 | 
         
            +
             
     | 
| 113 | 
         
            +
                    lokr_t2 = None
         
     | 
| 114 | 
         
            +
                    if lokr_t2_name in lora.keys():
         
     | 
| 115 | 
         
            +
                        lokr_t2 = lora[lokr_t2_name]
         
     | 
| 116 | 
         
            +
                        loaded_keys.add(lokr_t2_name)
         
     | 
| 117 | 
         
            +
             
     | 
| 118 | 
         
            +
                    if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
         
     | 
| 119 | 
         
            +
                        patch_dict[to_load[x]] = ("lokr", (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2))
         
     | 
| 120 | 
         
            +
             
     | 
| 121 | 
         
            +
                    #glora
         
     | 
| 122 | 
         
            +
                    a1_name = "{}.a1.weight".format(x)
         
     | 
| 123 | 
         
            +
                    a2_name = "{}.a2.weight".format(x)
         
     | 
| 124 | 
         
            +
                    b1_name = "{}.b1.weight".format(x)
         
     | 
| 125 | 
         
            +
                    b2_name = "{}.b2.weight".format(x)
         
     | 
| 126 | 
         
            +
                    if a1_name in lora:
         
     | 
| 127 | 
         
            +
                        patch_dict[to_load[x]] = ("glora", (lora[a1_name], lora[a2_name], lora[b1_name], lora[b2_name], alpha))
         
     | 
| 128 | 
         
            +
                        loaded_keys.add(a1_name)
         
     | 
| 129 | 
         
            +
                        loaded_keys.add(a2_name)
         
     | 
| 130 | 
         
            +
                        loaded_keys.add(b1_name)
         
     | 
| 131 | 
         
            +
                        loaded_keys.add(b2_name)
         
     | 
| 132 | 
         
            +
             
     | 
| 133 | 
         
            +
                    w_norm_name = "{}.w_norm".format(x)
         
     | 
| 134 | 
         
            +
                    b_norm_name = "{}.b_norm".format(x)
         
     | 
| 135 | 
         
            +
                    w_norm = lora.get(w_norm_name, None)
         
     | 
| 136 | 
         
            +
                    b_norm = lora.get(b_norm_name, None)
         
     | 
| 137 | 
         
            +
             
     | 
| 138 | 
         
            +
                    if w_norm is not None:
         
     | 
| 139 | 
         
            +
                        loaded_keys.add(w_norm_name)
         
     | 
| 140 | 
         
            +
                        patch_dict[to_load[x]] = ("diff", (w_norm,))
         
     | 
| 141 | 
         
            +
                        if b_norm is not None:
         
     | 
| 142 | 
         
            +
                            loaded_keys.add(b_norm_name)
         
     | 
| 143 | 
         
            +
                            patch_dict["{}.bias".format(to_load[x][:-len(".weight")])] = ("diff", (b_norm,))
         
     | 
| 144 | 
         
            +
             
     | 
| 145 | 
         
            +
                    diff_name = "{}.diff".format(x)
         
     | 
| 146 | 
         
            +
                    diff_weight = lora.get(diff_name, None)
         
     | 
| 147 | 
         
            +
                    if diff_weight is not None:
         
     | 
| 148 | 
         
            +
                        patch_dict[to_load[x]] = ("diff", (diff_weight,))
         
     | 
| 149 | 
         
            +
                        loaded_keys.add(diff_name)
         
     | 
| 150 | 
         
            +
             
     | 
| 151 | 
         
            +
                    diff_bias_name = "{}.diff_b".format(x)
         
     | 
| 152 | 
         
            +
                    diff_bias = lora.get(diff_bias_name, None)
         
     | 
| 153 | 
         
            +
                    if diff_bias is not None:
         
     | 
| 154 | 
         
            +
                        patch_dict["{}.bias".format(to_load[x][:-len(".weight")])] = ("diff", (diff_bias,))
         
     | 
| 155 | 
         
            +
                        loaded_keys.add(diff_bias_name)
         
     | 
| 156 | 
         
            +
             
     | 
| 157 | 
         
            +
                for x in lora.keys():
         
     | 
| 158 | 
         
            +
                    if x not in loaded_keys:
         
     | 
| 159 | 
         
            +
                        print("lora key not loaded", x)
         
     | 
| 160 | 
         
            +
                return patch_dict
         
     | 
| 161 | 
         
            +
             
     | 
| 162 | 
         
            +
            def model_lora_keys_clip(model, key_map={}):
         
     | 
| 163 | 
         
            +
                sdk = model.state_dict().keys()
         
     | 
| 164 | 
         
            +
             
     | 
| 165 | 
         
            +
                text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
         
     | 
| 166 | 
         
            +
                clip_l_present = False
         
     | 
| 167 | 
         
            +
                for b in range(32): #TODO: clean up
         
     | 
| 168 | 
         
            +
                    for c in LORA_CLIP_MAP:
         
     | 
| 169 | 
         
            +
                        k = "clip_h.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
         
     | 
| 170 | 
         
            +
                        if k in sdk:
         
     | 
| 171 | 
         
            +
                            lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
         
     | 
| 172 | 
         
            +
                            key_map[lora_key] = k
         
     | 
| 173 | 
         
            +
                            lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c])
         
     | 
| 174 | 
         
            +
                            key_map[lora_key] = k
         
     | 
| 175 | 
         
            +
                            lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
         
     | 
| 176 | 
         
            +
                            key_map[lora_key] = k
         
     | 
| 177 | 
         
            +
             
     | 
| 178 | 
         
            +
                        k = "clip_l.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
         
     | 
| 179 | 
         
            +
                        if k in sdk:
         
     | 
| 180 | 
         
            +
                            lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
         
     | 
| 181 | 
         
            +
                            key_map[lora_key] = k
         
     | 
| 182 | 
         
            +
                            lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
         
     | 
| 183 | 
         
            +
                            key_map[lora_key] = k
         
     | 
| 184 | 
         
            +
                            clip_l_present = True
         
     | 
| 185 | 
         
            +
                            lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
         
     | 
| 186 | 
         
            +
                            key_map[lora_key] = k
         
     | 
| 187 | 
         
            +
             
     | 
| 188 | 
         
            +
                        k = "clip_g.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
         
     | 
| 189 | 
         
            +
                        if k in sdk:
         
     | 
| 190 | 
         
            +
                            if clip_l_present:
         
     | 
| 191 | 
         
            +
                                lora_key = "lora_te2_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
         
     | 
| 192 | 
         
            +
                                key_map[lora_key] = k
         
     | 
| 193 | 
         
            +
                                lora_key = "text_encoder_2.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
         
     | 
| 194 | 
         
            +
                                key_map[lora_key] = k
         
     | 
| 195 | 
         
            +
                            else:
         
     | 
| 196 | 
         
            +
                                lora_key = "lora_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #TODO: test if this is correct for SDXL-Refiner
         
     | 
| 197 | 
         
            +
                                key_map[lora_key] = k
         
     | 
| 198 | 
         
            +
                                lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
         
     | 
| 199 | 
         
            +
                                key_map[lora_key] = k
         
     | 
| 200 | 
         
            +
             
     | 
| 201 | 
         
            +
                return key_map
         
     | 
| 202 | 
         
            +
             
     | 
| 203 | 
         
            +
            def model_lora_keys_unet(model, key_map={}):
         
     | 
| 204 | 
         
            +
                sdk = model.state_dict().keys()
         
     | 
| 205 | 
         
            +
             
     | 
| 206 | 
         
            +
                for k in sdk:
         
     | 
| 207 | 
         
            +
                    if k.startswith("diffusion_model.") and k.endswith(".weight"):
         
     | 
| 208 | 
         
            +
                        key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_")
         
     | 
| 209 | 
         
            +
                        key_map["lora_unet_{}".format(key_lora)] = k
         
     | 
| 210 | 
         
            +
             
     | 
| 211 | 
         
            +
                diffusers_keys = comfy.utils.unet_to_diffusers(model.model_config.unet_config)
         
     | 
| 212 | 
         
            +
                for k in diffusers_keys:
         
     | 
| 213 | 
         
            +
                    if k.endswith(".weight"):
         
     | 
| 214 | 
         
            +
                        unet_key = "diffusion_model.{}".format(diffusers_keys[k])
         
     | 
| 215 | 
         
            +
                        key_lora = k[:-len(".weight")].replace(".", "_")
         
     | 
| 216 | 
         
            +
                        key_map["lora_unet_{}".format(key_lora)] = unet_key
         
     | 
| 217 | 
         
            +
             
     | 
| 218 | 
         
            +
                        diffusers_lora_prefix = ["", "unet."]
         
     | 
| 219 | 
         
            +
                        for p in diffusers_lora_prefix:
         
     | 
| 220 | 
         
            +
                            diffusers_lora_key = "{}{}".format(p, k[:-len(".weight")].replace(".to_", ".processor.to_"))
         
     | 
| 221 | 
         
            +
                            if diffusers_lora_key.endswith(".to_out.0"):
         
     | 
| 222 | 
         
            +
                                diffusers_lora_key = diffusers_lora_key[:-2]
         
     | 
| 223 | 
         
            +
                            key_map[diffusers_lora_key] = unet_key
         
     | 
| 224 | 
         
            +
                return key_map
         
     | 
    	
        comfy/model_base.py
    ADDED
    
    | 
         @@ -0,0 +1,425 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel, Timestep
         
     | 
| 3 | 
         
            +
            from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation
         
     | 
| 4 | 
         
            +
            from comfy.ldm.modules.diffusionmodules.upscaling import ImageConcatWithNoiseAugmentation
         
     | 
| 5 | 
         
            +
            import comfy.model_management
         
     | 
| 6 | 
         
            +
            import comfy.conds
         
     | 
| 7 | 
         
            +
            import comfy.ops
         
     | 
| 8 | 
         
            +
            from enum import Enum
         
     | 
| 9 | 
         
            +
            from . import utils
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            class ModelType(Enum):
         
     | 
| 12 | 
         
            +
                EPS = 1
         
     | 
| 13 | 
         
            +
                V_PREDICTION = 2
         
     | 
| 14 | 
         
            +
                V_PREDICTION_EDM = 3
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
            from comfy.model_sampling import EPS, V_PREDICTION, ModelSamplingDiscrete, ModelSamplingContinuousEDM
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            def model_sampling(model_config, model_type):
         
     | 
| 21 | 
         
            +
                s = ModelSamplingDiscrete
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
                if model_type == ModelType.EPS:
         
     | 
| 24 | 
         
            +
                    c = EPS
         
     | 
| 25 | 
         
            +
                elif model_type == ModelType.V_PREDICTION:
         
     | 
| 26 | 
         
            +
                    c = V_PREDICTION
         
     | 
| 27 | 
         
            +
                elif model_type == ModelType.V_PREDICTION_EDM:
         
     | 
| 28 | 
         
            +
                    c = V_PREDICTION
         
     | 
| 29 | 
         
            +
                    s = ModelSamplingContinuousEDM
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
                class ModelSampling(s, c):
         
     | 
| 32 | 
         
            +
                    pass
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
                return ModelSampling(model_config)
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
            class BaseModel(torch.nn.Module):
         
     | 
| 38 | 
         
            +
                def __init__(self, model_config, model_type=ModelType.EPS, device=None):
         
     | 
| 39 | 
         
            +
                    super().__init__()
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
                    unet_config = model_config.unet_config
         
     | 
| 42 | 
         
            +
                    self.latent_format = model_config.latent_format
         
     | 
| 43 | 
         
            +
                    self.model_config = model_config
         
     | 
| 44 | 
         
            +
                    self.manual_cast_dtype = model_config.manual_cast_dtype
         
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
                    if not unet_config.get("disable_unet_model_creation", False):
         
     | 
| 47 | 
         
            +
                        if self.manual_cast_dtype is not None:
         
     | 
| 48 | 
         
            +
                            operations = comfy.ops.manual_cast
         
     | 
| 49 | 
         
            +
                        else:
         
     | 
| 50 | 
         
            +
                            operations = comfy.ops.disable_weight_init
         
     | 
| 51 | 
         
            +
                        self.diffusion_model = UNetModel(**unet_config, device=device, operations=operations)
         
     | 
| 52 | 
         
            +
                    self.model_type = model_type
         
     | 
| 53 | 
         
            +
                    self.model_sampling = model_sampling(model_config, model_type)
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
                    self.adm_channels = unet_config.get("adm_in_channels", None)
         
     | 
| 56 | 
         
            +
                    if self.adm_channels is None:
         
     | 
| 57 | 
         
            +
                        self.adm_channels = 0
         
     | 
| 58 | 
         
            +
                    self.inpaint_model = False
         
     | 
| 59 | 
         
            +
                    print("model_type", model_type.name)
         
     | 
| 60 | 
         
            +
                    print("adm", self.adm_channels)
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
                def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs):
         
     | 
| 63 | 
         
            +
                    sigma = t
         
     | 
| 64 | 
         
            +
                    xc = self.model_sampling.calculate_input(sigma, x)
         
     | 
| 65 | 
         
            +
                    if c_concat is not None:
         
     | 
| 66 | 
         
            +
                        xc = torch.cat([xc] + [c_concat], dim=1)
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
                    context = c_crossattn
         
     | 
| 69 | 
         
            +
                    dtype = self.get_dtype()
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
                    if self.manual_cast_dtype is not None:
         
     | 
| 72 | 
         
            +
                        dtype = self.manual_cast_dtype
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
                    xc = xc.to(dtype)
         
     | 
| 75 | 
         
            +
                    t = self.model_sampling.timestep(t).float()
         
     | 
| 76 | 
         
            +
                    context = context.to(dtype)
         
     | 
| 77 | 
         
            +
                    extra_conds = {}
         
     | 
| 78 | 
         
            +
                    for o in kwargs:
         
     | 
| 79 | 
         
            +
                        extra = kwargs[o]
         
     | 
| 80 | 
         
            +
                        if hasattr(extra, "dtype"):
         
     | 
| 81 | 
         
            +
                            if extra.dtype != torch.int and extra.dtype != torch.long:
         
     | 
| 82 | 
         
            +
                                extra = extra.to(dtype)
         
     | 
| 83 | 
         
            +
                        extra_conds[o] = extra
         
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
                    model_output = self.diffusion_model(xc, t, context=context, control=control, transformer_options=transformer_options, **extra_conds).float()
         
     | 
| 86 | 
         
            +
                    return self.model_sampling.calculate_denoised(sigma, model_output, x)
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
                def get_dtype(self):
         
     | 
| 89 | 
         
            +
                    return self.diffusion_model.dtype
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
                def is_adm(self):
         
     | 
| 92 | 
         
            +
                    return self.adm_channels > 0
         
     | 
| 93 | 
         
            +
             
     | 
| 94 | 
         
            +
                def encode_adm(self, **kwargs):
         
     | 
| 95 | 
         
            +
                    return None
         
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
                def extra_conds(self, **kwargs):
         
     | 
| 98 | 
         
            +
                    out = {}
         
     | 
| 99 | 
         
            +
                    if self.inpaint_model:
         
     | 
| 100 | 
         
            +
                        concat_keys = ("mask", "masked_image")
         
     | 
| 101 | 
         
            +
                        cond_concat = []
         
     | 
| 102 | 
         
            +
                        denoise_mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
         
     | 
| 103 | 
         
            +
                        concat_latent_image = kwargs.get("concat_latent_image", None)
         
     | 
| 104 | 
         
            +
                        if concat_latent_image is None:
         
     | 
| 105 | 
         
            +
                            concat_latent_image = kwargs.get("latent_image", None)
         
     | 
| 106 | 
         
            +
                        else:
         
     | 
| 107 | 
         
            +
                            concat_latent_image = self.process_latent_in(concat_latent_image)
         
     | 
| 108 | 
         
            +
             
     | 
| 109 | 
         
            +
                        noise = kwargs.get("noise", None)
         
     | 
| 110 | 
         
            +
                        device = kwargs["device"]
         
     | 
| 111 | 
         
            +
             
     | 
| 112 | 
         
            +
                        if concat_latent_image.shape[1:] != noise.shape[1:]:
         
     | 
| 113 | 
         
            +
                            concat_latent_image = utils.common_upscale(concat_latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center")
         
     | 
| 114 | 
         
            +
             
     | 
| 115 | 
         
            +
                        concat_latent_image = utils.resize_to_batch_size(concat_latent_image, noise.shape[0])
         
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
                        if len(denoise_mask.shape) == len(noise.shape):
         
     | 
| 118 | 
         
            +
                            denoise_mask = denoise_mask[:,:1]
         
     | 
| 119 | 
         
            +
             
     | 
| 120 | 
         
            +
                        denoise_mask = denoise_mask.reshape((-1, 1, denoise_mask.shape[-2], denoise_mask.shape[-1]))
         
     | 
| 121 | 
         
            +
                        if denoise_mask.shape[-2:] != noise.shape[-2:]:
         
     | 
| 122 | 
         
            +
                            denoise_mask = utils.common_upscale(denoise_mask, noise.shape[-1], noise.shape[-2], "bilinear", "center")
         
     | 
| 123 | 
         
            +
                        denoise_mask = utils.resize_to_batch_size(denoise_mask.round(), noise.shape[0])
         
     | 
| 124 | 
         
            +
             
     | 
| 125 | 
         
            +
                        def blank_inpaint_image_like(latent_image):
         
     | 
| 126 | 
         
            +
                            blank_image = torch.ones_like(latent_image)
         
     | 
| 127 | 
         
            +
                            # these are the values for "zero" in pixel space translated to latent space
         
     | 
| 128 | 
         
            +
                            blank_image[:,0] *= 0.8223
         
     | 
| 129 | 
         
            +
                            blank_image[:,1] *= -0.6876
         
     | 
| 130 | 
         
            +
                            blank_image[:,2] *= 0.6364
         
     | 
| 131 | 
         
            +
                            blank_image[:,3] *= 0.1380
         
     | 
| 132 | 
         
            +
                            return blank_image
         
     | 
| 133 | 
         
            +
             
     | 
| 134 | 
         
            +
                        for ck in concat_keys:
         
     | 
| 135 | 
         
            +
                            if denoise_mask is not None:
         
     | 
| 136 | 
         
            +
                                if ck == "mask":
         
     | 
| 137 | 
         
            +
                                    cond_concat.append(denoise_mask.to(device))
         
     | 
| 138 | 
         
            +
                                elif ck == "masked_image":
         
     | 
| 139 | 
         
            +
                                    cond_concat.append(concat_latent_image.to(device)) #NOTE: the latent_image should be masked by the mask in pixel space
         
     | 
| 140 | 
         
            +
                            else:
         
     | 
| 141 | 
         
            +
                                if ck == "mask":
         
     | 
| 142 | 
         
            +
                                    cond_concat.append(torch.ones_like(noise)[:,:1])
         
     | 
| 143 | 
         
            +
                                elif ck == "masked_image":
         
     | 
| 144 | 
         
            +
                                    cond_concat.append(blank_inpaint_image_like(noise))
         
     | 
| 145 | 
         
            +
                        data = torch.cat(cond_concat, dim=1)
         
     | 
| 146 | 
         
            +
                        out['c_concat'] = comfy.conds.CONDNoiseShape(data)
         
     | 
| 147 | 
         
            +
             
     | 
| 148 | 
         
            +
                    adm = self.encode_adm(**kwargs)
         
     | 
| 149 | 
         
            +
                    if adm is not None:
         
     | 
| 150 | 
         
            +
                        out['y'] = comfy.conds.CONDRegular(adm)
         
     | 
| 151 | 
         
            +
             
     | 
| 152 | 
         
            +
                    cross_attn = kwargs.get("cross_attn", None)
         
     | 
| 153 | 
         
            +
                    if cross_attn is not None:
         
     | 
| 154 | 
         
            +
                        out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn)
         
     | 
| 155 | 
         
            +
             
     | 
| 156 | 
         
            +
                    return out
         
     | 
| 157 | 
         
            +
             
     | 
| 158 | 
         
            +
                def load_model_weights(self, sd, unet_prefix=""):
         
     | 
| 159 | 
         
            +
                    to_load = {}
         
     | 
| 160 | 
         
            +
                    keys = list(sd.keys())
         
     | 
| 161 | 
         
            +
                    for k in keys:
         
     | 
| 162 | 
         
            +
                        if k.startswith(unet_prefix):
         
     | 
| 163 | 
         
            +
                            to_load[k[len(unet_prefix):]] = sd.pop(k)
         
     | 
| 164 | 
         
            +
             
     | 
| 165 | 
         
            +
                    to_load = self.model_config.process_unet_state_dict(to_load)
         
     | 
| 166 | 
         
            +
                    m, u = self.diffusion_model.load_state_dict(to_load, strict=False)
         
     | 
| 167 | 
         
            +
                    if len(m) > 0:
         
     | 
| 168 | 
         
            +
                        print("unet missing:", m)
         
     | 
| 169 | 
         
            +
             
     | 
| 170 | 
         
            +
                    if len(u) > 0:
         
     | 
| 171 | 
         
            +
                        print("unet unexpected:", u)
         
     | 
| 172 | 
         
            +
                    del to_load
         
     | 
| 173 | 
         
            +
                    return self
         
     | 
| 174 | 
         
            +
             
     | 
| 175 | 
         
            +
                def process_latent_in(self, latent):
         
     | 
| 176 | 
         
            +
                    return self.latent_format.process_in(latent)
         
     | 
| 177 | 
         
            +
             
     | 
| 178 | 
         
            +
                def process_latent_out(self, latent):
         
     | 
| 179 | 
         
            +
                    return self.latent_format.process_out(latent)
         
     | 
| 180 | 
         
            +
             
     | 
| 181 | 
         
            +
                def state_dict_for_saving(self, clip_state_dict=None, vae_state_dict=None, clip_vision_state_dict=None):
         
     | 
| 182 | 
         
            +
                    extra_sds = []
         
     | 
| 183 | 
         
            +
                    if clip_state_dict is not None:
         
     | 
| 184 | 
         
            +
                        extra_sds.append(self.model_config.process_clip_state_dict_for_saving(clip_state_dict))
         
     | 
| 185 | 
         
            +
                    if vae_state_dict is not None:
         
     | 
| 186 | 
         
            +
                        extra_sds.append(self.model_config.process_vae_state_dict_for_saving(vae_state_dict))
         
     | 
| 187 | 
         
            +
                    if clip_vision_state_dict is not None:
         
     | 
| 188 | 
         
            +
                        extra_sds.append(self.model_config.process_clip_vision_state_dict_for_saving(clip_vision_state_dict))
         
     | 
| 189 | 
         
            +
             
     | 
| 190 | 
         
            +
                    unet_state_dict = self.diffusion_model.state_dict()
         
     | 
| 191 | 
         
            +
                    unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict)
         
     | 
| 192 | 
         
            +
             
     | 
| 193 | 
         
            +
                    if self.get_dtype() == torch.float16:
         
     | 
| 194 | 
         
            +
                        extra_sds = map(lambda sd: utils.convert_sd_to(sd, torch.float16), extra_sds)
         
     | 
| 195 | 
         
            +
             
     | 
| 196 | 
         
            +
                    if self.model_type == ModelType.V_PREDICTION:
         
     | 
| 197 | 
         
            +
                        unet_state_dict["v_pred"] = torch.tensor([])
         
     | 
| 198 | 
         
            +
             
     | 
| 199 | 
         
            +
                    for sd in extra_sds:
         
     | 
| 200 | 
         
            +
                        unet_state_dict.update(sd)
         
     | 
| 201 | 
         
            +
             
     | 
| 202 | 
         
            +
                    return unet_state_dict
         
     | 
| 203 | 
         
            +
             
     | 
| 204 | 
         
            +
                def set_inpaint(self):
         
     | 
| 205 | 
         
            +
                    self.inpaint_model = True
         
     | 
| 206 | 
         
            +
             
     | 
| 207 | 
         
            +
                def memory_required(self, input_shape):
         
     | 
| 208 | 
         
            +
                    if comfy.model_management.xformers_enabled() or comfy.model_management.pytorch_attention_flash_attention():
         
     | 
| 209 | 
         
            +
                        dtype = self.get_dtype()
         
     | 
| 210 | 
         
            +
                        if self.manual_cast_dtype is not None:
         
     | 
| 211 | 
         
            +
                            dtype = self.manual_cast_dtype
         
     | 
| 212 | 
         
            +
                        #TODO: this needs to be tweaked
         
     | 
| 213 | 
         
            +
                        area = input_shape[0] * input_shape[2] * input_shape[3]
         
     | 
| 214 | 
         
            +
                        return (area * comfy.model_management.dtype_size(dtype) / 50) * (1024 * 1024)
         
     | 
| 215 | 
         
            +
                    else:
         
     | 
| 216 | 
         
            +
                        #TODO: this formula might be too aggressive since I tweaked the sub-quad and split algorithms to use less memory.
         
