Probabilistic Graphical Models and Bayesian Networks

Machine Learning CSx824/ECEx242 Bert Huang Virginia Tech

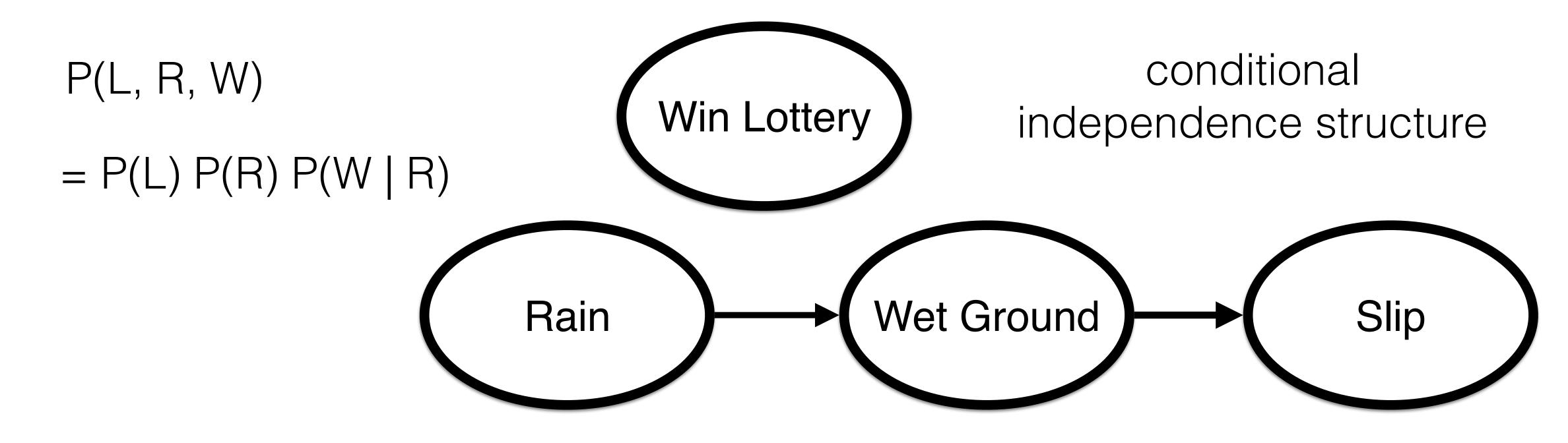
Outline

- Probabilistic graphical models
- Bayesian networks
- Naive Bayes and Logistic Regression as Bayes nets
- Inference in Bayes nets

Probabilistic Graphical Models

- PGMs represent probability distributions
- They encode conditional independence structure with graphs
- They enable graph algorithms for inference and learning