     | 
| 217 | 
         
            +
                        area = input_shape[0] * input_shape[2] * input_shape[3]
         
     | 
| 218 | 
         
            +
                        return (((area * 0.6) / 0.9) + 1024) * (1024 * 1024)
         
     | 
| 219 | 
         
            +
             
     | 
| 220 | 
         
            +
             
     | 
| 221 | 
         
            +
            def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0, seed=None):
         
     | 
| 222 | 
         
            +
                adm_inputs = []
         
     | 
| 223 | 
         
            +
                weights = []
         
     | 
| 224 | 
         
            +
                noise_aug = []
         
     | 
| 225 | 
         
            +
                for unclip_cond in unclip_conditioning:
         
     | 
| 226 | 
         
            +
                    for adm_cond in unclip_cond["clip_vision_output"].image_embeds:
         
     | 
| 227 | 
         
            +
                        weight = unclip_cond["strength"]
         
     | 
| 228 | 
         
            +
                        noise_augment = unclip_cond["noise_augmentation"]
         
     | 
| 229 | 
         
            +
                        noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
         
     | 
| 230 | 
         
            +
                        c_adm, noise_level_emb = noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device), seed=seed)
         
     | 
| 231 | 
         
            +
                        adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight
         
     | 
| 232 | 
         
            +
                        weights.append(weight)
         
     | 
| 233 | 
         
            +
                        noise_aug.append(noise_augment)
         
     | 
| 234 | 
         
            +
                        adm_inputs.append(adm_out)
         
     | 
| 235 | 
         
            +
             
     | 
| 236 | 
         
            +
                if len(noise_aug) > 1:
         
     | 
| 237 | 
         
            +
                    adm_out = torch.stack(adm_inputs).sum(0)
         
     | 
| 238 | 
         
            +
                    noise_augment = noise_augment_merge
         
     | 
| 239 | 
         
            +
                    noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
         
     | 
| 240 | 
         
            +
                    c_adm, noise_level_emb = noise_augmentor(adm_out[:, :noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device))
         
     | 
| 241 | 
         
            +
                    adm_out = torch.cat((c_adm, noise_level_emb), 1)
         
     | 
| 242 | 
         
            +
             
     | 
| 243 | 
         
            +
                return adm_out
         
     | 
| 244 | 
         
            +
             
     | 
| 245 | 
         
            +
            class SD21UNCLIP(BaseModel):
         
     | 
| 246 | 
         
            +
                def __init__(self, model_config, noise_aug_config, model_type=ModelType.V_PREDICTION, device=None):
         
     | 
| 247 | 
         
            +
                    super().__init__(model_config, model_type, device=device)
         
     | 
| 248 | 
         
            +
                    self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**noise_aug_config)
         
     | 
| 249 | 
         
            +
             
     | 
| 250 | 
         
            +
                def encode_adm(self, **kwargs):
         
     | 
| 251 | 
         
            +
                    unclip_conditioning = kwargs.get("unclip_conditioning", None)
         
     | 
| 252 | 
         
            +
                    device = kwargs["device"]
         
     | 
| 253 | 
         
            +
                    if unclip_conditioning is None:
         
     | 
| 254 | 
         
            +
                        return torch.zeros((1, self.adm_channels))
         
     | 
| 255 | 
         
            +
                    else:
         
     | 
| 256 | 
         
            +
                        return unclip_adm(unclip_conditioning, device, self.noise_augmentor, kwargs.get("unclip_noise_augment_merge", 0.05), kwargs.get("seed", 0) - 10)
         
     | 
| 257 | 
         
            +
             
     | 
| 258 | 
         
            +
            def sdxl_pooled(args, noise_augmentor):
         
     | 
| 259 | 
         
            +
                if "unclip_conditioning" in args:
         
     | 
| 260 | 
         
            +
                    return unclip_adm(args.get("unclip_conditioning", None), args["device"], noise_augmentor, seed=args.get("seed", 0) - 10)[:,:1280]
         
     | 
| 261 | 
         
            +
                else:
         
     | 
| 262 | 
         
            +
                    return args["pooled_output"]
         
     | 
| 263 | 
         
            +
             
     | 
| 264 | 
         
            +
            class SDXLRefiner(BaseModel):
         
     | 
| 265 | 
         
            +
                def __init__(self, model_config, model_type=ModelType.EPS, device=None):
         
     | 
| 266 | 
         
            +
                    super().__init__(model_config, model_type, device=device)
         
     | 
| 267 | 
         
            +
                    self.embedder = Timestep(256)
         
     | 
| 268 | 
         
            +
                    self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280})
         
     | 
| 269 | 
         
            +
             
     | 
| 270 | 
         
            +
                def encode_adm(self, **kwargs):
         
     | 
| 271 | 
         
            +
                    clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor)
         
     | 
| 272 | 
         
            +
                    width = kwargs.get("width", 768)
         
     | 
| 273 | 
         
            +
                    height = kwargs.get("height", 768)
         
     | 
| 274 | 
         
            +
                    crop_w = kwargs.get("crop_w", 0)
         
     | 
| 275 | 
         
            +
                    crop_h = kwargs.get("crop_h", 0)
         
     | 
| 276 | 
         
            +
             
     | 
| 277 | 
         
            +
                    if kwargs.get("prompt_type", "") == "negative":
         
     | 
| 278 | 
         
            +
                        aesthetic_score = kwargs.get("aesthetic_score", 2.5)
         
     | 
| 279 | 
         
            +
                    else:
         
     | 
| 280 | 
         
            +
                        aesthetic_score = kwargs.get("aesthetic_score", 6)
         
     | 
| 281 | 
         
            +
             
     | 
| 282 | 
         
            +
                    out = []
         
     | 
| 283 | 
         
            +
                    out.append(self.embedder(torch.Tensor([height])))
         
     | 
| 284 | 
         
            +
                    out.append(self.embedder(torch.Tensor([width])))
         
     | 
| 285 | 
         
            +
                    out.append(self.embedder(torch.Tensor([crop_h])))
         
     | 
| 286 | 
         
            +
                    out.append(self.embedder(torch.Tensor([crop_w])))
         
     | 
| 287 | 
         
            +
                    out.append(self.embedder(torch.Tensor([aesthetic_score])))
         
     | 
| 288 | 
         
            +
                    flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
         
     | 
| 289 | 
         
            +
                    return torch.cat((clip_pooled.to(flat.device), flat), dim=1)
         
     | 
| 290 | 
         
            +
             
     | 
| 291 | 
         
            +
            class SDXL(BaseModel):
         
     | 
| 292 | 
         
            +
                def __init__(self, model_config, model_type=ModelType.EPS, device=None):
         
     | 
| 293 | 
         
            +
                    super().__init__(model_config, model_type, device=device)
         
     | 
| 294 | 
         
            +
                    self.embedder = Timestep(256)
         
     | 
| 295 | 
         
            +
                    self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280})
         
     | 
| 296 | 
         
            +
             
     | 
| 297 | 
         
            +
                def encode_adm(self, **kwargs):
         
     | 
| 298 | 
         
            +
                    clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor)
         
     | 
| 299 | 
         
            +
                    width = kwargs.get("width", 768)
         
     | 
| 300 | 
         
            +
                    height = kwargs.get("height", 768)
         
     | 
| 301 | 
         
            +
                    crop_w = kwargs.get("crop_w", 0)
         
     | 
| 302 | 
         
            +
                    crop_h = kwargs.get("crop_h", 0)
         
     | 
| 303 | 
         
            +
                    target_width = kwargs.get("target_width", width)
         
     | 
| 304 | 
         
            +
                    target_height = kwargs.get("target_height", height)
         
     | 
| 305 | 
         
            +
             
     | 
| 306 | 
         
            +
                    out = []
         
     | 
| 307 | 
         
            +
                    out.append(self.embedder(torch.Tensor([height])))
         
     | 
| 308 | 
         
            +
                    out.append(self.embedder(torch.Tensor([width])))
         
     | 
| 309 | 
         
            +
                    out.append(self.embedder(torch.Tensor([crop_h])))
         
     | 
| 310 | 
         
            +
                    out.append(self.embedder(torch.Tensor([crop_w])))
         
     | 
| 311 | 
         
            +
                    out.append(self.embedder(torch.Tensor([target_height])))
         
     | 
| 312 | 
         
            +
                    out.append(self.embedder(torch.Tensor([target_width])))
         
     | 
| 313 | 
         
            +
                    flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
         
     | 
| 314 | 
         
            +
                    return torch.cat((clip_pooled.to(flat.device), flat), dim=1)
         
     | 
| 315 | 
         
            +
             
     | 
| 316 | 
         
            +
            class SVD_img2vid(BaseModel):
         
     | 
| 317 | 
         
            +
                def __init__(self, model_config, model_type=ModelType.V_PREDICTION_EDM, device=None):
         
     | 
| 318 | 
         
            +
                    super().__init__(model_config, model_type, device=device)
         
     | 
| 319 | 
         
            +
                    self.embedder = Timestep(256)
         
     | 
| 320 | 
         
            +
             
     | 
| 321 | 
         
            +
                def encode_adm(self, **kwargs):
         
     | 
| 322 | 
         
            +
                    fps_id = kwargs.get("fps", 6) - 1
         
     | 
| 323 | 
         
            +
                    motion_bucket_id = kwargs.get("motion_bucket_id", 127)
         
     | 
| 324 | 
         
            +
                    augmentation = kwargs.get("augmentation_level", 0)
         
     | 
| 325 | 
         
            +
             
     | 
| 326 | 
         
            +
                    out = []
         
     | 
| 327 | 
         
            +
                    out.append(self.embedder(torch.Tensor([fps_id])))
         
     | 
| 328 | 
         
            +
                    out.append(self.embedder(torch.Tensor([motion_bucket_id])))
         
     | 
| 329 | 
         
            +
                    out.append(self.embedder(torch.Tensor([augmentation])))
         
     | 
| 330 | 
         
            +
             
     | 
| 331 | 
         
            +
                    flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0)
         
     | 
| 332 | 
         
            +
                    return flat
         
     | 
| 333 | 
         
            +
             
     | 
| 334 | 
         
            +
                def extra_conds(self, **kwargs):
         
     | 
| 335 | 
         
            +
                    out = {}
         
     | 
| 336 | 
         
            +
                    adm = self.encode_adm(**kwargs)
         
     | 
| 337 | 
         
            +
                    if adm is not None:
         
     | 
| 338 | 
         
            +
                        out['y'] = comfy.conds.CONDRegular(adm)
         
     | 
| 339 | 
         
            +
             
     | 
| 340 | 
         
            +
                    latent_image = kwargs.get("concat_latent_image", None)
         
     | 
| 341 | 
         
            +
                    noise = kwargs.get("noise", None)
         
     | 
| 342 | 
         
            +
                    device = kwargs["device"]
         
     | 
| 343 | 
         
            +
             
     | 
| 344 | 
         
            +
                    if latent_image is None:
         
     | 
| 345 | 
         
            +
                        latent_image = torch.zeros_like(noise)
         
     | 
| 346 | 
         
            +
             
     | 
| 347 | 
         
            +
                    if latent_image.shape[1:] != noise.shape[1:]:
         
     | 
| 348 | 
         
            +
                        latent_image = utils.common_upscale(latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center")
         
     | 
| 349 | 
         
            +
             
     | 
| 350 | 
         
            +
                    latent_image = utils.resize_to_batch_size(latent_image, noise.shape[0])
         
     | 
| 351 | 
         
            +
             
     | 
| 352 | 
         
            +
                    out['c_concat'] = comfy.conds.CONDNoiseShape(latent_image)
         
     | 
| 353 | 
         
            +
             
     | 
| 354 | 
         
            +
                    cross_attn = kwargs.get("cross_attn", None)
         
     | 
| 355 | 
         
            +
                    if cross_attn is not None:
         
     | 
| 356 | 
         
            +
                        out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn)
         
     | 
| 357 | 
         
            +
             
     | 
| 358 | 
         
            +
                    if "time_conditioning" in kwargs:
         
     | 
| 359 | 
         
            +
                        out["time_context"] = comfy.conds.CONDCrossAttn(kwargs["time_conditioning"])
         
     | 
| 360 | 
         
            +
             
     | 
| 361 | 
         
            +
                    out['image_only_indicator'] = comfy.conds.CONDConstant(torch.zeros((1,), device=device))
         
     | 
| 362 | 
         
            +
                    out['num_video_frames'] = comfy.conds.CONDConstant(noise.shape[0])
         
     | 
| 363 | 
         
            +
                    return out
         
     | 
| 364 | 
         
            +
             
     | 
| 365 | 
         
            +
            class Stable_Zero123(BaseModel):
         
     | 
| 366 | 
         
            +
                def __init__(self, model_config, model_type=ModelType.EPS, device=None, cc_projection_weight=None, cc_projection_bias=None):
         
     | 
| 367 | 
         
            +
                    super().__init__(model_config, model_type, device=device)
         
     | 
| 368 | 
         
            +
                    self.cc_projection = comfy.ops.manual_cast.Linear(cc_projection_weight.shape[1], cc_projection_weight.shape[0], dtype=self.get_dtype(), device=device)
         
     | 
| 369 | 
         
            +
                    self.cc_projection.weight.copy_(cc_projection_weight)
         
     | 
| 370 | 
         
            +
                    self.cc_projection.bias.copy_(cc_projection_bias)
         
     | 
| 371 | 
         
            +
             
     | 
| 372 | 
         
            +
                def extra_conds(self, **kwargs):
         
     | 
| 373 | 
         
            +
                    out = {}
         
     | 
| 374 | 
         
            +
             
     | 
| 375 | 
         
            +
                    latent_image = kwargs.get("concat_latent_image", None)
         
     | 
| 376 | 
         
            +
                    noise = kwargs.get("noise", None)
         
     | 
| 377 | 
         
            +
             
     | 
| 378 | 
         
            +
                    if latent_image is None:
         
     | 
| 379 | 
         
            +
                        latent_image = torch.zeros_like(noise)
         
     | 
| 380 | 
         
            +
             
     | 
| 381 | 
         
            +
                    if latent_image.shape[1:] != noise.shape[1:]:
         
     | 
| 382 | 
         
            +
                        latent_image = utils.common_upscale(latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center")
         
     | 
| 383 | 
         
            +
             
     | 
| 384 | 
         
            +
                    latent_image = utils.resize_to_batch_size(latent_image, noise.shape[0])
         
     | 
| 385 | 
         
            +
             
     | 
| 386 | 
         
            +
                    out['c_concat'] = comfy.conds.CONDNoiseShape(latent_image)
         
     | 
| 387 | 
         
            +
             
     | 
| 388 | 
         
            +
                    cross_attn = kwargs.get("cross_attn", None)
         
     | 
| 389 | 
         
            +
                    if cross_attn is not None:
         
     | 
| 390 | 
         
            +
                        if cross_attn.shape[-1] != 768:
         
     | 
| 391 | 
         
            +
                            cross_attn = self.cc_projection(cross_attn)
         
     | 
| 392 | 
         
            +
                        out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn)
         
     | 
| 393 | 
         
            +
                    return out
         
     | 
| 394 | 
         
            +
             
     | 
| 395 | 
         
            +
            class SD_X4Upscaler(BaseModel):
         
     | 
| 396 | 
         
            +
                def __init__(self, model_config, model_type=ModelType.V_PREDICTION, device=None):
         
     | 
| 397 | 
         
            +
                    super().__init__(model_config, model_type, device=device)
         
     | 
| 398 | 
         
            +
                    self.noise_augmentor = ImageConcatWithNoiseAugmentation(noise_schedule_config={"linear_start": 0.0001, "linear_end": 0.02}, max_noise_level=350)
         
     | 
| 399 | 
         
            +
             
     | 
| 400 | 
         
            +
                def extra_conds(self, **kwargs):
         
     | 
| 401 | 
         
            +
                    out = {}
         
     | 
| 402 | 
         
            +
             
     | 
| 403 | 
         
            +
                    image = kwargs.get("concat_image", None)
         
     | 
| 404 | 
         
            +
                    noise = kwargs.get("noise", None)
         
     | 
| 405 | 
         
            +
                    noise_augment = kwargs.get("noise_augmentation", 0.0)
         
     | 
| 406 | 
         
            +
                    device = kwargs["device"]
         
     | 
| 407 | 
         
            +
                    seed = kwargs["seed"] - 10
         
     | 
| 408 | 
         
            +
             
     | 
| 409 | 
         
            +
                    noise_level = round((self.noise_augmentor.max_noise_level) * noise_augment)
         
     | 
| 410 | 
         
            +
             
     | 
| 411 | 
         
            +
                    if image is None:
         
     | 
| 412 | 
         
            +
                        image = torch.zeros_like(noise)[:,:3]
         
     | 
| 413 | 
         
            +
             
     | 
| 414 | 
         
            +
                    if image.shape[1:] != noise.shape[1:]:
         
     | 
| 415 | 
         
            +
                        image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
         
     | 
| 416 | 
         
            +
             
     | 
| 417 | 
         
            +
                    noise_level = torch.tensor([noise_level], device=device)
         
     | 
| 418 | 
         
            +
                    if noise_augment > 0:
         
     | 
| 419 | 
         
            +
                        image, noise_level = self.noise_augmentor(image.to(device), noise_level=noise_level, seed=seed)
         
     | 
| 420 | 
         
            +
             
     | 
| 421 | 
         
            +
                    image = utils.resize_to_batch_size(image, noise.shape[0])
         
     | 
| 422 | 
         
            +
             
     | 
| 423 | 
         
            +
                    out['c_concat'] = comfy.conds.CONDNoiseShape(image)
         
     | 
| 424 | 
         
            +
                    out['y'] = comfy.conds.CONDRegular(noise_level)
         
     | 
| 425 | 
         
            +
                    return out
         
     | 
    	
        comfy/model_detection.py
    ADDED
    
    | 
         @@ -0,0 +1,320 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import comfy.supported_models
         
     | 
| 2 | 
         
            +
            import comfy.supported_models_base
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            def count_blocks(state_dict_keys, prefix_string):
         
     | 
| 5 | 
         
            +
                count = 0
         
     | 
| 6 | 
         
            +
                while True:
         
     | 
| 7 | 
         
            +
                    c = False
         
     | 
| 8 | 
         
            +
                    for k in state_dict_keys:
         
     | 
| 9 | 
         
            +
                        if k.startswith(prefix_string.format(count)):
         
     | 
| 10 | 
         
            +
                            c = True
         
     | 
| 11 | 
         
            +
                            break
         
     | 
| 12 | 
         
            +
                    if c == False:
         
     | 
| 13 | 
         
            +
                        break
         
     | 
| 14 | 
         
            +
                    count += 1
         
     | 
| 15 | 
         
            +
                return count
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
            def calculate_transformer_depth(prefix, state_dict_keys, state_dict):
         
     | 
| 18 | 
         
            +
                context_dim = None
         
     | 
| 19 | 
         
            +
                use_linear_in_transformer = False
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
                transformer_prefix = prefix + "1.transformer_blocks."
         
     | 
| 22 | 
         
            +
                transformer_keys = sorted(list(filter(lambda a: a.startswith(transformer_prefix), state_dict_keys)))
         
     | 
| 23 | 
         
            +
                if len(transformer_keys) > 0:
         
     | 
| 24 | 
         
            +
                    last_transformer_depth = count_blocks(state_dict_keys, transformer_prefix + '{}')
         
     | 
| 25 | 
         
            +
                    context_dim = state_dict['{}0.attn2.to_k.weight'.format(transformer_prefix)].shape[1]
         
     | 
| 26 | 
         
            +
                    use_linear_in_transformer = len(state_dict['{}1.proj_in.weight'.format(prefix)].shape) == 2
         
     | 
| 27 | 
         
            +
                    time_stack = '{}1.time_stack.0.attn1.to_q.weight'.format(prefix) in state_dict or '{}1.time_mix_blocks.0.attn1.to_q.weight'.format(prefix) in state_dict
         
     | 
| 28 | 
         
            +
                    return last_transformer_depth, context_dim, use_linear_in_transformer, time_stack
         
     | 
| 29 | 
         
            +
                return None
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
            def detect_unet_config(state_dict, key_prefix, dtype):
         
     | 
| 32 | 
         
            +
                state_dict_keys = list(state_dict.keys())
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
                unet_config = {
         
     | 
| 35 | 
         
            +
                    "use_checkpoint": False,
         
     | 
| 36 | 
         
            +
                    "image_size": 32,
         
     | 
| 37 | 
         
            +
                    "use_spatial_transformer": True,
         
     | 
| 38 | 
         
            +
                    "legacy": False
         
     | 
| 39 | 
         
            +
                }
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
                y_input = '{}label_emb.0.0.weight'.format(key_prefix)
         
     | 
| 42 | 
         
            +
                if y_input in state_dict_keys:
         
     | 
| 43 | 
         
            +
                    unet_config["num_classes"] = "sequential"
         
     | 
| 44 | 
         
            +
                    unet_config["adm_in_channels"] = state_dict[y_input].shape[1]
         
     | 
| 45 | 
         
            +
                else:
         
     | 
| 46 | 
         
            +
                    unet_config["adm_in_channels"] = None
         
     | 
| 47 | 
         
            +
             
     | 
| 48 | 
         
            +
                unet_config["dtype"] = dtype
         
     | 
| 49 | 
         
            +
                model_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[0]
         
     | 
| 50 | 
         
            +
                in_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[1]
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
                out_key = '{}out.2.weight'.format(key_prefix)
         
     | 
| 53 | 
         
            +
                if out_key in state_dict:
         
     | 
| 54 | 
         
            +
                    out_channels = state_dict[out_key].shape[0]
         
     | 
| 55 | 
         
            +
                else:
         
     | 
| 56 | 
         
            +
                    out_channels = 4
         
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
                num_res_blocks = []
         
     | 
| 59 | 
         
            +
                channel_mult = []
         
     | 
| 60 | 
         
            +
                attention_resolutions = []
         
     | 
| 61 | 
         
            +
                transformer_depth = []
         
     | 
| 62 | 
         
            +
                transformer_depth_output = []
         
     | 
| 63 | 
         
            +
                context_dim = None
         
     | 
| 64 | 
         
            +
                use_linear_in_transformer = False
         
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
                video_model = False
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
                current_res = 1
         
     | 
| 69 | 
         
            +
                count = 0
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
                last_res_blocks = 0
         
     | 
| 72 | 
         
            +
                last_channel_mult = 0
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
                input_block_count = count_blocks(state_dict_keys, '{}input_blocks'.format(key_prefix) + '.{}.')
         
     | 
| 75 | 
         
            +
                for count in range(input_block_count):
         
     | 
| 76 | 
         
            +
                    prefix = '{}input_blocks.{}.'.format(key_prefix, count)
         
     | 
| 77 | 
         
            +
                    prefix_output = '{}output_blocks.{}.'.format(key_prefix, input_block_count - count - 1)
         
     | 
| 78 | 
         
            +
             
     | 
| 79 | 
         
            +
                    block_keys = sorted(list(filter(lambda a: a.startswith(prefix), state_dict_keys)))
         
     | 
| 80 | 
         
            +
                    if len(block_keys) == 0:
         
     | 
| 81 | 
         
            +
                        break
         
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
                    block_keys_output = sorted(list(filter(lambda a: a.startswith(prefix_output), state_dict_keys)))
         
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
                    if "{}0.op.weight".format(prefix) in block_keys: #new layer
         
     | 
| 86 | 
         
            +
                        num_res_blocks.append(last_res_blocks)
         
     | 
| 87 | 
         
            +
                        channel_mult.append(last_channel_mult)
         
     | 
| 88 | 
         
            +
             
     | 
| 89 | 
         
            +
                        current_res *= 2
         
     | 
| 90 | 
         
            +
                        last_res_blocks = 0
         
     | 
| 91 | 
         
            +
                        last_channel_mult = 0
         
     | 
| 92 | 
         
            +
                        out = calculate_transformer_depth(prefix_output, state_dict_keys, state_dict)
         
     | 
| 93 | 
         
            +
                        if out is not None:
         
     | 
| 94 | 
         
            +
                            transformer_depth_output.append(out[0])
         
     | 
| 95 | 
         
            +
                        else:
         
     | 
| 96 | 
         
            +
                            transformer_depth_output.append(0)
         
     | 
| 97 | 
         
            +
                    else:
         
     | 
| 98 | 
         
            +
                        res_block_prefix = "{}0.in_layers.0.weight".format(prefix)
         
     | 
| 99 | 
         
            +
                        if res_block_prefix in block_keys:
         
     | 
| 100 | 
         
            +
                            last_res_blocks += 1
         
     | 
| 101 | 
         
            +
                            last_channel_mult = state_dict["{}0.out_layers.3.weight".format(prefix)].shape[0] // model_channels
         
     | 
| 102 | 
         
            +
             
     | 
| 103 | 
         
            +
                            out = calculate_transformer_depth(prefix, state_dict_keys, state_dict)
         
     | 
| 104 | 
         
            +
                            if out is not None:
         
     | 
| 105 | 
         
            +
                                transformer_depth.append(out[0])
         
     | 
| 106 | 
         
            +
                                if context_dim is None:
         
     | 
| 107 | 
         
            +
                                    context_dim = out[1]
         
     | 
| 108 | 
         
            +
                                    use_linear_in_transformer = out[2]
         
     | 
| 109 | 
         
            +
                                    video_model = out[3]
         
     | 
| 110 | 
         
            +
                            else:
         
     | 
| 111 | 
         
            +
                                transformer_depth.append(0)
         
     | 
| 112 | 
         
            +
             
     | 
| 113 | 
         
            +
                        res_block_prefix = "{}0.in_layers.0.weight".format(prefix_output)
         
     | 
| 114 | 
         
            +
                        if res_block_prefix in block_keys_output:
         
     | 
| 115 | 
         
            +
                            out = calculate_transformer_depth(prefix_output, state_dict_keys, state_dict)
         
     | 
| 116 | 
         
            +
                            if out is not None:
         
     | 
| 117 | 
         
            +
                                transformer_depth_output.append(out[0])
         
     | 
| 118 | 
         
            +
                            else:
         
     | 
| 119 | 
         
            +
                                transformer_depth_output.append(0)
         
     | 
| 120 | 
         
            +
             
     | 
| 121 | 
         
            +
             
     | 
| 122 | 
         
            +
                num_res_blocks.append(last_res_blocks)
         
     | 
| 123 | 
         
            +
                channel_mult.append(last_channel_mult)
         
     | 
| 124 | 
         
            +
                if "{}middle_block.1.proj_in.weight".format(key_prefix) in state_dict_keys:
         
     | 
| 125 | 
         
            +
                    transformer_depth_middle = count_blocks(state_dict_keys, '{}middle_block.1.transformer_blocks.'.format(key_prefix) + '{}')
         
     | 
| 126 | 
         
            +
                else:
         
     | 
| 127 | 
         
            +
                    transformer_depth_middle = -1
         
     | 
| 128 | 
         
            +
             
     | 
| 129 | 
         
            +
                unet_config["in_channels"] = in_channels
         
     | 
| 130 | 
         
            +
                unet_config["out_channels"] = out_channels
         
     | 
| 131 | 
         
            +
                unet_config["model_channels"] = model_channels
         
     | 
| 132 | 
         
            +
                unet_config["num_res_blocks"] = num_res_blocks
         
     | 
| 133 | 
         
            +
                unet_config["transformer_depth"] = transformer_depth
         
     | 
| 134 | 
         
            +
                unet_config["transformer_depth_output"] = transformer_depth_output
         
     | 
| 135 | 
         
            +
                unet_config["channel_mult"] = channel_mult
         
     | 
| 136 | 
         
            +
                unet_config["transformer_depth_middle"] = transformer_depth_middle
         
     | 
| 137 | 
         
            +
                unet_config['use_linear_in_transformer'] = use_linear_in_transformer
         
     | 
| 138 | 
         
            +
                unet_config["context_dim"] = context_dim
         
     | 
| 139 | 
         
            +
             
     | 
| 140 | 
         
            +
                if video_model:
         
     | 
| 141 | 
         
            +
                    unet_config["extra_ff_mix_layer"] = True
         
     | 
| 142 | 
         
            +
                    unet_config["use_spatial_context"] = True
         
     | 
| 143 | 
         
            +
                    unet_config["merge_strategy"] = "learned_with_images"
         
     | 
| 144 | 
         
            +
                    unet_config["merge_factor"] = 0.0
         
     | 
| 145 | 
         
            +
                    unet_config["video_kernel_size"] = [3, 1, 1]
         
     | 
| 146 | 
         
            +
                    unet_config["use_temporal_resblock"] = True
         
     | 
| 147 | 
         
            +
                    unet_config["use_temporal_attention"] = True
         
     | 
| 148 | 
         
            +
                else:
         
     | 
| 149 | 
         
            +
                    unet_config["use_temporal_resblock"] = False
         
     | 
| 150 | 
         
            +
                    unet_config["use_temporal_attention"] = False
         
     | 
| 151 | 
         
            +
             
     | 
| 152 | 
         
            +
                return unet_config
         
     | 
| 153 | 
         
            +
             
     | 
| 154 | 
         
            +
            def model_config_from_unet_config(unet_config):
         
     | 
| 155 | 
         
            +
                for model_config in comfy.supported_models.models:
         
     | 
| 156 | 
         
            +
                    if model_config.matches(unet_config):
         
     | 
| 157 | 
         
            +
                        return model_config(unet_config)
         
     | 
| 158 | 
         
            +
             
     | 
| 159 | 
         
            +
                print("no match", unet_config)
         
     | 
| 160 | 
         
            +
                return None
         
     | 
| 161 | 
         
            +
             
     | 
| 162 | 
         
            +
            def model_config_from_unet(state_dict, unet_key_prefix, dtype, use_base_if_no_match=False):
         
     | 
| 163 | 
         
            +
                unet_config = detect_unet_config(state_dict, unet_key_prefix, dtype)
         
     | 
| 164 | 
         
            +
                model_config = model_config_from_unet_config(unet_config)
         
     | 
| 165 | 
         
            +
                if model_config is None and use_base_if_no_match:
         
     | 
| 166 | 
         
            +
                    return comfy.supported_models_base.BASE(unet_config)
         
     | 
| 167 | 
         
            +
                else:
         
     | 
| 168 | 
         
            +
                    return model_config
         
     | 
| 169 | 
         
            +
             
     | 
| 170 | 
         
            +
            def convert_config(unet_config):
         
     | 
| 171 | 
         
            +
                new_config = unet_config.copy()
         
     | 
| 172 | 
         
            +
                num_res_blocks = new_config.get("num_res_blocks", None)
         
     | 
| 173 | 
         
            +
                channel_mult = new_config.get("channel_mult", None)
         
     | 
| 174 | 
         
            +
             
     | 
| 175 | 
         
            +
                if isinstance(num_res_blocks, int):
         
     | 
| 176 | 
         
            +
                    num_res_blocks = len(channel_mult) * [num_res_blocks]
         
     | 
| 177 | 
         
            +
             
     | 
| 178 | 
         
            +
                if "attention_resolutions" in new_config:
         
     | 
| 179 | 
         
            +
                    attention_resolutions = new_config.pop("attention_resolutions")
         
     | 
| 180 | 
         
            +
                    transformer_depth = new_config.get("transformer_depth", None)
         
     | 
| 181 | 
         
            +
                    transformer_depth_middle = new_config.get("transformer_depth_middle", None)
         
     | 
| 182 | 
         
            +
             
     | 
| 183 | 
         
            +
                    if isinstance(transformer_depth, int):
         
     | 
| 184 | 
         
            +
                        transformer_depth = len(channel_mult) * [transformer_depth]
         
     | 
| 185 | 
         
            +
                    if transformer_depth_middle is None:
         
     | 
| 186 | 
         
            +
                        transformer_depth_middle =  transformer_depth[-1]
         
     | 
| 187 | 
         
            +
                    t_in = []
         
     | 
| 188 | 
         
            +
                    t_out = []
         
     | 
| 189 | 
         
            +
                    s = 1
         
     | 
| 190 | 
         
            +
                    for i in range(len(num_res_blocks)):
         
     | 
| 191 | 
         
            +
                        res = num_res_blocks[i]
         
     | 
| 192 | 
         
            +
                        d = 0
         
     | 
| 193 | 
         
            +
                        if s in attention_resolutions:
         
     | 
| 194 | 
         
            +
                            d = transformer_depth[i]
         
     | 
| 195 | 
         
            +
             
     | 
| 196 | 
         
            +
                        t_in += [d] * res
         
     | 
| 197 | 
         
            +
                        t_out += [d] * (res + 1)
         
     | 
| 198 | 
         
            +
                        s *= 2
         
     | 
| 199 | 
         
            +
                    transformer_depth = t_in
         
     | 
| 200 | 
         
            +
                    transformer_depth_output = t_out
         
     | 
| 201 | 
         
            +
                    new_config["transformer_depth"] = t_in
         
     | 
| 202 | 
         
            +
                    new_config["transformer_depth_output"] = t_out
         
     | 
| 203 | 
         
            +
                    new_config["transformer_depth_middle"] = transformer_depth_middle
         
     | 
| 204 | 
         
            +
             
     | 
| 205 | 
         
            +
                new_config["num_res_blocks"] = num_res_blocks
         
     | 
| 206 | 
         
            +
                return new_config
         
     | 
| 207 | 
         
            +
             
     | 
| 208 | 
         
            +
             
     | 
| 209 | 
         
            +
            def unet_config_from_diffusers_unet(state_dict, dtype):
         
     | 
| 210 | 
         
            +
                match = {}
         
     | 
| 211 | 
         
            +
                transformer_depth = []
         
     | 
| 212 | 
         
            +
             
     | 
| 213 | 
         
            +
                attn_res = 1
         
     | 
| 214 | 
         
            +
                down_blocks = count_blocks(state_dict, "down_blocks.{}")
         
     | 
| 215 | 
         
            +
                for i in range(down_blocks):
         
     | 
| 216 | 
         
            +
                    attn_blocks = count_blocks(state_dict, "down_blocks.{}.attentions.".format(i) + '{}')
         
     | 
| 217 | 
         
            +
                    for ab in range(attn_blocks):
         
     | 
| 218 | 
         
            +
                        transformer_count = count_blocks(state_dict, "down_blocks.{}.attentions.{}.transformer_blocks.".format(i, ab) + '{}')
         
     | 
| 219 | 
         
            +
                        transformer_depth.append(transformer_count)
         
     | 
| 220 | 
         
            +
                        if transformer_count > 0:
         
     | 
| 221 | 
         
            +
                            match["context_dim"] = state_dict["down_blocks.{}.attentions.{}.transformer_blocks.0.attn2.to_k.weight".format(i, ab)].shape[1]
         
     | 
| 222 | 
         
            +
             
     | 
| 223 | 
         
            +
                    attn_res *= 2
         
     | 
| 224 | 
         
            +
                    if attn_blocks == 0:
         
     | 
| 225 | 
         
            +
                        transformer_depth.append(0)
         
     | 
| 226 | 
         
            +
                        transformer_depth.append(0)
         
     | 
| 227 | 
         
            +
             
     | 
| 228 | 
         
            +
                match["transformer_depth"] = transformer_depth
         
     | 
| 229 | 
         
            +
             
     | 
| 230 | 
         
            +
                match["model_channels"] = state_dict["conv_in.weight"].shape[0]
         
     | 
| 231 | 
         
            +
                match["in_channels"] = state_dict["conv_in.weight"].shape[1]
         
     | 
| 232 | 
         
            +
                match["adm_in_channels"] = None
         
     | 
| 233 | 
         
            +
                if "class_embedding.linear_1.weight" in state_dict:
         
     | 
| 234 | 
         
            +
                    match["adm_in_channels"] = state_dict["class_embedding.linear_1.weight"].shape[1]
         
     | 
| 235 | 
         
            +
                elif "add_embedding.linear_1.weight" in state_dict:
         
     | 
| 236 | 
         
            +
                    match["adm_in_channels"] = state_dict["add_embedding.linear_1.weight"].shape[1]
         
     | 
| 237 | 
         
            +
             
     | 
| 238 | 
         
            +
                SDXL = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
         
     | 
| 239 | 
         
            +
                        'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
         
     | 
| 240 | 
         
            +
                        'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10,
         
     | 
| 241 | 
         
            +
                        'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10],
         
     | 
| 242 | 
         
            +
                        'use_temporal_attention': False, 'use_temporal_resblock': False}
         
     | 
| 243 | 
         
            +
             
     | 
| 244 | 
         
            +
                SDXL_refiner = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
         
     | 
| 245 | 
         
            +
                                'num_classes': 'sequential', 'adm_in_channels': 2560, 'dtype': dtype, 'in_channels': 4, 'model_channels': 384,
         
     | 
| 246 | 
         
            +
                                'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [0, 0, 4, 4, 4, 4, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 4,
         
     | 
| 247 | 
         
            +
                                'use_linear_in_transformer': True, 'context_dim': 1280, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 4, 4, 4, 4, 4, 4, 0, 0, 0],
         
     | 
| 248 | 
         
            +
                                'use_temporal_attention': False, 'use_temporal_resblock': False}
         
     | 
| 249 | 
         
            +
             
     | 
| 250 | 
         
            +
                SD21 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
         
     | 
| 251 | 
         
            +
                        'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2],
         
     | 
| 252 | 
         
            +
                        'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': True,
         
     | 
| 253 | 
         
            +
                        'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
         
     | 
| 254 | 
         
            +
                        'use_temporal_attention': False, 'use_temporal_resblock': False}
         
     | 
| 255 | 
         
            +
             
     | 
| 256 | 
         
            +
                SD21_uncliph = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
         
     | 
| 257 | 
         
            +
                                'num_classes': 'sequential', 'adm_in_channels': 2048, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
         
     | 
| 258 | 
         
            +
                                'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1,
         
     | 
| 259 | 
         
            +
                                'use_linear_in_transformer': True, 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
         
     | 
| 260 | 
         
            +
                                'use_temporal_attention': False, 'use_temporal_resblock': False}
         
     | 
| 261 | 
         
            +
             
     | 
| 262 | 
         
            +
                SD21_unclipl = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
         
     | 
| 263 | 
         
            +
                                'num_classes': 'sequential', 'adm_in_channels': 1536, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
         
     | 
| 264 | 
         
            +
                                'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1,
         
     | 
| 265 | 
         
            +
                                'use_linear_in_transformer': True, 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
         
     | 
| 266 | 
         
            +
                                'use_temporal_attention': False, 'use_temporal_resblock': False}
         
     | 
| 267 | 
         
            +
             
     | 
| 268 | 
         
            +
                SD15 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'adm_in_channels': None,
         
     | 
| 269 | 
         
            +
                        'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0],
         
     | 
| 270 | 
         
            +
                        'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': False, 'context_dim': 768, 'num_heads': 8,
         
     | 
| 271 | 
         
            +
                        'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
         
     | 
| 272 | 
         
            +
                        'use_temporal_attention': False, 'use_temporal_resblock': False}
         
     | 
| 273 | 
         
            +
             
     | 
| 274 | 
         
            +
                SDXL_mid_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
         
     | 
| 275 | 
         
            +
                                 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
         
     | 
| 276 | 
         
            +
                                 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 0, 0, 1, 1], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 1,
         
     | 
| 277 | 
         
            +
                                 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 0, 0, 0, 1, 1, 1],
         
     | 
| 278 | 
         
            +
                                 'use_temporal_attention': False, 'use_temporal_resblock': False}
         
     | 
| 279 | 
         
            +
             
     | 
| 280 | 
         
            +
                SDXL_small_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
         
     | 
| 281 | 
         
            +
                                   'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
         
     | 
| 282 | 
         
            +
                                   'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 0, 0, 0, 0], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 0,
         
     | 
| 283 | 
         
            +
                                   'use_linear_in_transformer': True, 'num_head_channels': 64, 'context_dim': 1, 'transformer_depth_output': [0, 0, 0, 0, 0, 0, 0, 0, 0],
         
     | 
| 284 | 
         
            +
                                   'use_temporal_attention': False, 'use_temporal_resblock': False}
         
     | 
| 285 | 
         
            +
             
     | 
| 286 | 
         
            +
                SDXL_diffusers_inpaint = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
         
     | 
| 287 | 
         
            +
                                          'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 9, 'model_channels': 320,
         
     | 
| 288 | 
         
            +
                                          'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10,
         
     | 
| 289 | 
         
            +
                                          'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10],
         
     | 
| 290 | 
         
            +
                                          'use_temporal_attention': False, 'use_temporal_resblock': False}
         
     | 
| 291 | 
         
            +
             
     | 
| 292 | 
         
            +
                SSD_1B = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
         
     | 
| 293 | 
         
            +
                          'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
         
     | 
| 294 | 
         
            +
                          'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 4, 4], 'transformer_depth_output': [0, 0, 0, 1, 1, 2, 10, 4, 4],
         
     | 
| 295 | 
         
            +
                          'channel_mult': [1, 2, 4], 'transformer_depth_middle': -1, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64,
         
     | 
| 296 | 
         
            +
                          'use_temporal_attention': False, 'use_temporal_resblock': False}
         
     | 
| 297 | 
         
            +
             
     | 
| 298 | 
         
            +
                Segmind_Vega = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
         
     | 
| 299 | 
         
            +
                          'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
         
     | 
| 300 | 
         
            +
                          'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 1, 1, 2, 2], 'transformer_depth_output': [0, 0, 0, 1, 1, 1, 2, 2, 2],
         
     | 
| 301 | 
         
            +
                          'channel_mult': [1, 2, 4], 'transformer_depth_middle': -1, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64,
         
     | 
| 302 | 
         
            +
                          'use_temporal_attention': False, 'use_temporal_resblock': False}
         
     | 
| 303 | 
         
            +
             
     | 
| 304 | 
         
            +
                supported_models = [SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl, SDXL_mid_cnet, SDXL_small_cnet, SDXL_diffusers_inpaint, SSD_1B, Segmind_Vega]
         
     | 
| 305 | 
         
            +
             
     | 
| 306 | 
         
            +
                for unet_config in supported_models:
         
     | 
| 307 | 
         
            +
                    matches = True
         
     | 
| 308 | 
         
            +
                    for k in match:
         
     | 
| 309 | 
         
            +
                        if match[k] != unet_config[k]:
         
     | 
| 310 | 
         
            +
                            matches = False
         
     | 
| 311 | 
         
            +
                            break
         
     | 
| 312 | 
         
            +
                    if matches:
         
     | 
| 313 | 
         
            +
                        return convert_config(unet_config)
         
     | 
| 314 | 
         
            +
                return None
         
     | 
| 315 | 
         
            +
             
     | 
| 316 | 
         
            +
            def model_config_from_diffusers_unet(state_dict, dtype):
         
     | 
| 317 | 
         
            +
                unet_config = unet_config_from_diffusers_unet(state_dict, dtype)
         
     | 
| 318 | 
         
            +
                if unet_config is not None:
         
     | 
| 319 | 
         
            +
                    return model_config_from_unet_config(unet_config)
         
     | 
| 320 | 
         
            +
                return None
         
     | 
    	
        comfy/model_management.py
    ADDED
    
    | 
         @@ -0,0 +1,805 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import psutil
         
     | 
| 2 | 
         
            +
            from enum import Enum
         
     | 
| 3 | 
         
            +
            from comfy.cli_args import args
         
     | 
| 4 | 
         
            +
            import comfy.utils
         
     | 
| 5 | 
         
            +
            import torch
         
     | 
| 6 | 
         
            +
            import sys
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            class VRAMState(Enum):
         
     | 
| 9 | 
         
            +
                DISABLED = 0    #No vram present: no need to move models to vram
         
     | 
| 10 | 
         
            +
                NO_VRAM = 1     #Very low vram: enable all the options to save vram
         
     | 
| 11 | 
         
            +
                LOW_VRAM = 2
         
     | 
| 12 | 
         
            +
                NORMAL_VRAM = 3
         
     | 
| 13 | 
         
            +
                HIGH_VRAM = 4
         
     | 
| 14 | 
         
            +
                SHARED = 5      #No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both.
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
            class CPUState(Enum):
         
     | 
| 17 | 
         
            +
                GPU = 0
         
     | 
| 18 | 
         
            +
                CPU = 1
         
     | 
| 19 | 
         
            +
                MPS = 2
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
            # Determine VRAM State
         
     | 
| 22 | 
         
            +
            vram_state = VRAMState.NORMAL_VRAM
         
     | 
| 23 | 
         
            +
            set_vram_to = VRAMState.NORMAL_VRAM
         
     | 
| 24 | 
         
            +
            cpu_state = CPUState.GPU
         
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
            total_vram = 0
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
            lowvram_available = True
         
     | 
| 29 | 
         
            +
            xpu_available = False
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
            if args.deterministic:
         
     | 
| 32 | 
         
            +
                print("Using deterministic algorithms for pytorch")
         
     | 
| 33 | 
         
            +
                torch.use_deterministic_algorithms(True, warn_only=True)
         