Bayesian Networks

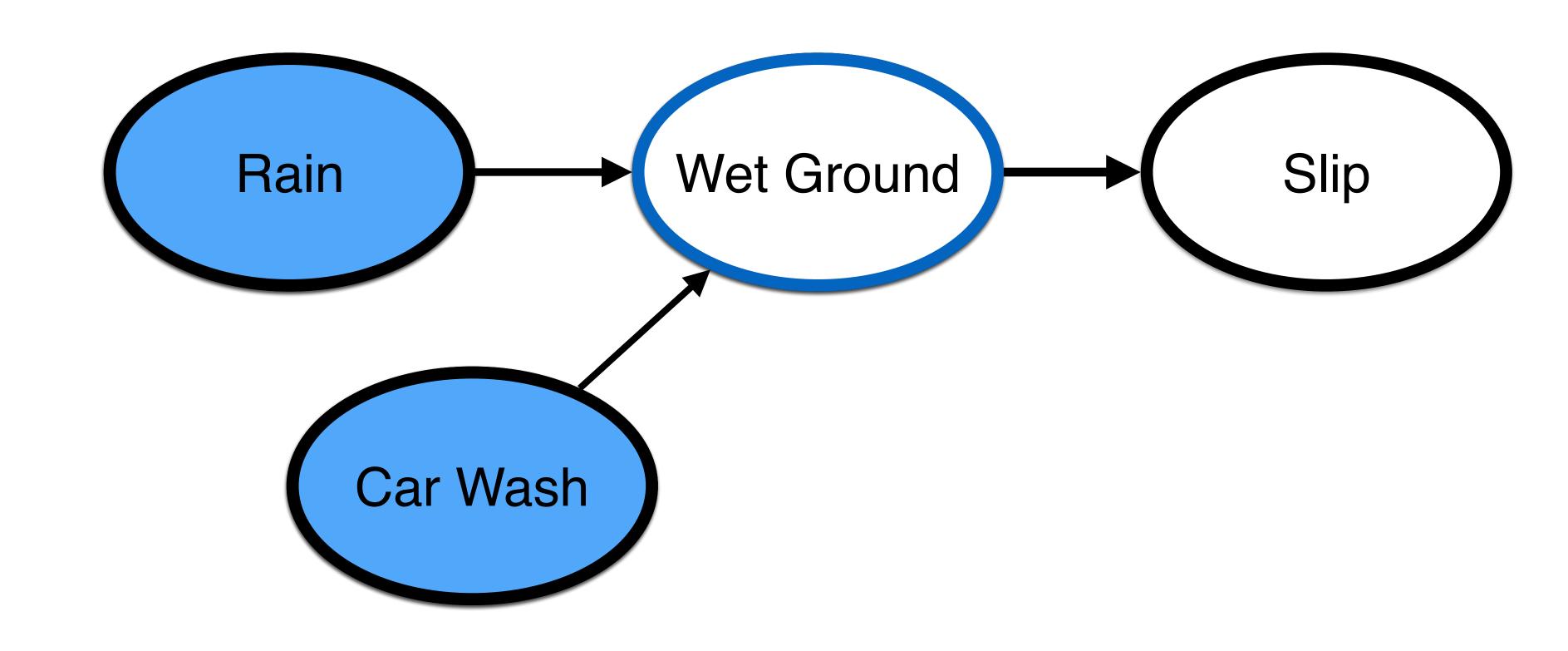


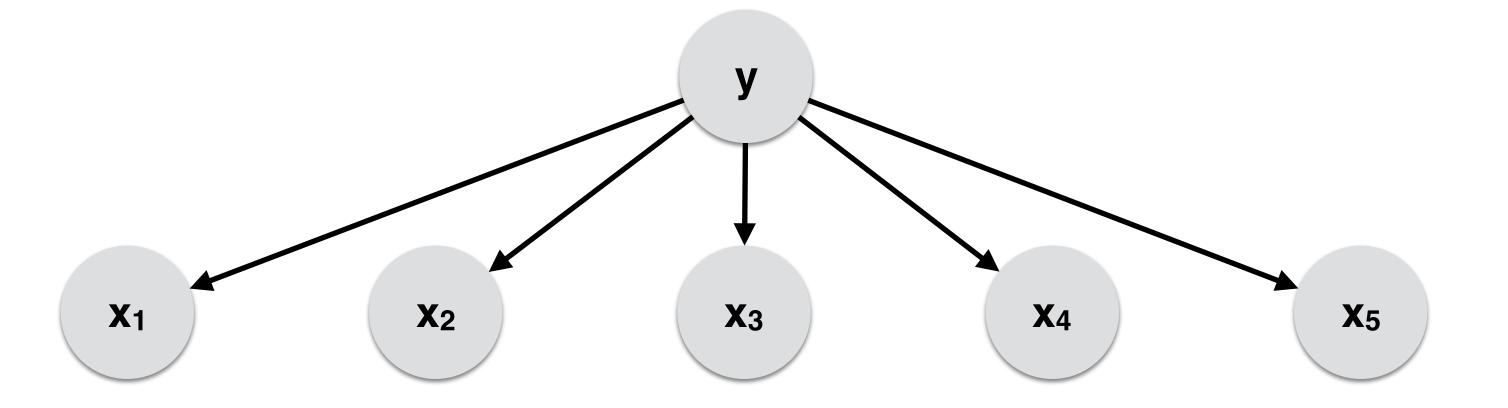
P(L, R, W, S) = P(L) P(R) P(W | R) P(S | W)