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
            directml_enabled = False
         
     | 
| 36 | 
         
            +
            if args.directml is not None:
         
     | 
| 37 | 
         
            +
                import torch_directml
         
     | 
| 38 | 
         
            +
                directml_enabled = True
         
     | 
| 39 | 
         
            +
                device_index = args.directml
         
     | 
| 40 | 
         
            +
                if device_index < 0:
         
     | 
| 41 | 
         
            +
                    directml_device = torch_directml.device()
         
     | 
| 42 | 
         
            +
                else:
         
     | 
| 43 | 
         
            +
                    directml_device = torch_directml.device(device_index)
         
     | 
| 44 | 
         
            +
                print("Using directml with device:", torch_directml.device_name(device_index))
         
     | 
| 45 | 
         
            +
                # torch_directml.disable_tiled_resources(True)
         
     | 
| 46 | 
         
            +
                lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default.
         
     | 
| 47 | 
         
            +
             
     | 
| 48 | 
         
            +
            try:
         
     | 
| 49 | 
         
            +
                import intel_extension_for_pytorch as ipex
         
     | 
| 50 | 
         
            +
                if torch.xpu.is_available():
         
     | 
| 51 | 
         
            +
                    xpu_available = True
         
     | 
| 52 | 
         
            +
            except:
         
     | 
| 53 | 
         
            +
                pass
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
            try:
         
     | 
| 56 | 
         
            +
                if torch.backends.mps.is_available():
         
     | 
| 57 | 
         
            +
                    cpu_state = CPUState.MPS
         
     | 
| 58 | 
         
            +
                    import torch.mps
         
     | 
| 59 | 
         
            +
            except:
         
     | 
| 60 | 
         
            +
                pass
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
            if args.cpu:
         
     | 
| 63 | 
         
            +
                cpu_state = CPUState.CPU
         
     | 
| 64 | 
         
            +
             
     | 
| 65 | 
         
            +
            def is_intel_xpu():
         
     | 
| 66 | 
         
            +
                global cpu_state
         
     | 
| 67 | 
         
            +
                global xpu_available
         
     | 
| 68 | 
         
            +
                if cpu_state == CPUState.GPU:
         
     | 
| 69 | 
         
            +
                    if xpu_available:
         
     | 
| 70 | 
         
            +
                        return True
         
     | 
| 71 | 
         
            +
                return False
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
            def get_torch_device():
         
     | 
| 74 | 
         
            +
                global directml_enabled
         
     | 
| 75 | 
         
            +
                global cpu_state
         
     | 
| 76 | 
         
            +
                if directml_enabled:
         
     | 
| 77 | 
         
            +
                    global directml_device
         
     | 
| 78 | 
         
            +
                    return directml_device
         
     | 
| 79 | 
         
            +
                if cpu_state == CPUState.MPS:
         
     | 
| 80 | 
         
            +
                    return torch.device("mps")
         
     | 
| 81 | 
         
            +
                if cpu_state == CPUState.CPU:
         
     | 
| 82 | 
         
            +
                    return torch.device("cpu")
         
     | 
| 83 | 
         
            +
                else:
         
     | 
| 84 | 
         
            +
                    if is_intel_xpu():
         
     | 
| 85 | 
         
            +
                        return torch.device("xpu")
         
     | 
| 86 | 
         
            +
                    else:
         
     | 
| 87 | 
         
            +
                        return torch.device(torch.cuda.current_device())
         
     | 
| 88 | 
         
            +
             
     | 
| 89 | 
         
            +
            def get_total_memory(dev=None, torch_total_too=False):
         
     | 
| 90 | 
         
            +
                global directml_enabled
         
     | 
| 91 | 
         
            +
                if dev is None:
         
     | 
| 92 | 
         
            +
                    dev = get_torch_device()
         
     | 
| 93 | 
         
            +
             
     | 
| 94 | 
         
            +
                if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
         
     | 
| 95 | 
         
            +
                    mem_total = psutil.virtual_memory().total
         
     | 
| 96 | 
         
            +
                    mem_total_torch = mem_total
         
     | 
| 97 | 
         
            +
                else:
         
     | 
| 98 | 
         
            +
                    if directml_enabled:
         
     | 
| 99 | 
         
            +
                        mem_total = 1024 * 1024 * 1024 #TODO
         
     | 
| 100 | 
         
            +
                        mem_total_torch = mem_total
         
     | 
| 101 | 
         
            +
                    elif is_intel_xpu():
         
     | 
| 102 | 
         
            +
                        stats = torch.xpu.memory_stats(dev)
         
     | 
| 103 | 
         
            +
                        mem_reserved = stats['reserved_bytes.all.current']
         
     | 
| 104 | 
         
            +
                        mem_total = torch.xpu.get_device_properties(dev).total_memory
         
     | 
| 105 | 
         
            +
                        mem_total_torch = mem_reserved
         
     | 
| 106 | 
         
            +
                    else:
         
     | 
| 107 | 
         
            +
                        stats = torch.cuda.memory_stats(dev)
         
     | 
| 108 | 
         
            +
                        mem_reserved = stats['reserved_bytes.all.current']
         
     | 
| 109 | 
         
            +
                        _, mem_total_cuda = torch.cuda.mem_get_info(dev)
         
     | 
| 110 | 
         
            +
                        mem_total_torch = mem_reserved
         
     | 
| 111 | 
         
            +
                        mem_total = mem_total_cuda
         
     | 
| 112 | 
         
            +
             
     | 
| 113 | 
         
            +
                if torch_total_too:
         
     | 
| 114 | 
         
            +
                    return (mem_total, mem_total_torch)
         
     | 
| 115 | 
         
            +
                else:
         
     | 
| 116 | 
         
            +
                    return mem_total
         
     | 
| 117 | 
         
            +
             
     | 
| 118 | 
         
            +
            total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
         
     | 
| 119 | 
         
            +
            total_ram = psutil.virtual_memory().total / (1024 * 1024)
         
     | 
| 120 | 
         
            +
            print("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
         
     | 
| 121 | 
         
            +
            if not args.normalvram and not args.cpu:
         
     | 
| 122 | 
         
            +
                if lowvram_available and total_vram <= 4096:
         
     | 
| 123 | 
         
            +
                    print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
         
     | 
| 124 | 
         
            +
                    set_vram_to = VRAMState.LOW_VRAM
         
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
            try:
         
     | 
| 127 | 
         
            +
                OOM_EXCEPTION = torch.cuda.OutOfMemoryError
         
     | 
| 128 | 
         
            +
            except:
         
     | 
| 129 | 
         
            +
                OOM_EXCEPTION = Exception
         
     | 
| 130 | 
         
            +
             
     | 
| 131 | 
         
            +
            XFORMERS_VERSION = ""
         
     | 
| 132 | 
         
            +
            XFORMERS_ENABLED_VAE = True
         
     | 
| 133 | 
         
            +
            if args.disable_xformers:
         
     | 
| 134 | 
         
            +
                XFORMERS_IS_AVAILABLE = False
         
     | 
| 135 | 
         
            +
            else:
         
     | 
| 136 | 
         
            +
                try:
         
     | 
| 137 | 
         
            +
                    import xformers
         
     | 
| 138 | 
         
            +
                    import xformers.ops
         
     | 
| 139 | 
         
            +
                    XFORMERS_IS_AVAILABLE = True
         
     | 
| 140 | 
         
            +
                    try:
         
     | 
| 141 | 
         
            +
                        XFORMERS_IS_AVAILABLE = xformers._has_cpp_library
         
     | 
| 142 | 
         
            +
                    except:
         
     | 
| 143 | 
         
            +
                        pass
         
     | 
| 144 | 
         
            +
                    try:
         
     | 
| 145 | 
         
            +
                        XFORMERS_VERSION = xformers.version.__version__
         
     | 
| 146 | 
         
            +
                        print("xformers version:", XFORMERS_VERSION)
         
     | 
| 147 | 
         
            +
                        if XFORMERS_VERSION.startswith("0.0.18"):
         
     | 
| 148 | 
         
            +
                            print()
         
     | 
| 149 | 
         
            +
                            print("WARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.")
         
     | 
| 150 | 
         
            +
                            print("Please downgrade or upgrade xformers to a different version.")
         
     | 
| 151 | 
         
            +
                            print()
         
     | 
| 152 | 
         
            +
                            XFORMERS_ENABLED_VAE = False
         
     | 
| 153 | 
         
            +
                    except:
         
     | 
| 154 | 
         
            +
                        pass
         
     | 
| 155 | 
         
            +
                except:
         
     | 
| 156 | 
         
            +
                    XFORMERS_IS_AVAILABLE = False
         
     | 
| 157 | 
         
            +
             
     | 
| 158 | 
         
            +
            def is_nvidia():
         
     | 
| 159 | 
         
            +
                global cpu_state
         
     | 
| 160 | 
         
            +
                if cpu_state == CPUState.GPU:
         
     | 
| 161 | 
         
            +
                    if torch.version.cuda:
         
     | 
| 162 | 
         
            +
                        return True
         
     | 
| 163 | 
         
            +
                return False
         
     | 
| 164 | 
         
            +
             
     | 
| 165 | 
         
            +
            ENABLE_PYTORCH_ATTENTION = False
         
     | 
| 166 | 
         
            +
            if args.use_pytorch_cross_attention:
         
     | 
| 167 | 
         
            +
                ENABLE_PYTORCH_ATTENTION = True
         
     | 
| 168 | 
         
            +
                XFORMERS_IS_AVAILABLE = False
         
     | 
| 169 | 
         
            +
             
     | 
| 170 | 
         
            +
            VAE_DTYPE = torch.float32
         
     | 
| 171 | 
         
            +
             
     | 
| 172 | 
         
            +
            try:
         
     | 
| 173 | 
         
            +
                if is_nvidia():
         
     | 
| 174 | 
         
            +
                    torch_version = torch.version.__version__
         
     | 
| 175 | 
         
            +
                    if int(torch_version[0]) >= 2:
         
     | 
| 176 | 
         
            +
                        if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
         
     | 
| 177 | 
         
            +
                            ENABLE_PYTORCH_ATTENTION = True
         
     | 
| 178 | 
         
            +
                        if torch.cuda.is_bf16_supported() and torch.cuda.get_device_properties(torch.cuda.current_device()).major >= 8:
         
     | 
| 179 | 
         
            +
                            VAE_DTYPE = torch.bfloat16
         
     | 
| 180 | 
         
            +
                if is_intel_xpu():
         
     | 
| 181 | 
         
            +
                    if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
         
     | 
| 182 | 
         
            +
                        ENABLE_PYTORCH_ATTENTION = True
         
     | 
| 183 | 
         
            +
            except:
         
     | 
| 184 | 
         
            +
                pass
         
     | 
| 185 | 
         
            +
             
     | 
| 186 | 
         
            +
            if is_intel_xpu():
         
     | 
| 187 | 
         
            +
                VAE_DTYPE = torch.bfloat16
         
     | 
| 188 | 
         
            +
             
     | 
| 189 | 
         
            +
            if args.cpu_vae:
         
     | 
| 190 | 
         
            +
                VAE_DTYPE = torch.float32
         
     | 
| 191 | 
         
            +
             
     | 
| 192 | 
         
            +
            if args.fp16_vae:
         
     | 
| 193 | 
         
            +
                VAE_DTYPE = torch.float16
         
     | 
| 194 | 
         
            +
            elif args.bf16_vae:
         
     | 
| 195 | 
         
            +
                VAE_DTYPE = torch.bfloat16
         
     | 
| 196 | 
         
            +
            elif args.fp32_vae:
         
     | 
| 197 | 
         
            +
                VAE_DTYPE = torch.float32
         
     | 
| 198 | 
         
            +
             
     | 
| 199 | 
         
            +
             
     | 
| 200 | 
         
            +
            if ENABLE_PYTORCH_ATTENTION:
         
     | 
| 201 | 
         
            +
                torch.backends.cuda.enable_math_sdp(True)
         
     | 
| 202 | 
         
            +
                torch.backends.cuda.enable_flash_sdp(True)
         
     | 
| 203 | 
         
            +
                torch.backends.cuda.enable_mem_efficient_sdp(True)
         
     | 
| 204 | 
         
            +
             
     | 
| 205 | 
         
            +
            if args.lowvram:
         
     | 
| 206 | 
         
            +
                set_vram_to = VRAMState.LOW_VRAM
         
     | 
| 207 | 
         
            +
                lowvram_available = True
         
     | 
| 208 | 
         
            +
            elif args.novram:
         
     | 
| 209 | 
         
            +
                set_vram_to = VRAMState.NO_VRAM
         
     | 
| 210 | 
         
            +
            elif args.highvram or args.gpu_only:
         
     | 
| 211 | 
         
            +
                vram_state = VRAMState.HIGH_VRAM
         
     | 
| 212 | 
         
            +
             
     | 
| 213 | 
         
            +
            FORCE_FP32 = False
         
     | 
| 214 | 
         
            +
            FORCE_FP16 = False
         
     | 
| 215 | 
         
            +
            if args.force_fp32:
         
     | 
| 216 | 
         
            +
                print("Forcing FP32, if this improves things please report it.")
         
     | 
| 217 | 
         
            +
                FORCE_FP32 = True
         
     | 
| 218 | 
         
            +
             
     | 
| 219 | 
         
            +
            if args.force_fp16:
         
     | 
| 220 | 
         
            +
                print("Forcing FP16.")
         
     | 
| 221 | 
         
            +
                FORCE_FP16 = True
         
     | 
| 222 | 
         
            +
             
     | 
| 223 | 
         
            +
            if lowvram_available:
         
     | 
| 224 | 
         
            +
                if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
         
     | 
| 225 | 
         
            +
                    vram_state = set_vram_to
         
     | 
| 226 | 
         
            +
             
     | 
| 227 | 
         
            +
             
     | 
| 228 | 
         
            +
            if cpu_state != CPUState.GPU:
         
     | 
| 229 | 
         
            +
                vram_state = VRAMState.DISABLED
         
     | 
| 230 | 
         
            +
             
     | 
| 231 | 
         
            +
            if cpu_state == CPUState.MPS:
         
     | 
| 232 | 
         
            +
                vram_state = VRAMState.SHARED
         
     | 
| 233 | 
         
            +
             
     | 
| 234 | 
         
            +
            print(f"Set vram state to: {vram_state.name}")
         
     | 
| 235 | 
         
            +
             
     | 
| 236 | 
         
            +
            DISABLE_SMART_MEMORY = args.disable_smart_memory
         
     | 
| 237 | 
         
            +
             
     | 
| 238 | 
         
            +
            if DISABLE_SMART_MEMORY:
         
     | 
| 239 | 
         
            +
                print("Disabling smart memory management")
         
     | 
| 240 | 
         
            +
             
     | 
| 241 | 
         
            +
            def get_torch_device_name(device):
         
     | 
| 242 | 
         
            +
                if hasattr(device, 'type'):
         
     | 
| 243 | 
         
            +
                    if device.type == "cuda":
         
     | 
| 244 | 
         
            +
                        try:
         
     | 
| 245 | 
         
            +
                            allocator_backend = torch.cuda.get_allocator_backend()
         
     | 
| 246 | 
         
            +
                        except:
         
     | 
| 247 | 
         
            +
                            allocator_backend = ""
         
     | 
| 248 | 
         
            +
                        return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend)
         
     | 
| 249 | 
         
            +
                    else:
         
     | 
| 250 | 
         
            +
                        return "{}".format(device.type)
         
     | 
| 251 | 
         
            +
                elif is_intel_xpu():
         
     | 
| 252 | 
         
            +
                    return "{} {}".format(device, torch.xpu.get_device_name(device))
         
     | 
| 253 | 
         
            +
                else:
         
     | 
| 254 | 
         
            +
                    return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
         
     | 
| 255 | 
         
            +
             
     | 
| 256 | 
         
            +
            try:
         
     | 
| 257 | 
         
            +
                print("Device:", get_torch_device_name(get_torch_device()))
         
     | 
| 258 | 
         
            +
            except:
         
     | 
| 259 | 
         
            +
                print("Could not pick default device.")
         
     | 
| 260 | 
         
            +
             
     | 
| 261 | 
         
            +
            print("VAE dtype:", VAE_DTYPE)
         
     | 
| 262 | 
         
            +
             
     | 
| 263 | 
         
            +
            current_loaded_models = []
         
     | 
| 264 | 
         
            +
             
     | 
| 265 | 
         
            +
            def module_size(module):
         
     | 
| 266 | 
         
            +
                module_mem = 0
         
     | 
| 267 | 
         
            +
                sd = module.state_dict()
         
     | 
| 268 | 
         
            +
                for k in sd:
         
     | 
| 269 | 
         
            +
                    t = sd[k]
         
     | 
| 270 | 
         
            +
                    module_mem += t.nelement() * t.element_size()
         
     | 
| 271 | 
         
            +
                return module_mem
         
     | 
| 272 | 
         
            +
             
     | 
| 273 | 
         
            +
            class LoadedModel:
         
     | 
| 274 | 
         
            +
                def __init__(self, model):
         
     | 
| 275 | 
         
            +
                    self.model = model
         
     | 
| 276 | 
         
            +
                    self.model_accelerated = False
         
     | 
| 277 | 
         
            +
                    self.device = model.load_device
         
     | 
| 278 | 
         
            +
             
     | 
| 279 | 
         
            +
                def model_memory(self):
         
     | 
| 280 | 
         
            +
                    return self.model.model_size()
         
     | 
| 281 | 
         
            +
             
     | 
| 282 | 
         
            +
                def model_memory_required(self, device):
         
     | 
| 283 | 
         
            +
                    if device == self.model.current_device:
         
     | 
| 284 | 
         
            +
                        return 0
         
     | 
| 285 | 
         
            +
                    else:
         
     | 
| 286 | 
         
            +
                        return self.model_memory()
         
     | 
| 287 | 
         
            +
             
     | 
| 288 | 
         
            +
                def model_load(self, lowvram_model_memory=0):
         
     | 
| 289 | 
         
            +
                    patch_model_to = None
         
     | 
| 290 | 
         
            +
                    if lowvram_model_memory == 0:
         
     | 
| 291 | 
         
            +
                        patch_model_to = self.device
         
     | 
| 292 | 
         
            +
             
     | 
| 293 | 
         
            +
                    self.model.model_patches_to(self.device)
         
     | 
| 294 | 
         
            +
                    self.model.model_patches_to(self.model.model_dtype())
         
     | 
| 295 | 
         
            +
             
     | 
| 296 | 
         
            +
                    try:
         
     | 
| 297 | 
         
            +
                        self.real_model = self.model.patch_model(device_to=patch_model_to) #TODO: do something with loras and offloading to CPU
         
     | 
| 298 | 
         
            +
                    except Exception as e:
         
     | 
| 299 | 
         
            +
                        self.model.unpatch_model(self.model.offload_device)
         
     | 
| 300 | 
         
            +
                        self.model_unload()
         
     | 
| 301 | 
         
            +
                        raise e
         
     | 
| 302 | 
         
            +
             
     | 
| 303 | 
         
            +
                    if lowvram_model_memory > 0:
         
     | 
| 304 | 
         
            +
                        print("loading in lowvram mode", lowvram_model_memory/(1024 * 1024))
         
     | 
| 305 | 
         
            +
                        mem_counter = 0
         
     | 
| 306 | 
         
            +
                        for m in self.real_model.modules():
         
     | 
| 307 | 
         
            +
                            if hasattr(m, "comfy_cast_weights"):
         
     | 
| 308 | 
         
            +
                                m.prev_comfy_cast_weights = m.comfy_cast_weights
         
     | 
| 309 | 
         
            +
                                m.comfy_cast_weights = True
         
     | 
| 310 | 
         
            +
                                module_mem = module_size(m)
         
     | 
| 311 | 
         
            +
                                if mem_counter + module_mem < lowvram_model_memory:
         
     | 
| 312 | 
         
            +
                                    m.to(self.device)
         
     | 
| 313 | 
         
            +
                                    mem_counter += module_mem
         
     | 
| 314 | 
         
            +
                            elif hasattr(m, "weight"): #only modules with comfy_cast_weights can be set to lowvram mode
         
     | 
| 315 | 
         
            +
                                m.to(self.device)
         
     | 
| 316 | 
         
            +
                                mem_counter += module_size(m)
         
     | 
| 317 | 
         
            +
                                print("lowvram: loaded module regularly", m)
         
     | 
| 318 | 
         
            +
             
     | 
| 319 | 
         
            +
                        self.model_accelerated = True
         
     | 
| 320 | 
         
            +
             
     | 
| 321 | 
         
            +
                    if is_intel_xpu() and not args.disable_ipex_optimize:
         
     | 
| 322 | 
         
            +
                        self.real_model = torch.xpu.optimize(self.real_model.eval(), inplace=True, auto_kernel_selection=True, graph_mode=True)
         
     | 
| 323 | 
         
            +
             
     | 
| 324 | 
         
            +
                    return self.real_model
         
     | 
| 325 | 
         
            +
             
     | 
| 326 | 
         
            +
                def model_unload(self):
         
     | 
| 327 | 
         
            +
                    if self.model_accelerated:
         
     | 
| 328 | 
         
            +
                        for m in self.real_model.modules():
         
     | 
| 329 | 
         
            +
                            if hasattr(m, "prev_comfy_cast_weights"):
         
     | 
| 330 | 
         
            +
                                m.comfy_cast_weights = m.prev_comfy_cast_weights
         
     | 
| 331 | 
         
            +
                                del m.prev_comfy_cast_weights
         
     | 
| 332 | 
         
            +
             
     | 
| 333 | 
         
            +
                        self.model_accelerated = False
         
     | 
| 334 | 
         
            +
             
     | 
| 335 | 
         
            +
                    self.model.unpatch_model(self.model.offload_device)
         
     | 
| 336 | 
         
            +
                    self.model.model_patches_to(self.model.offload_device)
         
     | 
| 337 | 
         
            +
             
     | 
| 338 | 
         
            +
                def __eq__(self, other):
         
     | 
| 339 | 
         
            +
                    return self.model is other.model
         
     | 
| 340 | 
         
            +
             
     | 
| 341 | 
         
            +
            def minimum_inference_memory():
         
     | 
| 342 | 
         
            +
                return (1024 * 1024 * 1024)
         
     | 
| 343 | 
         
            +
             
     | 
| 344 | 
         
            +
            def unload_model_clones(model):
         
     | 
| 345 | 
         
            +
                to_unload = []
         
     | 
| 346 | 
         
            +
                for i in range(len(current_loaded_models)):
         
     | 
| 347 | 
         
            +
                    if model.is_clone(current_loaded_models[i].model):
         
     | 
| 348 | 
         
            +
                        to_unload = [i] + to_unload
         
     | 
| 349 | 
         
            +
             
     | 
| 350 | 
         
            +
                for i in to_unload:
         
     | 
| 351 | 
         
            +
                    print("unload clone", i)
         
     | 
| 352 | 
         
            +
                    current_loaded_models.pop(i).model_unload()
         
     | 
| 353 | 
         
            +
             
     | 
| 354 | 
         
            +
            def free_memory(memory_required, device, keep_loaded=[]):
         
     | 
| 355 | 
         
            +
                unloaded_model = False
         
     | 
| 356 | 
         
            +
                for i in range(len(current_loaded_models) -1, -1, -1):
         
     | 
| 357 | 
         
            +
                    if not DISABLE_SMART_MEMORY:
         
     | 
| 358 | 
         
            +
                        if get_free_memory(device) > memory_required:
         
     | 
| 359 | 
         
            +
                            break
         
     | 
| 360 | 
         
            +
                    shift_model = current_loaded_models[i]
         
     | 
| 361 | 
         
            +
                    if shift_model.device == device:
         
     | 
| 362 | 
         
            +
                        if shift_model not in keep_loaded:
         
     | 
| 363 | 
         
            +
                            m = current_loaded_models.pop(i)
         
     | 
| 364 | 
         
            +
                            m.model_unload()
         
     | 
| 365 | 
         
            +
                            del m
         
     | 
| 366 | 
         
            +
                            unloaded_model = True
         
     | 
| 367 | 
         
            +
             
     | 
| 368 | 
         
            +
                if unloaded_model:
         
     | 
| 369 | 
         
            +
                    soft_empty_cache()
         
     | 
| 370 | 
         
            +
                else:
         
     | 
| 371 | 
         
            +
                    if vram_state != VRAMState.HIGH_VRAM:
         
     | 
| 372 | 
         
            +
                        mem_free_total, mem_free_torch = get_free_memory(device, torch_free_too=True)
         
     | 
| 373 | 
         
            +
                        if mem_free_torch > mem_free_total * 0.25:
         
     | 
| 374 | 
         
            +
                            soft_empty_cache()
         
     | 
| 375 | 
         
            +
             
     | 
| 376 | 
         
            +
            def load_models_gpu(models, memory_required=0):
         
     | 
| 377 | 
         
            +
                global vram_state
         
     | 
| 378 | 
         
            +
             
     | 
| 379 | 
         
            +
                inference_memory = minimum_inference_memory()
         
     | 
| 380 | 
         
            +
                extra_mem = max(inference_memory, memory_required)
         
     | 
| 381 | 
         
            +
             
     | 
| 382 | 
         
            +
                models_to_load = []
         
     | 
| 383 | 
         
            +
                models_already_loaded = []
         
     | 
| 384 | 
         
            +
                for x in models:
         
     | 
| 385 | 
         
            +
                    loaded_model = LoadedModel(x)
         
     | 
| 386 | 
         
            +
             
     | 
| 387 | 
         
            +
                    if loaded_model in current_loaded_models:
         
     | 
| 388 | 
         
            +
                        index = current_loaded_models.index(loaded_model)
         
     | 
| 389 | 
         
            +
                        current_loaded_models.insert(0, current_loaded_models.pop(index))
         
     | 
| 390 | 
         
            +
                        models_already_loaded.append(loaded_model)
         
     | 
| 391 | 
         
            +
                    else:
         
     | 
| 392 | 
         
            +
                        if hasattr(x, "model"):
         
     | 
| 393 | 
         
            +
                            print(f"Requested to load {x.model.__class__.__name__}")
         
     | 
| 394 | 
         
            +
                        models_to_load.append(loaded_model)
         
     | 
| 395 | 
         
            +
             
     | 
| 396 | 
         
            +
                if len(models_to_load) == 0:
         
     | 
| 397 | 
         
            +
                    devs = set(map(lambda a: a.device, models_already_loaded))
         
     | 
| 398 | 
         
            +
                    for d in devs:
         
     | 
| 399 | 
         
            +
                        if d != torch.device("cpu"):
         
     | 
| 400 | 
         
            +
                            free_memory(extra_mem, d, models_already_loaded)
         
     | 
| 401 | 
         
            +
                    return
         
     | 
| 402 | 
         
            +
             
     | 
| 403 | 
         
            +
                print(f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}")
         
     | 
| 404 | 
         
            +
             
     | 
| 405 | 
         
            +
                total_memory_required = {}
         
     | 
| 406 | 
         
            +
                for loaded_model in models_to_load:
         
     | 
| 407 | 
         
            +
                    unload_model_clones(loaded_model.model)
         
     | 
| 408 | 
         
            +
                    total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
         
     | 
| 409 | 
         
            +
             
     | 
| 410 | 
         
            +
                for device in total_memory_required:
         
     | 
| 411 | 
         
            +
                    if device != torch.device("cpu"):
         
     | 
| 412 | 
         
            +
                        free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded)
         
     | 
| 413 | 
         
            +
             
     | 
| 414 | 
         
            +
                for loaded_model in models_to_load:
         
     | 
| 415 | 
         
            +
                    model = loaded_model.model
         
     | 
| 416 | 
         
            +
                    torch_dev = model.load_device
         
     | 
| 417 | 
         
            +
                    if is_device_cpu(torch_dev):
         
     | 
| 418 | 
         
            +
                        vram_set_state = VRAMState.DISABLED
         
     | 
| 419 | 
         
            +
                    else:
         
     | 
| 420 | 
         
            +
                        vram_set_state = vram_state
         
     | 
| 421 | 
         
            +
                    lowvram_model_memory = 0
         
     | 
| 422 | 
         
            +
                    if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
         
     | 
| 423 | 
         
            +
                        model_size = loaded_model.model_memory_required(torch_dev)
         
     | 
| 424 | 
         
            +
                        current_free_mem = get_free_memory(torch_dev)
         
     | 
| 425 | 
         
            +
                        lowvram_model_memory = int(max(64 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 ))
         
     | 
| 426 | 
         
            +
                        if model_size > (current_free_mem - inference_memory): #only switch to lowvram if really necessary
         
     | 
| 427 | 
         
            +
                            vram_set_state = VRAMState.LOW_VRAM
         
     | 
| 428 | 
         
            +
                        else:
         
     | 
| 429 | 
         
            +
                            lowvram_model_memory = 0
         
     | 
| 430 | 
         
            +
             
     | 
| 431 | 
         
            +
                    if vram_set_state == VRAMState.NO_VRAM:
         
     | 
| 432 | 
         
            +
                        lowvram_model_memory = 64 * 1024 * 1024
         
     | 
| 433 | 
         
            +
             
     | 
| 434 | 
         
            +
                    cur_loaded_model = loaded_model.model_load(lowvram_model_memory)
         
     | 
| 435 | 
         
            +
                    current_loaded_models.insert(0, loaded_model)
         
     | 
| 436 | 
         
            +
                return
         
     | 
| 437 | 
         
            +
             
     | 
| 438 | 
         
            +
             
     | 
| 439 | 
         
            +
            def load_model_gpu(model):
         
     | 
| 440 | 
         
            +
                return load_models_gpu([model])
         
     | 
| 441 | 
         
            +
             
     | 
| 442 | 
         
            +
            def cleanup_models():
         
     | 
| 443 | 
         
            +
                to_delete = []
         
     | 
| 444 | 
         
            +
                for i in range(len(current_loaded_models)):
         
     | 
| 445 | 
         
            +
                    if sys.getrefcount(current_loaded_models[i].model) <= 2:
         
     | 
| 446 | 
         
            +
                        to_delete = [i] + to_delete
         
     | 
| 447 | 
         
            +
             
     | 
| 448 | 
         
            +
                for i in to_delete:
         
     | 
| 449 | 
         
            +
                    x = current_loaded_models.pop(i)
         
     | 
| 450 | 
         
            +
                    x.model_unload()
         
     | 
| 451 | 
         
            +
                    del x
         
     | 
| 452 | 
         
            +
             
     | 
| 453 | 
         
            +
            def dtype_size(dtype):
         
     | 
| 454 | 
         
            +
                dtype_size = 4
         
     | 
| 455 | 
         
            +
                if dtype == torch.float16 or dtype == torch.bfloat16:
         
     | 
| 456 | 
         
            +
                    dtype_size = 2
         
     | 
| 457 | 
         
            +
                elif dtype == torch.float32:
         
     | 
| 458 | 
         
            +
                    dtype_size = 4
         
     | 
| 459 | 
         
            +
                else:
         
     | 
| 460 | 
         
            +
                    try:
         
     | 
| 461 | 
         
            +
                        dtype_size = dtype.itemsize
         
     | 
| 462 | 
         
            +
                    except: #Old pytorch doesn't have .itemsize
         
     | 
| 463 | 
         
            +
                        pass
         
     | 
| 464 | 
         
            +
                return dtype_size
         
     | 
| 465 | 
         
            +
             
     | 
| 466 | 
         
            +
            def unet_offload_device():
         
     | 
| 467 | 
         
            +
                if vram_state == VRAMState.HIGH_VRAM:
         
     | 
| 468 | 
         
            +
                    return get_torch_device()
         
     | 
| 469 | 
         
            +
                else:
         
     | 
| 470 | 
         
            +
                    return torch.device("cpu")
         
     | 
| 471 | 
         
            +
             
     | 
| 472 | 
         
            +
            def unet_inital_load_device(parameters, dtype):
         
     | 
| 473 | 
         
            +
                torch_dev = get_torch_device()
         
     | 
| 474 | 
         
            +
                if vram_state == VRAMState.HIGH_VRAM:
         
     | 
| 475 | 
         
            +
                    return torch_dev
         
     | 
| 476 | 
         
            +
             
     | 
| 477 | 
         
            +
                cpu_dev = torch.device("cpu")
         
     | 
| 478 | 
         
            +
                if DISABLE_SMART_MEMORY:
         
     | 
| 479 | 
         
            +
                    return cpu_dev
         
     | 
| 480 | 
         
            +
             
     | 
| 481 | 
         
            +
                model_size = dtype_size(dtype) * parameters
         
     | 
| 482 | 
         
            +
             
     | 
| 483 | 
         
            +
                mem_dev = get_free_memory(torch_dev)
         
     | 
| 484 | 
         
            +
                mem_cpu = get_free_memory(cpu_dev)
         
     | 
| 485 | 
         
            +
                if mem_dev > mem_cpu and model_size < mem_dev:
         
     | 
| 486 | 
         
            +
                    return torch_dev
         
     | 
| 487 | 
         
            +
                else:
         
     | 
| 488 | 
         
            +
                    return cpu_dev
         
     | 
| 489 | 
         
            +
             
     | 
| 490 | 
         
            +
            def unet_dtype(device=None, model_params=0):
         
     | 
| 491 | 
         
            +
                if args.bf16_unet:
         
     | 
| 492 | 
         
            +
                    return torch.bfloat16
         
     | 
| 493 | 
         
            +
                if args.fp16_unet:
         
     | 
| 494 | 
         
            +
                    return torch.float16
         
     | 
| 495 | 
         
            +
                if args.fp8_e4m3fn_unet:
         
     | 
| 496 | 
         
            +
                    return torch.float8_e4m3fn
         
     | 
| 497 | 
         
            +
                if args.fp8_e5m2_unet:
         
     | 
| 498 | 
         
            +
                    return torch.float8_e5m2
         
     | 
| 499 | 
         
            +
                if should_use_fp16(device=device, model_params=model_params, manual_cast=True):
         
     | 
| 500 | 
         
            +
                    return torch.float16
         
     | 
| 501 | 
         
            +
                return torch.float32
         
     | 
| 502 | 
         
            +
             
     | 
| 503 | 
         
            +
            # None means no manual cast
         
     | 
| 504 | 
         
            +
            def unet_manual_cast(weight_dtype, inference_device):
         
     | 
| 505 | 
         
            +
                if weight_dtype == torch.float32:
         
     | 
| 506 | 
         
            +
                    return None
         
     | 
| 507 | 
         
            +
             
     | 
| 508 | 
         
            +
                fp16_supported = comfy.model_management.should_use_fp16(inference_device, prioritize_performance=False)
         
     | 
| 509 | 
         
            +
                if fp16_supported and weight_dtype == torch.float16:
         
     | 
| 510 | 
         
            +
                    return None
         
     | 
| 511 | 
         
            +
             
     | 
| 512 | 
         
            +
                if fp16_supported:
         
     | 
| 513 | 
         
            +
                    return torch.float16
         
     | 
| 514 | 
         
            +
                else:
         
     | 
| 515 | 
         
            +
                    return torch.float32
         
     | 
| 516 | 
         
            +
             
     | 
| 517 | 
         
            +
            def text_encoder_offload_device():
         
     | 
| 518 | 
         
            +
                if args.gpu_only:
         
     | 
| 519 | 
         
            +
                    return get_torch_device()
         
     | 
| 520 | 
         
            +
                else:
         
     | 
| 521 | 
         
            +
                    return torch.device("cpu")
         
     | 
| 522 | 
         
            +
             
     | 
| 523 | 
         
            +
            def text_encoder_device():
         
     | 
| 524 | 
         
            +
                if args.gpu_only:
         
     | 
| 525 | 
         
            +
                    return get_torch_device()
         
     | 
| 526 | 
         
            +
                elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM:
         
     | 
| 527 | 
         
            +
                    if is_intel_xpu():
         
     | 
| 528 | 
         
            +
                        return torch.device("cpu")
         
     | 
| 529 | 
         
            +
                    if should_use_fp16(prioritize_performance=False):
         
     | 
| 530 | 
         
            +
                        return get_torch_device()
         
     | 
| 531 | 
         
            +
                    else:
         
     | 
| 532 | 
         
            +
                        return torch.device("cpu")
         
     | 
| 533 | 
         
            +
                else:
         
     | 
| 534 | 
         
            +
                    return torch.device("cpu")
         
     | 
| 535 | 
         
            +
             
     | 
| 536 | 
         
            +
            def text_encoder_dtype(device=None):
         
     | 
| 537 | 
         
            +
                if args.fp8_e4m3fn_text_enc:
         
     | 
| 538 | 
         
            +
                    return torch.float8_e4m3fn
         
     | 
| 539 | 
         
            +
                elif args.fp8_e5m2_text_enc:
         
     | 
| 540 | 
         
            +
                    return torch.float8_e5m2
         
     | 
| 541 | 
         
            +
                elif args.fp16_text_enc:
         
     | 
| 542 | 
         
            +
                    return torch.float16
         
     | 
| 543 | 
         
            +
                elif args.fp32_text_enc:
         
     | 
| 544 | 
         
            +
                    return torch.float32
         
     | 
| 545 | 
         
            +
             
     | 
| 546 | 
         
            +
                if is_device_cpu(device):
         
     | 
| 547 | 
         
            +
                    return torch.float16
         
     | 
| 548 | 
         
            +
             
     | 
| 549 | 
         
            +
                return torch.float16
         
     | 
| 550 | 
         
            +
             
     | 
| 551 | 
         
            +
             
     | 
| 552 | 
         
            +
            def intermediate_device():
         
     | 
| 553 | 
         
            +
                if args.gpu_only:
         
     | 
| 554 | 
         
            +
                    return get_torch_device()
         
     | 
| 555 | 
         
            +
                else:
         
     | 
| 556 | 
         
            +
                    return torch.device("cpu")
         
     | 
| 557 | 
         
            +
             
     | 
| 558 | 
         
            +
            def vae_device():
         
     | 
| 559 | 
         
            +
                if args.cpu_vae:
         
     | 
| 560 | 
         
            +
                    return torch.device("cpu")
         
     | 
| 561 | 
         
            +
                return get_torch_device()
         
     | 
| 562 | 
         
            +
             
     | 
| 563 | 
         
            +
            def vae_offload_device():
         
     | 
| 564 | 
         
            +
                if args.gpu_only:
         
     | 
| 565 | 
         
            +
                    return get_torch_device()
         
     | 
| 566 | 
         
            +
                else:
         
     | 
| 567 | 
         
            +
                    return torch.device("cpu")
         
     | 
| 568 | 
         
            +
             
     | 
| 569 | 
         
            +
            def vae_dtype():
         
     | 
| 570 | 
         
            +
                global VAE_DTYPE
         
     | 
| 571 | 
         
            +
                return VAE_DTYPE
         
     | 
| 572 | 
         
            +
             
     | 
| 573 | 
         
            +
            def get_autocast_device(dev):
         
     | 
| 574 | 
         
            +
                if hasattr(dev, 'type'):
         
     | 
| 575 | 
         
            +
                    return dev.type
         
     | 
| 576 | 
         
            +
                return "cuda"
         
     | 
| 577 | 
         
            +
             
     | 
| 578 | 
         
            +
            def supports_dtype(device, dtype): #TODO
         
     | 
| 579 | 
         
            +
                if dtype == torch.float32:
         
     | 
| 580 | 
         
            +
                    return True
         
     | 
| 581 | 
         
            +
                if is_device_cpu(device):
         
     | 
| 582 | 
         
            +
                    return False
         
     | 
| 583 | 
         
            +
                if dtype == torch.float16:
         
     | 
| 584 | 
         
            +
                    return True
         
     | 
| 585 | 
         
            +
                if dtype == torch.bfloat16:
         
     | 
| 586 | 
         
            +
                    return True
         
     | 
| 587 | 
         
            +
                return False
         
     | 
| 588 | 
         
            +
             
     | 
| 589 | 
         
            +
            def device_supports_non_blocking(device):
         
     | 
| 590 | 
         
            +
                if is_device_mps(device):
         
     | 
| 591 | 
         
            +
                    return False #pytorch bug? mps doesn't support non blocking
         
     | 
| 592 | 
         
            +
                return True
         
     | 
| 593 | 
         
            +
             
     | 
| 594 | 
         
            +
            def cast_to_device(tensor, device, dtype, copy=False):
         
     | 
| 595 | 
         
            +
                device_supports_cast = False
         
     | 
| 596 | 
         
            +
                if tensor.dtype == torch.float32 or tensor.dtype == torch.float16:
         
     | 
| 597 | 
         
            +
                    device_supports_cast = True
         
     | 
| 598 | 
         
            +
                elif tensor.dtype == torch.bfloat16:
         
     | 
| 599 | 
         
            +
                    if hasattr(device, 'type') and device.type.startswith("cuda"):
         
     | 
| 600 | 
         
            +
                        device_supports_cast = True
         
     | 
| 601 | 
         
            +
                    elif is_intel_xpu():
         
     | 
| 602 | 
         
            +
                        device_supports_cast = True
         
     | 
| 603 | 
         
            +
             
     | 
| 604 | 
         
            +
                non_blocking = device_supports_non_blocking(device)
         
     | 
| 605 | 
         
            +
             
     | 
| 606 | 
         
            +
                if device_supports_cast:
         
     | 
| 607 | 
         
            +
                    if copy:
         
     | 
| 608 | 
         
            +
                        if tensor.device == device:
         
     | 
| 609 | 
         
            +
                            return tensor.to(dtype, copy=copy, non_blocking=non_blocking)
         
     | 
| 610 | 
         
            +
                        return tensor.to(device, copy=copy, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking)
         
     | 
| 611 | 
         
            +
                    else:
         
     | 
| 612 | 
         
            +
                        return tensor.to(device, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking)
         
     | 
| 613 | 
         
            +
                else:
         
     | 
| 614 | 
         
            +
                    return tensor.to(device, dtype, copy=copy, non_blocking=non_blocking)
         
     | 
| 615 | 
         
            +
             
     | 
| 616 | 
         
            +
            def xformers_enabled():
         
     | 
| 617 | 
         
            +
                global directml_enabled
         
     | 
| 618 | 
         
            +
                global cpu_state
         
     | 
| 619 | 
         
            +
                if cpu_state != CPUState.GPU:
         
     | 
| 620 | 
         
            +
                    return False
         
     | 
| 621 | 
         
            +
                if is_intel_xpu():
         
     | 
| 622 | 
         
            +
                    return False
         
     | 
| 623 | 
         
            +
                if directml_enabled:
         
     | 
| 624 | 
         
            +
                    return False
         
     | 
| 625 | 
         
            +
                return XFORMERS_IS_AVAILABLE
         
     | 
| 626 | 
         
            +
             
     | 
| 627 | 
         
            +
             
     | 
| 628 | 
         
            +
            def xformers_enabled_vae():
         
     | 
| 629 | 
         
            +
                enabled = xformers_enabled()
         
     | 
| 630 | 
         
            +
                if not enabled:
         
     | 
| 631 | 
         
            +
                    return False
         
     | 
| 632 | 
         
            +
             
     | 
| 633 | 
         
            +
                return XFORMERS_ENABLED_VAE
         
     | 
| 634 | 
         
            +
             
     | 
| 635 | 
         
            +
            def pytorch_attention_enabled():
         
     | 
| 636 | 
         
            +
                global ENABLE_PYTORCH_ATTENTION
         
     | 
| 637 | 
         
            +
                return ENABLE_PYTORCH_ATTENTION
         
     | 
| 638 | 
         
            +
             
     | 
| 639 | 
         
            +
            def pytorch_attention_flash_attention():
         
     | 
| 640 | 
         
            +
                global ENABLE_PYTORCH_ATTENTION
         
     | 
| 641 | 
         
            +
                if ENABLE_PYTORCH_ATTENTION:
         
     | 
| 642 | 
         
            +
                    #TODO: more reliable way of checking for flash attention?
         
     | 
| 643 | 
         
            +
                    if is_nvidia(): #pytorch flash attention only works on Nvidia
         
     | 
| 644 | 
         
            +
                        return True
         
     | 
| 645 | 
         
            +
                return False
         
     | 
| 646 | 
         
            +
             
     | 
| 647 | 
         
            +
            def get_free_memory(dev=None, torch_free_too=False):
         
     | 
| 648 | 
         
            +
                global directml_enabled
         
     | 
| 649 | 
         
            +
                if dev is None:
         
     | 
| 650 | 
         
            +
                    dev = get_torch_device()
         
     | 
| 651 | 
         
            +
             
     | 
| 652 | 
         
            +
                if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
         
     | 
| 653 | 
         
            +
                    mem_free_total = psutil.virtual_memory().available
         
     | 
| 654 | 
         
            +
                    mem_free_torch = mem_free_total
         
     | 
| 655 | 
         
            +
                else:
         
     | 
| 656 | 
         
            +
                    if directml_enabled:
         
     | 
| 657 | 
         
            +
                        mem_free_total = 1024 * 1024 * 1024 #TODO
         
     | 
| 658 | 
         
            +
                        mem_free_torch = mem_free_total
         
     | 
| 659 | 
         
            +
                    elif is_intel_xpu():
         
     | 
| 660 | 
         
            +
                        stats = torch.xpu.memory_stats(dev)
         
     | 
| 661 | 
         
            +
                        mem_active = stats['active_bytes.all.current']
         
     | 
| 662 | 
         
            +
                        mem_allocated = stats['allocated_bytes.all.current']
         
     | 
| 663 | 
         
            +
                        mem_reserved = stats['reserved_bytes.all.current']
         
     | 
| 664 | 
         
            +
                        mem_free_torch = mem_reserved - mem_active
         
     | 
| 665 | 
         
            +
                        mem_free_total = torch.xpu.get_device_properties(dev).total_memory - mem_allocated
         
     | 
| 666 | 
         
            +
                    else:
         
     | 
| 667 | 
         
            +
                        stats = torch.cuda.memory_stats(dev)
         
     | 
| 668 | 
         
            +
                        mem_active = stats['active_bytes.all.current']
         
     | 
| 669 | 
         
            +
                        mem_reserved = stats['reserved_bytes.all.current']
         
     | 
| 670 | 
         
            +
                        mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
         
     | 
| 671 | 
         
            +
                        mem_free_torch = mem_reserved - mem_active
         
     | 
| 672 | 
         
            +
                        mem_free_total = mem_free_cuda + mem_free_torch
         
     | 
| 673 | 
         
            +
             
     | 
| 674 | 
         
            +
                if torch_free_too:
         
     | 
| 675 | 
         
            +
                    return (mem_free_total, mem_free_torch)
         
     | 
| 676 | 
         
            +
                else:
         
     | 
| 677 | 
         
            +
                    return mem_free_total
         
     | 
| 678 | 
         
            +
             
     | 
| 679 | 
         
            +
            def cpu_mode():
         
     | 
| 680 | 
         
            +
                global cpu_state
         
     | 
| 681 | 
         
            +
                return cpu_state == CPUState.CPU
         
     | 
| 682 | 
         
            +
             
     | 
| 683 | 
         
            +
            def mps_mode():
         
     | 
| 684 | 
         
            +
                global cpu_state
         
     | 
| 685 | 
         
            +
                return cpu_state == CPUState.MPS
         
     | 
| 686 | 
         
            +
             
     | 
| 687 | 
         
            +
            def is_device_cpu(device):
         
     | 
| 688 | 
         
            +
                if hasattr(device, 'type'):
         
     | 
| 689 | 
         
            +
                    if (device.type == 'cpu'):
         
     | 
| 690 | 
         
            +
                        return True
         
     | 
| 691 | 
         
            +
                return False
         
     | 
| 692 | 
         
            +
             
     | 
| 693 | 
         
            +
            def is_device_mps(device):
         
     | 
| 694 | 
         
            +
                if hasattr(device, 'type'):
         
     | 
| 695 | 
         
            +
                    if (device.type == 'mps'):
         
     | 
| 696 | 
         
            +
                        return True
         
     | 
| 697 | 
         
            +
                return False
         
     | 
| 698 | 
         
            +
             
     | 
| 699 | 
         
            +
            def should_use_fp16(device=None, model_params=0, prioritize_performance=True, manual_cast=False):
         
     | 
| 700 | 
         
            +
                global directml_enabled
         
     | 
| 701 | 
         
            +
             
     | 
| 702 | 
         
            +
                if device is not None:
         
     | 
| 703 | 
         
            +
                    if is_device_cpu(device):
         
     | 
| 704 | 
         
            +
                        return False
         
     | 
| 705 | 
         
            +
             
     | 
| 706 | 
         
            +
                if FORCE_FP16:
         
     | 
| 707 | 
         
            +
                    return True
         
     | 
| 708 | 
         
            +
             
     | 
| 709 | 
         
            +
                if device is not None: #TODO
         
     | 
| 710 | 
         
            +
                    if is_device_mps(device):
         
     | 
| 711 | 
         
            +
                        return False
         
     | 
| 712 | 
         
            +
             
     | 
| 713 | 
         
            +
                if FORCE_FP32:
         
     | 
| 714 | 
         
            +
                    return False
         
     | 
| 715 | 
         
            +
             
     | 
| 716 | 
         
            +
                if directml_enabled:
         
     | 
| 717 | 
         
            +
                    return False
         
     | 
| 718 | 
         
            +
             
     | 
| 719 | 
         
            +
                if cpu_mode() or mps_mode():
         
     | 
| 720 | 
         
            +
                    return False #TODO ?
         
     | 
| 721 | 
         
            +
             
     | 
| 722 | 
         
            +
                if is_intel_xpu():
         
     | 
| 723 | 
         
            +
                    return True
         
     | 
| 724 | 
         
            +
             
     | 
| 725 | 
         
            +
                if torch.version.hip:
         
     | 
| 726 | 
         
            +
                    return True
         
     | 
| 727 | 
         
            +
             
     | 
| 728 | 
         
            +
                props = torch.cuda.get_device_properties("cuda")
         
     | 
| 729 | 
         
            +
                if props.major >= 8:
         
     | 
| 730 | 
         
            +
                    return True
         
     | 
| 731 | 
         
            +
             
     | 
| 732 | 
         
            +
                if props.major < 6:
         
     | 
| 733 | 
         
            +
                    return False
         
     | 
| 734 | 
         
            +
             
     | 
| 735 | 
         
            +
                fp16_works = False
         
     | 
| 736 | 
         
            +
                #FP16 is confirmed working on a 1080 (GP104) but it's a bit slower than FP32 so it should only be enabled
         
     | 
| 737 | 
         
            +
                #when the model doesn't actually fit on the card
         
     | 
| 738 | 
         
            +
                #TODO: actually test if GP106 and others have the same type of behavior
         
     | 
| 739 | 
         
            +
                nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050"]
         
     | 
| 740 | 
         
            +
                for x in nvidia_10_series:
         
     | 
| 741 | 
         
            +
                    if x in props.name.lower():
         
     | 
| 742 | 
         
            +
                        fp16_works = True
         
     | 
| 743 | 
         
            +
             
     | 
| 744 | 
         
            +
                if fp16_works or manual_cast:
         
     | 
| 745 | 
         
            +
                    free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
         
     | 
| 746 | 
         
            +
                    if (not prioritize_performance) or model_params * 4 > free_model_memory:
         
     | 
| 747 | 
         
            +
                        return True
         
     | 
| 748 | 
         
            +
             
     | 
| 749 | 
         
            +
                if props.major < 7:
         
     | 
| 750 | 
         
            +
                    return False
         
     | 
| 751 | 
         
            +
             
     | 
| 752 | 
         
            +
                #FP16 is just broken on these cards
         
     | 
| 753 | 
         
            +
                nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX", "T2000", "T1000", "T1200"]
         
     | 
| 754 | 
         
            +
                for x in nvidia_16_series:
         
     | 
| 755 | 
         
            +
                    if x in props.name:
         
     | 
| 756 | 
         
            +
                        return False
         
     | 
| 757 | 
         
            +
             
     | 
| 758 | 
         
            +
                return True
         
     | 
| 759 | 
         
            +
             
     | 
| 760 | 
         
            +
            def soft_empty_cache(force=False):
         
     | 
| 761 | 
         
            +
                global cpu_state
         
     | 
| 762 | 
         
            +
                if cpu_state == CPUState.MPS:
         
     | 
| 763 | 
         
            +
                    torch.mps.empty_cache()
         
     | 
| 764 | 
         
            +
                elif is_intel_xpu():
         
     | 
| 765 | 
         
            +
                    torch.xpu.empty_cache()
         
     | 
| 766 | 
         
            +
                elif torch.cuda.is_available():
         
     | 
| 767 | 
         
            +
                    if force or is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda
         
     | 
| 768 | 
         
            +
                        torch.cuda.empty_cache()
         
     | 
| 769 | 
         
            +
                        torch.cuda.ipc_collect()
         
     | 
| 770 | 
         
            +
             
     | 
| 771 | 
         
            +
            def unload_all_models():
         
     | 
| 772 | 
         
            +
                free_memory(1e30, get_torch_device())
         
     | 
| 773 | 
         
            +
             
     | 
| 774 | 
         
            +
             
     | 
| 775 | 
         
            +
            def resolve_lowvram_weight(weight, model, key): #TODO: remove
         
     | 
| 776 | 
         
            +
                return weight
         
     | 
| 777 | 
         
            +
             
     | 
| 778 | 
         
            +
            #TODO: might be cleaner to put this somewhere else
         
     | 
| 779 | 
         
            +
            import threading
         
     | 
| 780 | 
         
            +
             
     | 
| 781 | 
         
            +
            class InterruptProcessingException(Exception):
         
     | 
| 782 | 
         
            +
                pass
         
     | 
| 783 | 
         
            +
             
     | 
| 784 | 
         
            +
            interrupt_processing_mutex = threading.RLock()
         
     | 
| 785 | 
         
            +
             
     | 
| 786 | 
         
            +
            interrupt_processing = False
         
     | 
| 787 | 
         
            +
            def interrupt_current_processing(value=True):
         
     | 
| 788 | 
         
            +
                global interrupt_processing
         
     | 
| 789 | 
         
            +
                global interrupt_processing_mutex
         
     | 
| 790 | 
         
            +
                with interrupt_processing_mutex:
         
     | 
| 791 | 
         
            +
                    interrupt_processing = value
         
     | 
| 792 | 
         
            +
             
     | 
| 793 | 
         
            +
            def processing_interrupted():
         
     | 
| 794 | 
         
            +
                global interrupt_processing
         
     | 
| 795 | 
         
            +
                global interrupt_processing_mutex
         
     | 
| 796 | 
         
            +
                with interrupt_processing_mutex:
         
     | 
| 797 | 
         
            +
                    return interrupt_processing
         
     | 
| 798 | 
         
            +
             
     | 
| 799 | 
         
            +
            def throw_exception_if_processing_interrupted():
         
     | 
| 800 | 
         
            +
                global interrupt_processing
         
     | 
| 801 | 
         
            +
                global interrupt_processing_mutex
         
     | 
| 802 | 
         
            +
                with interrupt_processing_mutex:
         
     | 
| 803 | 
         
            +
                    if interrupt_processing:
         
     | 
| 804 | 
         
            +
                        interrupt_processing = False
         
     | 
| 805 | 
         
            +
                        raise InterruptProcessingException()
         
     | 
    	
        comfy/model_patcher.py
    ADDED
    
    | 
         @@ -0,0 +1,357 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            import copy
         
     | 
| 3 | 
         
            +
            import inspect
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            import comfy.utils
         
     | 
| 6 | 
         
            +
            import comfy.model_management
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            class ModelPatcher:
         
     | 
| 9 | 
         
            +
                def __init__(self, model, load_device, offload_device, size=0, current_device=None, weight_inplace_update=False):
         
     | 
| 10 | 
         
            +
                    self.size = size
         
     | 
| 11 | 
         
            +
                    self.model = model
         
     | 
| 12 | 
         
            +
                    self.patches = {}
         
     | 
| 13 | 
         
            +
                    self.backup = {}
         
     | 
| 14 | 
         
            +
                    self.object_patches = {}
         
     | 
| 15 | 
         
            +
                    self.object_patches_backup = {}
         
     | 
| 16 | 
         
            +
                    self.model_options = {"transformer_options":{}}
         
     | 
| 17 | 
         
            +
                    self.model_size()
         
     | 
| 18 | 
         
            +
                    self.load_device = load_device
         
     | 
| 19 | 
         
            +
                    self.offload_device = offload_device
         
     | 
| 20 | 
         
            +
                    if current_device is None:
         
     | 
| 21 | 
         
            +
                        self.current_device = self.offload_device
         
     | 
| 22 | 
         
            +
                    else:
         
     | 
| 23 | 
         
            +
                        self.current_device = current_device
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
                    self.weight_inplace_update = weight_inplace_update
         
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
                def model_size(self):
         
     | 
| 28 | 
         
            +
                    if self.size > 0:
         
     | 
| 29 | 
         
            +
                        return self.size
         
     | 
| 30 | 
         
            +
                    model_sd = self.model.state_dict()
         
     | 
| 31 | 
         
            +
                    self.size = comfy.model_management.module_size(self.model)
         
     | 
| 32 | 
         
            +
                    self.model_keys = set(model_sd.keys())
         
     | 
| 33 | 
         
            +
                    return self.size
         
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
                def clone(self):
         
     | 
| 36 | 
         
            +
                    n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size, self.current_device, weight_inplace_update=self.weight_inplace_update)
         
     | 
| 37 | 
         
            +
                    n.patches = {}
         
     | 
| 38 | 
         
            +
                    for k in self.patches:
         
     | 
| 39 | 
         
            +
                        n.patches[k] = self.patches[k][:]
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
                    n.object_patches = self.object_patches.copy()
         
     | 
| 42 | 
         
            +
                    n.model_options = copy.deepcopy(self.model_options)
         
     | 
| 43 | 
         
            +
                    n.model_keys = self.model_keys
         
     | 
| 44 | 
         
            +
                    return n
         
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
                def is_clone(self, other):
         
     | 
| 47 | 
         
            +
                    if hasattr(other, 'model') and self.model is other.model:
         
     | 
| 48 | 
         
            +
                        return True
         
     | 
| 49 | 
         
            +
                    return False
         
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
                def memory_required(self, input_shape):
         
     | 
| 52 | 
         
            +
                    return self.model.memory_required(input_shape=input_shape)
         
     | 
| 53 | 
         
            +
             
     | 
| 54 | 
         
            +
                def set_model_sampler_cfg_function(self, sampler_cfg_function, disable_cfg1_optimization=False):
         
     | 
| 55 | 
         
            +
                    if len(inspect.signature(sampler_cfg_function).parameters) == 3:
         
     | 
| 56 | 
         
            +
                        self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"]) #Old way
         
     | 
| 57 | 
         
            +
                    else:
         
     | 
| 58 | 
         
            +
                        self.model_options["sampler_cfg_function"] = sampler_cfg_function
         
     | 
| 59 | 
         
            +
                    if disable_cfg1_optimization:
         
     | 
| 60 | 
         
            +
                        self.model_options["disable_cfg1_optimization"] = True
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
                def set_model_sampler_post_cfg_function(self, post_cfg_function, disable_cfg1_optimization=False):
         
     | 
| 63 | 
         
            +
                    self.model_options["sampler_post_cfg_function"] = self.model_options.get("sampler_post_cfg_function", []) + [post_cfg_function]
         
     | 
| 64 | 
         
            +
                    if disable_cfg1_optimization:
         
     | 
| 65 | 
         
            +
                        self.model_options["disable_cfg1_optimization"] = True
         
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
                def set_model_unet_function_wrapper(self, unet_wrapper_function):
         
     | 
| 68 | 
         
            +
                    self.model_options["model_function_wrapper"] = unet_wrapper_function
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
                def set_model_patch(self, patch, name):
         
     | 
| 71 | 
         
            +
                    to = self.model_options["transformer_options"]
         
     | 
| 72 | 
         
            +
                    if "patches" not in to:
         
     | 
| 73 | 
         
            +
                        to["patches"] = {}
         
     | 
| 74 | 
         
            +
                    to["patches"][name] = to["patches"].get(name, []) + [patch]
         
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
                def set_model_patch_replace(self, patch, name, block_name, number, transformer_index=None):
         
     | 
| 77 | 
         
            +
                    to = self.model_options["transformer_options"]
         
     | 
| 78 | 
         
            +
                    if "patches_replace" not in to:
         
     | 
| 79 | 
         
            +
                        to["patches_replace"] = {}
         
     | 
| 80 | 
         
            +
                    if name not in to["patches_replace"]:
         
     | 
| 81 | 
         
            +
                        to["patches_replace"][name] = {}
         
     | 
| 82 | 
         
            +
                    if transformer_index is not None:
         
     | 
| 83 | 
         
            +
                        block = (block_name, number, transformer_index)
         
     | 
| 84 | 
         
            +
                    else:
         
     | 
| 85 | 
         
            +
                        block = (block_name, number)
         
     | 
| 86 | 
         
            +
                    to["patches_replace"][name][block] = patch
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
                def set_model_attn1_patch(self, patch):
         
     | 
| 89 | 
         
            +
                    self.set_model_patch(patch, "attn1_patch")
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
                def set_model_attn2_patch(self, patch):
         
     | 
| 92 | 
         
            +
                    self.set_model_patch(patch, "attn2_patch")
         
     | 
| 93 | 
         
            +
             
     | 
| 94 | 
         
            +
                def set_model_attn1_replace(self, patch, block_name, number, transformer_index=None):
         
     | 
| 95 | 
         
            +
                    self.set_model_patch_replace(patch, "attn1", block_name, number, transformer_index)
         
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
                def set_model_attn2_replace(self, patch, block_name, number, transformer_index=None):
         
     | 
| 98 | 
         
            +
                    self.set_model_patch_replace(patch, "attn2", block_name, number, transformer_index)
         
     | 
| 99 | 
         
            +
             
     | 
| 100 | 
         
            +
                def set_model_attn1_output_patch(self, patch):
         
     | 
| 101 | 
         
            +
                    self.set_model_patch(patch, "attn1_output_patch")
         
     | 
| 102 | 
         
            +
             
     | 
| 103 | 
         
            +
                def set_model_attn2_output_patch(self, patch):
         
     | 
| 104 | 
         
            +
                    self.set_model_patch(patch, "attn2_output_patch")
         
     | 
| 105 | 
         
            +
             
     | 
| 106 | 
         
            +
                def set_model_input_block_patch(self, patch):
         
     | 
| 107 | 
         
            +
                    self.set_model_patch(patch, "input_block_patch")
         
     | 
| 108 | 
         
            +
             
     | 
| 109 | 
         
            +
                def set_model_input_block_patch_after_skip(self, patch):
         
     | 
| 110 | 
         
            +
                    self.set_model_patch(patch, "input_block_patch_after_skip")
         
     | 
| 111 | 
         
            +
             
     | 
| 112 | 
         
            +
                def set_model_output_block_patch(self, patch):
         
     | 
| 113 | 
         
            +
                    self.set_model_patch(patch, "output_block_patch")
         
     | 
| 114 | 
         
            +
             
     | 
| 115 | 
         
            +
                def add_object_patch(self, name, obj):
         
     | 
| 116 | 
         
            +
                    self.object_patches[name] = obj
         
     | 
| 117 | 
         
            +
             
     | 
| 118 | 
         
            +
                def model_patches_to(self, device):
         
     | 
| 119 | 
         
            +
                    to = self.model_options["transformer_options"]
         
     | 
| 120 | 
         
            +
                    if "patches" in to:
         
     | 
| 121 | 
         
            +
                        patches = to["patches"]
         
     | 
| 122 | 
         
            +
                        for name in patches:
         
     | 
| 123 | 
         
            +
                            patch_list = patches[name]
         
     | 
| 124 | 
         
            +
                            for i in range(len(patch_list)):
         
     | 
| 125 | 
         
            +
                                if hasattr(patch_list[i], "to"):
         
     | 
| 126 | 
         
            +
                                    patch_list[i] = patch_list[i].to(device)
         
     | 
| 127 | 
         
            +
                    if "patches_replace" in to:
         
     | 
| 128 | 
         
            +
                        patches = to["patches_replace"]
         
     | 
| 129 | 
         
            +
                        for name in patches:
         
     | 
| 130 | 
         
            +
                            patch_list = patches[name]
         
     | 
| 131 | 
         
            +
                            for k in patch_list:
         
     | 
| 132 | 
         
            +
                                if hasattr(patch_list[k], "to"):
         
     | 
| 133 | 
         
            +
                                    patch_list[k] = patch_list[k].to(device)
         
     | 
| 134 | 
         
            +
                    if "model_function_wrapper" in self.model_options:
         
     | 
| 135 | 
         
            +
                        wrap_func = self.model_options["model_function_wrapper"]
         
     | 
| 136 | 
         
            +
                        if hasattr(wrap_func, "to"):
         
     | 
| 137 | 
         
            +
                            self.model_options["model_function_wrapper"] = wrap_func.to(device)
         
     | 
| 138 | 
         
            +
             
     | 
| 139 | 
         
            +
                def model_dtype(self):
         
     | 
| 140 | 
         
            +
                    if hasattr(self.model, "get_dtype"):
         
     | 
| 141 | 
         
            +
                        return self.model.get_dtype()
         
     | 
| 142 | 
         
            +
             
     | 
| 143 | 
         
            +
                def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
         
     | 
| 144 | 
         
            +
                    p = set()
         
     | 
| 145 | 
         
            +
                    for k in patches:
         
     | 
| 146 | 
         
            +
                        if k in self.model_keys:
         
     | 
| 147 | 
         
            +
                            p.add(k)
         
     | 
| 148 | 
         
            +
                            current_patches = self.patches.get(k, [])
         
     | 
| 149 | 
         
            +
                            current_patches.append((strength_patch, patches[k], strength_model))
         
     | 
| 150 | 
         
            +
                            self.patches[k] = current_patches
         
     | 
| 151 | 
         
            +
             
     | 
| 152 | 
         
            +
                    return list(p)
         
     | 
| 153 | 
         
            +
             
     | 
| 154 | 
         
            +
                def get_key_patches(self, filter_prefix=None):
         
     | 
| 155 | 
         
            +
                    comfy.model_management.unload_model_clones(self)
         
     | 
| 156 | 
         
            +
                    model_sd = self.model_state_dict()
         
     | 
| 157 | 
         
            +
                    p = {}
         
     | 
| 158 | 
         
            +
                    for k in model_sd:
         
     | 
| 159 | 
         
            +
                        if filter_prefix is not None:
         
     | 
| 160 | 
         
            +
                            if not k.startswith(filter_prefix):
         
     | 
| 161 | 
         
            +
                                continue
         
     | 
| 162 | 
         
            +
                        if k in self.patches:
         
     | 
| 163 | 
         
            +
                            p[k] = [model_sd[k]] + self.patches[k]
         
     | 
| 164 | 
         
            +
                        else:
         
     | 
| 165 | 
         
            +
                            p[k] = (model_sd[k],)
         
     | 
| 166 | 
         
            +
                    return p
         
     | 
| 167 | 
         
            +
             
     | 
| 168 | 
         
            +
                def model_state_dict(self, filter_prefix=None):
         
     | 
| 169 | 
         
            +
                    sd = self.model.state_dict()
         
     | 
| 170 | 
         
            +
                    keys = list(sd.keys())
         
     | 
| 171 | 
         
            +
                    if filter_prefix is not None:
         
     | 
| 172 | 
         
            +
                        for k in keys:
         
     | 
| 173 | 
         
            +
                            if not k.startswith(filter_prefix):
         
     | 
| 174 | 
         
            +
                                sd.pop(k)
         
     | 
| 175 | 
         
            +
                    return sd
         
     | 
| 176 | 
         
            +
             
     | 
| 177 | 
         
            +
                def patch_model(self, device_to=None, patch_weights=True):
         
     | 
| 178 | 
         
            +
                    for k in self.object_patches:
         
     | 
| 179 | 
         
            +
                        old = getattr(self.model, k)
         
     | 
| 180 | 
         
            +
                        if k not in self.object_patches_backup:
         
     | 
| 181 | 
         
            +
                            self.object_patches_backup[k] = old
         
     | 
| 182 | 
         
            +
                        setattr(self.model, k, self.object_patches[k])
         
     | 
| 183 | 
         
            +
             
     | 
| 184 | 
         
            +
                    if patch_weights:
         
     | 
| 185 | 
         
            +
                        model_sd = self.model_state_dict()
         
     | 
| 186 | 
         
            +
                        for key in self.patches:
         
     | 
| 187 | 
         
            +
                            if key not in model_sd:
         
     | 
| 188 | 
         
            +
                                print("could not patch. key doesn't exist in model:", key)
         
     | 
| 189 | 
         
            +
                                continue
         
     | 
| 190 | 
         
            +
             
     | 
| 191 | 
         
            +
                            weight = model_sd[key]
         
     | 
| 192 | 
         
            +
             
     | 
| 193 | 
         
            +
                            inplace_update = self.weight_inplace_update
         
     | 
| 194 | 
         
            +
             
     | 
| 195 | 
         
            +
                            if key not in self.backup:
         
     | 
| 196 | 
         
            +
                                self.backup[key] = weight.to(device=self.offload_device, copy=inplace_update)
         
     | 
| 197 | 
         
            +
             
     | 
| 198 | 
         
            +
                            if device_to is not None:
         
     | 
| 199 | 
         
            +
                                temp_weight = comfy.model_management.cast_to_device(weight, device_to, torch.float32, copy=True)
         
     | 
| 200 | 
         
            +
                            else:
         
     | 
| 201 | 
         
            +
                                temp_weight = weight.to(torch.float32, copy=True)
         
     | 
| 202 | 
         
            +
                            out_weight = self.calculate_weight(self.patches[key], temp_weight, key).to(weight.dtype)
         
     | 
| 203 | 
         
            +
                            if inplace_update:
         
     | 
| 204 | 
         
            +
                                comfy.utils.copy_to_param(self.model, key, out_weight)
         
     | 
| 205 | 
         
            +
                            else:
         
     | 
| 206 | 
         
            +
                                comfy.utils.set_attr(self.model, key, out_weight)
         
     | 
| 207 | 
         
            +
                            del temp_weight
         
     | 
| 208 | 
         
            +
             
     | 
| 209 | 
         
            +
                        if device_to is not None:
         
     | 
| 210 | 
         
            +
                            self.model.to(device_to)
         
     | 
| 211 | 
         
            +
                            self.current_device = device_to
         
     | 
| 212 | 
         
            +
             
     | 
| 213 | 
         
            +
                    return self.model
         
     | 
| 214 | 
         
            +
             
     | 
| 215 | 
         
            +
                def calculate_weight(self, patches, weight, key):
         
     | 
| 216 | 
         
            +
                    for p in patches:
         
     | 
| 217 | 
         
            +
                        alpha = p[0]
         
     | 
| 218 | 
         
            +
                        v = p[1]
         
     | 
| 219 | 
         
            +
                        strength_model = p[2]
         
     | 
| 220 | 
         
            +
             
     | 
| 221 | 
         
            +
                        if strength_model != 1.0:
         
     | 
| 222 | 
         
            +
                            weight *= strength_model
         
     | 
| 223 | 
         
            +
             
     | 
| 224 | 
         
            +
                        if isinstance(v, list):
         
     | 
| 225 | 
         
            +
                            v = (self.calculate_weight(v[1:], v[0].clone(), key), )
         
     | 
| 226 | 
         
            +
             
     | 
| 227 | 
         
            +
                        if len(v) == 1:
         
     | 
| 228 | 
         
            +
                            patch_type = "diff"
         
     | 
| 229 | 
         
            +
                        elif len(v) == 2:
         
     | 
| 230 | 
         
            +
                            patch_type = v[0]
         
     | 
| 231 | 
         
            +
                            v = v[1]
         
     | 
| 232 | 
         
            +
             
     | 
| 233 | 
         
            +
                        if patch_type == "diff":
         
     | 
| 234 | 
         
            +
                            w1 = v[0]
         
     | 
| 235 | 
         
            +
                            if alpha != 0.0:
         
     | 
| 236 | 
         
            +
                                if w1.shape != weight.shape:
         
     | 
| 237 | 
         
            +
                                    print("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
         
     | 
| 238 | 
         
            +
                                else:
         
     | 
| 239 | 
         
            +
                                    weight += alpha * comfy.model_management.cast_to_device(w1, weight.device, weight.dtype)
         
     | 
| 240 | 
         
            +
                        elif patch_type == "lora": #lora/locon
         
     | 
| 241 | 
         
            +
                            mat1 = comfy.model_management.cast_to_device(v[0], weight.device, torch.float32)
         
     | 
| 242 | 
         
            +
                            mat2 = comfy.model_management.cast_to_device(v[1], weight.device, torch.float32)
         
     | 
| 243 | 
         
            +
                            if v[2] is not None:
         
     | 
| 244 | 
         
            +
                                alpha *= v[2] / mat2.shape[0]
         
     | 
| 245 | 
         
            +
                            if v[3] is not None:
         
     | 
| 246 | 
         
            +
                                #locon mid weights, hopefully the math is fine because I didn't properly test it
         
     | 
| 247 | 
         
            +
                                mat3 = comfy.model_management.cast_to_device(v[3], weight.device, torch.float32)
         
     | 
| 248 | 
         
            +
                                final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]]
         
     | 
| 249 | 
         
            +
                                mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1)
         
     | 
| 250 | 
         
            +
                            try:
         
     | 
| 251 | 
         
            +
                                weight += (alpha * torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1))).reshape(weight.shape).type(weight.dtype)
         
     | 
| 252 | 
         
            +
                            except Exception as e:
         
     | 
| 253 | 
         
            +
                                print("ERROR", key, e)
         
     | 
| 254 | 
         
            +
                        elif patch_type == "lokr":
         
     | 
| 255 | 
         
            +
                            w1 = v[0]
         
     | 
| 256 | 
         
            +
                            w2 = v[1]
         
     | 
| 257 | 
         
            +
                            w1_a = v[3]
         
     | 
| 258 | 
         
            +
                            w1_b = v[4]
         
     | 
| 259 | 
         
            +
                            w2_a = v[5]
         
     | 
| 260 | 
         
            +
                            w2_b = v[6]
         
     | 
| 261 | 
         
            +
                            t2 = v[7]
         
     | 
| 262 | 
         
            +
                            dim = None
         
     | 
| 263 | 
         
            +
             
     | 
| 264 | 
         
            +
                            if w1 is None:
         
     | 
| 265 | 
         
            +
                                dim = w1_b.shape[0]
         
     | 
| 266 | 
         
            +
                                w1 = torch.mm(comfy.model_management.cast_to_device(w1_a, weight.device, torch.float32),
         
     | 
| 267 | 
         
            +
                                              comfy.model_management.cast_to_device(w1_b, weight.device, torch.float32))
         
     | 
| 268 | 
         
            +
                            else:
         
     | 
| 269 | 
         
            +
                                w1 = comfy.model_management.cast_to_device(w1, weight.device, torch.float32)
         
     | 
| 270 | 
         
            +
             
     | 
| 271 | 
         
            +
                            if w2 is None:
         
     | 
| 272 | 
         
            +
                                dim = w2_b.shape[0]
         
     | 
| 273 | 
         
            +
                                if t2 is None:
         
     | 
| 274 | 
         
            +
                                    w2 = torch.mm(comfy.model_management.cast_to_device(w2_a, weight.device, torch.float32),
         
     | 
| 275 | 
         
            +
                                                  comfy.model_management.cast_to_device(w2_b, weight.device, torch.float32))
         
     | 
| 276 | 
         
            +
                                else:
         
     | 
| 277 | 
         
            +
                                    w2 = torch.einsum('i j k l, j r, i p -> p r k l',
         
     | 
| 278 | 
         
            +
                                                      comfy.model_management.cast_to_device(t2, weight.device, torch.float32),
         
     | 
| 279 | 
         
            +
                                                      comfy.model_management.cast_to_device(w2_b, weight.device, torch.float32),
         
     | 
| 280 | 
         
            +
                                                      comfy.model_management.cast_to_device(w2_a, weight.device, torch.float32))
         
     | 
| 281 | 
         
            +
                            else:
         
     | 
| 282 | 
         
            +
                                w2 = comfy.model_management.cast_to_device(w2, weight.device, torch.float32)
         
     | 
| 283 | 
         
            +
             
     | 
| 284 | 
         
            +
                            if len(w2.shape) == 4:
         
     | 
| 285 | 
         
            +
                                w1 = w1.unsqueeze(2).unsqueeze(2)
         
     | 
| 286 | 
         
            +
                            if v[2] is not None and dim is not None:
         
     | 
| 287 | 
         
            +
                                alpha *= v[2] / dim
         
     | 
| 288 | 
         
            +
             
     | 
| 289 | 
         
            +
                            try:
         
     | 
| 290 | 
         
            +
                                weight += alpha * torch.kron(w1, w2).reshape(weight.shape).type(weight.dtype)
         
     | 
| 291 | 
         
            +
                            except Exception as e:
         
     | 
| 292 | 
         
            +
                                print("ERROR", key, e)
         
     | 
| 293 | 
         
            +
                        elif patch_type == "loha":
         
     | 
| 294 | 
         
            +
                            w1a = v[0]
         
     | 
| 295 | 
         
            +
                            w1b = v[1]
         
     | 
| 296 | 
         
            +
                            if v[2] is not None:
         
     | 
| 297 | 
         
            +
                                alpha *= v[2] / w1b.shape[0]
         
     | 
| 298 | 
         
            +
                            w2a = v[3]
         
     | 
| 299 | 
         
            +
                            w2b = v[4]
         
     | 
| 300 | 
         
            +
                            if v[5] is not None: #cp decomposition
         
     | 
| 301 | 
         
            +
                                t1 = v[5]
         
     | 
| 302 | 
         
            +
                                t2 = v[6]
         
     | 
| 303 | 
         
            +
                                m1 = torch.einsum('i j k l, j r, i p -> p r k l',
         
     | 
| 304 | 
         
            +
                                                  comfy.model_management.cast_to_device(t1, weight.device, torch.float32),
         
     | 
| 305 | 
         
            +
                                                  comfy.model_management.cast_to_device(w1b, weight.device, torch.float32),
         
     | 
| 306 | 
         
            +
                                                  comfy.model_management.cast_to_device(w1a, weight.device, torch.float32))
         
     | 
| 307 | 
         
            +
             
     | 
| 308 | 
         
            +
                                m2 = torch.einsum('i j k l, j r, i p -> p r k l',
         
     | 
| 309 | 
         
            +
                                                  comfy.model_management.cast_to_device(t2, weight.device, torch.float32),
         
     | 
| 310 | 
         
            +
                                                  comfy.model_management.cast_to_device(w2b, weight.device, torch.float32),
         
     | 
| 311 | 
         
            +
                                                  comfy.model_management.cast_to_device(w2a, weight.device, torch.float32))
         
     | 
| 312 | 
         
            +
                            else:
         
     | 
| 313 | 
         
            +
                                m1 = torch.mm(comfy.model_management.cast_to_device(w1a, weight.device, torch.float32),
         
     | 
| 314 | 
         
            +
                                              comfy.model_management.cast_to_device(w1b, weight.device, torch.float32))
         
     | 
| 315 | 
         
            +
                                m2 = torch.mm(comfy.model_management.cast_to_device(w2a, weight.device, torch.float32),
         
     | 
| 316 | 
         
            +
                                              comfy.model_management.cast_to_device(w2b, weight.device, torch.float32))
         
     | 
| 317 | 
         
            +
             
     | 
| 318 | 
         
            +
                            try:
         
     | 
| 319 | 
         
            +
                                weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype)
         
     | 
| 320 | 
         
            +
                            except Exception as e:
         
     | 
| 321 | 
         
            +
                                print("ERROR", key, e)
         
     | 
| 322 | 
         
            +
                        elif patch_type == "glora":
         
     | 
| 323 | 
         
            +
                            if v[4] is not None:
         
     | 
| 324 | 
         
            +
                                alpha *= v[4] / v[0].shape[0]
         
     | 
| 325 | 
         
            +
             
     | 
| 326 | 
         
            +
                            a1 = comfy.model_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, torch.float32)
         
     | 
| 327 | 
         
            +
                            a2 = comfy.model_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, torch.float32)
         
     | 
| 328 | 
         
            +
                            b1 = comfy.model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, torch.float32)
         
     | 
| 329 | 
         
            +
                            b2 = comfy.model_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, torch.float32)
         
     | 
| 330 | 
         
            +
             
     | 
| 331 | 
         
            +
                            weight += ((torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1), a2), a1)) * alpha).reshape(weight.shape).type(weight.dtype)
         
     | 
| 332 | 
         
            +
                        else:
         
     | 
| 333 | 
         
            +
                            print("patch type not recognized", patch_type, key)
         
     | 
| 334 | 
         
            +
             
     | 
| 335 | 
         
            +
                    return weight
         
     | 
| 336 | 
         
            +
             
     | 
| 337 | 
         
            +
                def unpatch_model(self, device_to=None):
         
     | 
| 338 | 
         
            +
                    keys = list(self.backup.keys())
         
     | 
| 339 | 
         
            +
             
     | 
| 340 | 
         
            +
                    if self.weight_inplace_update:
         
     | 
| 341 | 
         
            +
                        for k in keys:
         
     | 
| 342 | 
         
            +
                            comfy.utils.copy_to_param(self.model, k, self.backup[k])
         
     | 
| 343 | 
         
            +
                    else:
         
     | 
| 344 | 
         
            +
                        for k in keys:
         
     | 
| 345 | 
         
            +
                            comfy.utils.set_attr(self.model, k, self.backup[k])
         
     | 
| 346 | 
         
            +
             
     | 
| 347 | 
         
            +
                    self.backup = {}
         
     | 
| 348 | 
         
            +
             
     | 
| 349 | 
         
            +
                    if device_to is not None:
         
     | 
| 350 | 
         
            +
                        self.model.to(device_to)
         
     | 
| 351 | 
         
            +
                        self.current_device = device_to
         
     | 
| 352 | 
         
            +
             
     | 
| 353 | 
         
            +
                    keys = list(self.object_patches_backup.keys())
         
     | 
| 354 | 
         
            +
                    for k in keys:
         
     | 
| 355 | 
         
            +
                        setattr(self.model, k, self.object_patches_backup[k])
         
     | 
| 356 | 
         
            +
             
     | 
| 357 | 
         
            +
                    self.object_patches_backup = {}
         
     | 
    	
        comfy/model_sampling.py
    ADDED
    
    | 
         @@ -0,0 +1,134 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule
         
     | 
| 3 | 
         
            +
            import math
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            class EPS:
         
     | 
| 6 | 
         
            +
                def calculate_input(self, sigma, noise):
         
     | 
| 7 | 
         
            +
                    sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1))
         
     | 
| 8 | 
         
            +
                    return noise / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
                def calculate_denoised(self, sigma, model_output, model_input):
         
     | 
| 11 | 
         
            +
                    sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
         
     | 
| 12 | 
         
            +
                    return model_input - model_output * sigma
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            class V_PREDICTION(EPS):
         
     | 
| 16 | 
         
            +
                def calculate_denoised(self, sigma, model_output, model_input):
         
     | 
| 17 | 
         
            +
                    sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
         
     | 
| 18 | 
         
            +
                    return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) - model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
            class ModelSamplingDiscrete(torch.nn.Module):
         
     | 
| 22 | 
         
            +
                def __init__(self, model_config=None):
         
     | 
| 23 | 
         
            +
                    super().__init__()
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
                    if model_config is not None:
         
     | 
| 26 | 
         
            +
                        sampling_settings = model_config.sampling_settings
         
     | 
| 27 | 
         
            +
                    else:
         
     | 
| 28 | 
         
            +
                        sampling_settings = {}
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
                    beta_schedule = sampling_settings.get("beta_schedule", "linear")
         
     | 
| 31 | 
         
            +
                    linear_start = sampling_settings.get("linear_start", 0.00085)
         
     | 
| 32 | 
         
            +
                    linear_end = sampling_settings.get("linear_end", 0.012)
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
                    self._register_schedule(given_betas=None, beta_schedule=beta_schedule, timesteps=1000, linear_start=linear_start, linear_end=linear_end, cosine_s=8e-3)
         
     | 
| 35 | 
         
            +
                    self.sigma_data = 1.0
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
                def _register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
         
     | 
| 38 | 
         
            +
                                      linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
         
     | 
| 39 | 
         
            +
                    if given_betas is not None:
         
     | 
| 40 | 
         
            +
                        betas = given_betas
         
     | 
| 41 | 
         
            +
                    else:
         
     | 
| 42 | 
         
            +
                        betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
         
     | 
| 43 | 
         
            +
                    alphas = 1. - betas
         
     | 
| 44 | 
         
            +
                    alphas_cumprod = torch.cumprod(alphas, dim=0)
         
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
                    timesteps, = betas.shape
         
     | 
| 47 | 
         
            +
                    self.num_timesteps = int(timesteps)
         
     | 
| 48 | 
         
            +
                    self.linear_start = linear_start
         
     | 
| 49 | 
         
            +
                    self.linear_end = linear_end
         
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
                    # self.register_buffer('betas', torch.tensor(betas, dtype=torch.float32))
         
     | 
| 52 | 
         
            +
                    # self.register_buffer('alphas_cumprod', torch.tensor(alphas_cumprod, dtype=torch.float32))
         
     | 
| 53 | 
         
            +
                    # self.register_buffer('alphas_cumprod_prev', torch.tensor(alphas_cumprod_prev, dtype=torch.float32))
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
                    sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5
         
     | 
| 56 | 
         
            +
                    self.set_sigmas(sigmas)
         
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
                def set_sigmas(self, sigmas):
         
     | 
| 59 | 
         
            +
                    self.register_buffer('sigmas', sigmas.float())
         
     | 
| 60 | 
         
            +
                    self.register_buffer('log_sigmas', sigmas.log().float())
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
                @property
         
     | 
| 63 | 
         
            +
                def sigma_min(self):
         
     | 
| 64 | 
         
            +
                    return self.sigmas[0]
         
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
                @property
         
     | 
| 67 | 
         
            +
                def sigma_max(self):
         
     | 
| 68 | 
         
            +
                    return self.sigmas[-1]
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
                def timestep(self, sigma):
         
     | 
| 71 | 
         
            +
                    log_sigma = sigma.log()
         
     | 
| 72 | 
         
            +
                    dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None]
         
     | 
| 73 | 
         
            +
                    return dists.abs().argmin(dim=0).view(sigma.shape).to(sigma.device)
         
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
                def sigma(self, timestep):
         
     | 
| 76 | 
         
            +
                    t = torch.clamp(timestep.float().to(self.log_sigmas.device), min=0, max=(len(self.sigmas) - 1))
         
     | 
| 77 | 
         
            +
                    low_idx = t.floor().long()
         
     | 
| 78 | 
         
            +
                    high_idx = t.ceil().long()
         
     | 
| 79 | 
         
            +
                    w = t.frac()
         
     | 
| 80 | 
         
            +
                    log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx]
         
     | 
| 81 | 
         
            +
                    return log_sigma.exp().to(timestep.device)
         
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
                def percent_to_sigma(self, percent):
         
     | 
| 84 | 
         
            +
                    if percent <= 0.0:
         
     | 
| 85 | 
         
            +
                        return 999999999.9
         
     | 
| 86 | 
         
            +
                    if percent >= 1.0:
         
     | 
| 87 | 
         
            +
                        return 0.0
         
     | 
| 88 | 
         
            +
                    percent = 1.0 - percent
         
     | 
| 89 | 
         
            +
                    return self.sigma(torch.tensor(percent * 999.0)).item()
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
            class ModelSamplingContinuousEDM(torch.nn.Module):
         
     | 
| 93 | 
         
            +
                def __init__(self, model_config=None):
         
     | 
| 94 | 
         
            +
                    super().__init__()
         
     | 
| 95 | 
         
            +
                    self.sigma_data = 1.0
         
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
                    if model_config is not None:
         
     | 
| 98 | 
         
            +
                        sampling_settings = model_config.sampling_settings
         
     | 
| 99 | 
         
            +
                    else:
         
     | 
| 100 | 
         
            +
                        sampling_settings = {}
         
     | 
| 101 | 
         
            +
             
     | 
| 102 | 
         
            +
                    sigma_min = sampling_settings.get("sigma_min", 0.002)
         
     | 
| 103 | 
         
            +
                    sigma_max = sampling_settings.get("sigma_max", 120.0)
         
     | 
| 104 | 
         
            +
                    self.set_sigma_range(sigma_min, sigma_max)
         
     | 
| 105 | 
         
            +
             
     | 
| 106 | 
         
            +
                def set_sigma_range(self, sigma_min, sigma_max):
         
     | 
| 107 | 
         
            +
                    sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), 1000).exp()
         
     | 
| 108 | 
         
            +
             
     | 
| 109 | 
         
            +
                    self.register_buffer('sigmas', sigmas) #for compatibility with some schedulers
         
     | 
| 110 | 
         
            +
                    self.register_buffer('log_sigmas', sigmas.log())
         
     | 
| 111 | 
         
            +
             
     | 
| 112 | 
         
            +
                @property
         
     | 
| 113 | 
         
            +
                def sigma_min(self):
         
     | 
| 114 | 
         
            +
                    return self.sigmas[0]
         
     | 
| 115 | 
         
            +
             
     | 
| 116 | 
         
            +
                @property
         
     | 
| 117 | 
         
            +
                def sigma_max(self):
         
     | 
| 118 | 
         
            +
                    return self.sigmas[-1]
         
     | 
| 119 | 
         
            +
             
     | 
| 120 | 
         
            +
                def timestep(self, sigma):
         
     | 
| 121 | 
         
            +
                    return 0.25 * sigma.log()
         
     | 
| 122 | 
         
            +
             
     | 
| 123 | 
         
            +
                def sigma(self, timestep):
         
     | 
| 124 | 
         
            +
                    return (timestep / 0.25).exp()
         
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
                def percent_to_sigma(self, percent):
         
     | 
| 127 | 
         
            +
                    if percent <= 0.0:
         
     | 
| 128 | 
         
            +
                        return 999999999.9
         
     | 
| 129 | 
         
            +
                    if percent >= 1.0:
         
     | 
| 130 | 
         
            +
                        return 0.0
         
     | 
| 131 | 
         
            +
                    percent = 1.0 - percent
         
     | 
| 132 | 
         
            +
             
     | 
| 133 | 
         
            +
                    log_sigma_min = math.log(self.sigma_min)
         
     | 
| 134 | 
         
            +
                    return math.exp((math.log(self.sigma_max) - log_sigma_min) * percent + log_sigma_min)
         
     | 
    	
        comfy/ops.py
    ADDED
    
    | 
         @@ -0,0 +1,114 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            import comfy.model_management
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            def cast_bias_weight(s, input):
         
     | 
| 5 | 
         
            +
                bias = None
         
     | 
| 6 | 
         
            +
                non_blocking = comfy.model_management.device_supports_non_blocking(input.device)
         
     | 
| 7 | 
         
            +
                if s.bias is not None:
         
     | 
| 8 | 
         
            +
                    bias = s.bias.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking)
         
     | 
| 9 | 
         
            +
                weight = s.weight.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking)
         
     | 
| 10 | 
         
            +
                return weight, bias
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            class disable_weight_init:
         
     | 
| 14 | 
         
            +
                class Linear(torch.nn.Linear):
         
     | 
| 15 | 
         
            +
                    comfy_cast_weights = False
         
     | 
| 16 | 
         
            +
                    def reset_parameters(self):
         
     | 
| 17 | 
         
            +
                        return None
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
                    def forward_comfy_cast_weights(self, input):
         
     | 
| 20 | 
         
            +
                        weight, bias = cast_bias_weight(self, input)
         
     | 
| 21 | 
         
            +
                        return torch.nn.functional.linear(input, weight, bias)
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
                    def forward(self, *args, **kwargs):
         
     | 
| 24 | 
         
            +
                        if self.comfy_cast_weights:
         
     | 
| 25 | 
         
            +
                            return self.forward_comfy_cast_weights(*args, **kwargs)
         
     | 
| 26 | 
         
            +
                        else:
         
     | 
| 27 | 
         
            +
                            return super().forward(*args, **kwargs)
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
                class Conv2d(torch.nn.Conv2d):
         
     | 
| 30 | 
         
            +
                    comfy_cast_weights = False
         
     | 
| 31 | 
         
            +
                    def reset_parameters(self):
         
     | 
| 32 | 
         
            +
                        return None
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
                    def forward_comfy_cast_weights(self, input):
         
     | 
| 35 | 
         
            +
                        weight, bias = cast_bias_weight(self, input)
         
     | 
| 36 | 
         
            +
                        return self._conv_forward(input, weight, bias)
         
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
                    def forward(self, *args, **kwargs):
         
     | 
| 39 | 
         
            +
                        if self.comfy_cast_weights:
         
     | 
| 40 | 
         
            +
                            return self.forward_comfy_cast_weights(*args, **kwargs)
         
     | 
| 41 | 
         
            +
                        else:
         
     | 
| 42 | 
         
            +
                            return super().forward(*args, **kwargs)
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
                class Conv3d(torch.nn.Conv3d):
         
     | 
| 45 | 
         
            +
                    comfy_cast_weights = False
         
     | 
| 46 | 
         
            +
                    def reset_parameters(self):
         
     | 
| 47 | 
         
            +
                        return None
         
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
                    def forward_comfy_cast_weights(self, input):
         
     | 
| 50 | 
         
            +
                        weight, bias = cast_bias_weight(self, input)
         
     | 
| 51 | 
         
            +
                        return self._conv_forward(input, weight, bias)
         
     | 
| 52 | 
         
            +
             
     | 
| 53 | 
         
            +
                    def forward(self, *args, **kwargs):
         
     | 
| 54 | 
         
            +
                        if self.comfy_cast_weights:
         
     | 
| 55 | 
         
            +
                            return self.forward_comfy_cast_weights(*args, **kwargs)
         
     | 
| 56 | 
         
            +
                        else:
         
     | 
| 57 | 
         
            +
                            return super().forward(*args, **kwargs)
         
     | 
| 58 | 
         
            +
             
     | 
| 59 | 
         
            +
                class GroupNorm(torch.nn.GroupNorm):
         
     | 
| 60 | 
         
            +
                    comfy_cast_weights = False
         
     | 
| 61 | 
         
            +
                    def reset_parameters(self):
         
     | 
| 62 | 
         
            +
                        return None
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
                    def forward_comfy_cast_weights(self, input):
         
     | 
| 65 | 
         
            +
                        weight, bias = cast_bias_weight(self, input)
         
     | 
| 66 | 
         
            +
                        return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps)
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
                    def forward(self, *args, **kwargs):
         
     | 
| 69 | 
         
            +
                        if self.comfy_cast_weights:
         
     | 
| 70 | 
         
            +
                            return self.forward_comfy_cast_weights(*args, **kwargs)
         
     | 
| 71 | 
         
            +
                        else:
         
     | 
| 72 | 
         
            +
                            return super().forward(*args, **kwargs)
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
                class LayerNorm(torch.nn.LayerNorm):
         
     | 
| 76 | 
         
            +
                    comfy_cast_weights = False
         
     | 
| 77 | 
         
            +
                    def reset_parameters(self):
         
     | 
| 78 | 
         
            +
                        return None
         
     | 
| 79 | 
         
            +
             
     | 
| 80 | 
         
            +
                    def forward_comfy_cast_weights(self, input):
         
     | 
| 81 | 
         
            +
                        weight, bias = cast_bias_weight(self, input)
         
     | 
| 82 | 
         
            +
                        return torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps)
         
     | 
| 83 | 
         
            +
             
     | 
| 84 | 
         
            +
                    def forward(self, *args, **kwargs):
         
     | 
| 85 | 
         
            +
                        if self.comfy_cast_weights:
         
     | 
| 86 | 
         
            +
                            return self.forward_comfy_cast_weights(*args, **kwargs)
         
     | 
| 87 | 
         
            +
                        else:
         
     | 
| 88 | 
         
            +
                            return super().forward(*args, **kwargs)
         
     | 
| 89 | 
         
            +
             
     | 
| 90 | 
         
            +
                @classmethod
         
     | 
| 91 | 
         
            +
                def conv_nd(s, dims, *args, **kwargs):
         
     | 
| 92 | 
         
            +
                    if dims == 2:
         
     | 
| 93 | 
         
            +
                        return s.Conv2d(*args, **kwargs)
         
     | 
| 94 | 
         
            +
                    elif dims == 3:
         
     | 
| 95 | 
         
            +
                        return s.Conv3d(*args, **kwargs)
         
     | 
| 96 | 
         
            +
                    else:
         
     | 
| 97 | 
         
            +
                        raise ValueError(f"unsupported dimensions: {dims}")
         
     | 
| 98 | 
         
            +
             
     | 
| 99 | 
         
            +
             
     | 
| 100 | 
         
            +
            class manual_cast(disable_weight_init):
         
     | 
| 101 | 
         
            +
                class Linear(disable_weight_init.Linear):
         
     | 
| 102 | 
         
            +
                    comfy_cast_weights = True
         
     | 
| 103 | 
         
            +
             
     | 
| 104 | 
         
            +
                class Conv2d(disable_weight_init.Conv2d):
         
     | 
| 105 | 
         
            +
                    comfy_cast_weights = True
         
     | 
| 106 | 
         
            +
             
     | 
| 107 | 
         
            +
                class Conv3d(disable_weight_init.Conv3d):
         
     | 
| 108 | 
         
            +
                    comfy_cast_weights = True
         
     | 
| 109 | 
         
            +
             
     | 
| 110 | 
         
            +
                class GroupNorm(disable_weight_init.GroupNorm):
         
     | 
| 111 | 
         
            +
                    comfy_cast_weights = True
         
     | 
| 112 | 
         
            +
             
     | 
| 113 | 
         
            +
                class LayerNorm(disable_weight_init.LayerNorm):
         
     | 
| 114 | 
         
            +
                    comfy_cast_weights = True
         
     | 
    	
        comfy/options.py
    ADDED
    
    | 
         @@ -0,0 +1,6 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
             
     | 
| 2 | 
         
            +
            args_parsing = False
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            def enable_args_parsing(enable=True):
         
     | 
| 5 | 
         
            +
                global args_parsing
         
     | 
| 6 | 
         
            +
                args_parsing = enable
         
     | 
    	
        comfy/sample.py
    ADDED
    
    | 
         @@ -0,0 +1,118 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            import comfy.model_management
         
     | 
| 3 | 
         
            +
            import comfy.samplers
         
     | 
| 4 | 
         
            +
            import comfy.conds
         
     | 
| 5 | 
         
            +
            import comfy.utils
         
     | 
| 6 | 
         
            +
            import math
         
     | 
| 7 | 
         
            +
            import numpy as np
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            def prepare_noise(latent_image, seed, noise_inds=None):
         
     | 
| 10 | 
         
            +
                """
         
     | 
| 11 | 
         
            +
                creates random noise given a latent image and a seed.
         
     | 
| 12 | 
         
            +
                optional arg skip can be used to skip and discard x number of noise generations for a given seed
         
     | 
| 13 | 
         
            +
                """
         
     | 
| 14 | 
         
            +
                generator = torch.manual_seed(seed)
         
     | 
| 15 | 
         
            +
                if noise_inds is None:
         
     | 
| 16 | 
         
            +
                    return torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
         
     | 
| 17 | 
         
            +
                
         
     | 
| 18 | 
         
            +
                unique_inds, inverse = np.unique(noise_inds, return_inverse=True)
         
     | 
| 19 | 
         
            +
                noises = []
         
     | 
| 20 | 
         
            +
                for i in range(unique_inds[-1]+1):
         
     | 
| 21 | 
         
            +
                    noise = torch.randn([1] + list(latent_image.size())[1:], dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
         
     | 
| 22 | 
         
            +
                    if i in unique_inds:
         
     | 
| 23 | 
         
            +
                        noises.append(noise)
         
     | 
| 24 | 
         
            +
                noises = [noises[i] for i in inverse]
         
     | 
| 25 | 
         
            +
                noises = torch.cat(noises, axis=0)
         
     | 
| 26 | 
         
            +
                return noises
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
            def prepare_mask(noise_mask, shape, device):
         
     | 
| 29 | 
         
            +
                """ensures noise mask is of proper dimensions"""
         
     | 
| 30 | 
         
            +
                noise_mask = torch.nn.functional.interpolate(noise_mask.reshape((-1, 1, noise_mask.shape[-2], noise_mask.shape[-1])), size=(shape[2], shape[3]), mode="bilinear")
         
     | 
| 31 | 
         
            +
                noise_mask = torch.cat([noise_mask] * shape[1], dim=1)
         
     | 
| 32 | 
         
            +
                noise_mask = comfy.utils.repeat_to_batch_size(noise_mask, shape[0])
         
     | 
| 33 | 
         
            +
                noise_mask = noise_mask.to(device)
         
     | 
| 34 | 
         
            +
                return noise_mask
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
            def get_models_from_cond(cond, model_type):
         
     | 
| 37 | 
         
            +
                models = []
         
     | 
| 38 | 
         
            +
                for c in cond:
         
     | 
| 39 | 
         
            +
                    if model_type in c:
         
     | 
| 40 | 
         
            +
                        models += [c[model_type]]
         
     | 
| 41 | 
         
            +
                return models
         
     | 
| 42 | 
         
            +
             
     | 
| 43 | 
         
            +
            def convert_cond(cond):
         
     | 
| 44 | 
         
            +
                out = []
         
     | 
| 45 | 
         
            +
                for c in cond:
         
     | 
| 46 | 
         
            +
                    temp = c[1].copy()
         
     | 
| 47 | 
         
            +
                    model_conds = temp.get("model_conds", {})
         
     | 
| 48 | 
         
            +
                    if c[0] is not None:
         
     | 
| 49 | 
         
            +
                        model_conds["c_crossattn"] = comfy.conds.CONDCrossAttn(c[0]) #TODO: remove
         
     | 
| 50 | 
         
            +
                        temp["cross_attn"] = c[0]
         
     | 
| 51 | 
         
            +
                    temp["model_conds"] = model_conds
         
     | 
| 52 | 
         
            +
                    out.append(temp)
         
     | 
| 53 | 
         
            +
                return out
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
            def get_additional_models(positive, negative, dtype):
         
     | 
| 56 | 
         
            +
                """loads additional models in positive and negative conditioning"""
         
     | 
| 57 | 
         
            +
                control_nets = set(get_models_from_cond(positive, "control") + get_models_from_cond(negative, "control"))
         
     | 
| 58 | 
         
            +
             
     | 
| 59 | 
         
            +
                inference_memory = 0
         
     | 
| 60 | 
         
            +
                control_models = []
         
     | 
| 61 | 
         
            +
                for m in control_nets:
         
     | 
| 62 | 
         
            +
                    control_models += m.get_models()
         
     | 
| 63 | 
         
            +
                    inference_memory += m.inference_memory_requirements(dtype)
         
     | 
| 64 | 
         
            +
             
     | 
| 65 | 
         
            +
                gligen = get_models_from_cond(positive, "gligen") + get_models_from_cond(negative, "gligen")
         
     | 
| 66 | 
         
            +
                gligen = [x[1] for x in gligen]
         
     | 
| 67 | 
         
            +
                models = control_models + gligen
         
     | 
| 68 | 
         
            +
                return models, inference_memory
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
            def cleanup_additional_models(models):
         
     | 
| 71 | 
         
            +
                """cleanup additional models that were loaded"""
         
     | 
| 72 | 
         
            +
                for m in models:
         
     | 
| 73 | 
         
            +
                    if hasattr(m, 'cleanup'):
         
     | 
| 74 | 
         
            +
                        m.cleanup()
         
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
            def prepare_sampling(model, noise_shape, positive, negative, noise_mask):
         
     | 
| 77 | 
         
            +
                device = model.load_device
         
     | 
| 78 | 
         
            +
                positive = convert_cond(positive)
         
     | 
| 79 | 
         
            +
                negative = convert_cond(negative)
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
                if noise_mask is not None:
         
     | 
| 82 | 
         
            +
                    noise_mask = prepare_mask(noise_mask, noise_shape, device)
         
     | 
| 83 | 
         
            +
             
     | 
| 84 | 
         
            +
                real_model = None
         
     | 
| 85 | 
         
            +
                models, inference_memory = get_additional_models(positive, negative, model.model_dtype())
         
     | 
| 86 | 
         
            +
                comfy.model_management.load_models_gpu([model] + models, model.memory_required([noise_shape[0] * 2] + list(noise_shape[1:])) + inference_memory)
         
     | 
| 87 | 
         
            +
                real_model = model.model
         
     | 
| 88 | 
         
            +
             
     | 
| 89 | 
         
            +
                return real_model, positive, negative, noise_mask, models
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
            def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, noise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
         
     | 
| 93 | 
         
            +
                real_model, positive_copy, negative_copy, noise_mask, models = prepare_sampling(model, noise.shape, positive, negative, noise_mask)
         
     | 
| 94 | 
         
            +
             
     | 
| 95 | 
         
            +
                noise = noise.to(model.load_device)
         
     | 
| 96 | 
         
            +
                latent_image = latent_image.to(model.load_device)
         
     | 
| 97 | 
         
            +
             
     | 
| 98 | 
         
            +
                sampler = comfy.samplers.KSampler(real_model, steps=steps, device=model.load_device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options)
         
     | 
| 99 | 
         
            +
             
     | 
| 100 | 
         
            +
                samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask, sigmas=sigmas, callback=callback, disable_pbar=disable_pbar, seed=seed)
         
     | 
| 101 | 
         
            +
                samples = samples.to(comfy.model_management.intermediate_device())
         
     | 
| 102 | 
         
            +
             
     | 
| 103 | 
         
            +
                cleanup_additional_models(models)
         
     | 
| 104 | 
         
            +
                cleanup_additional_models(set(get_models_from_cond(positive_copy, "control") + get_models_from_cond(negative_copy, "control")))
         
     | 
| 105 | 
         
            +
                return samples
         
     | 
| 106 | 
         
            +
             
     | 
| 107 | 
         
            +
            def sample_custom(model, noise, cfg, sampler, sigmas, positive, negative, latent_image, noise_mask=None, callback=None, disable_pbar=False, seed=None):
         
     | 
| 108 | 
         
            +
                real_model, positive_copy, negative_copy, noise_mask, models = prepare_sampling(model, noise.shape, positive, negative, noise_mask)
         
     | 
| 109 | 
         
            +
                noise = noise.to(model.load_device)
         
     | 
| 110 | 
         
            +
                latent_image = latent_image.to(model.load_device)
         
     | 
| 111 | 
         
            +
                sigmas = sigmas.to(model.load_device)
         
     | 
| 112 | 
         
            +
             
     | 
| 113 | 
         
            +
                samples = comfy.samplers.sample(real_model, noise, positive_copy, negative_copy, cfg, model.load_device, sampler, sigmas, model_options=model.model_options, latent_image=latent_image, denoise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)
         
     | 
| 114 | 
         
            +
                samples = samples.to(comfy.model_management.intermediate_device())
         
     | 
| 115 | 
         
            +
                cleanup_additional_models(models)
         
     | 
| 116 | 
         
            +
                cleanup_additional_models(set(get_models_from_cond(positive_copy, "control") + get_models_from_cond(negative_copy, "control")))
         
     | 
| 117 | 
         
            +
                return samples
         
     | 
| 118 | 
         
            +
             
     |