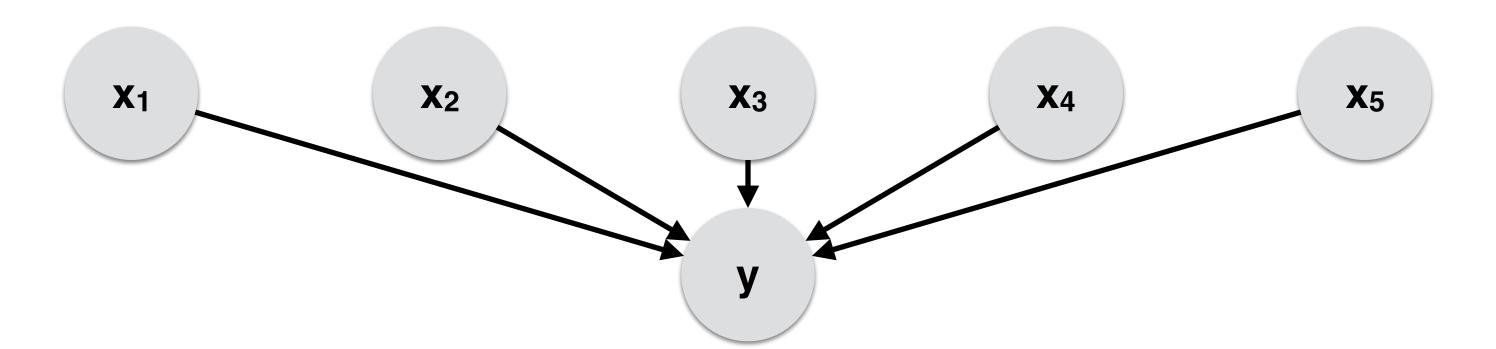
Bayesian Networks

P(R, W, S, C) = P(R) P(C) P(W | C, R) P(S | W)

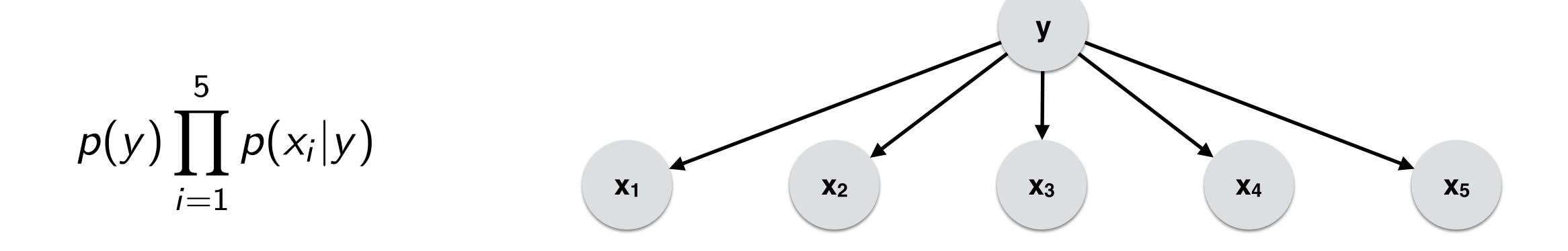
P(X | Parents(X))

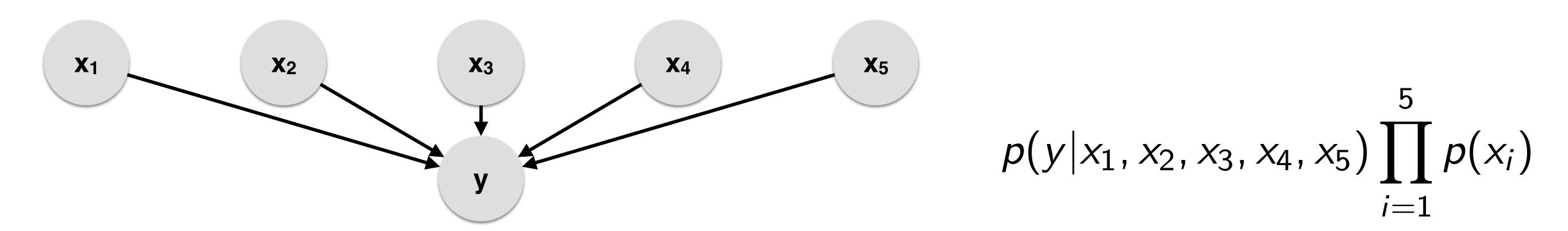






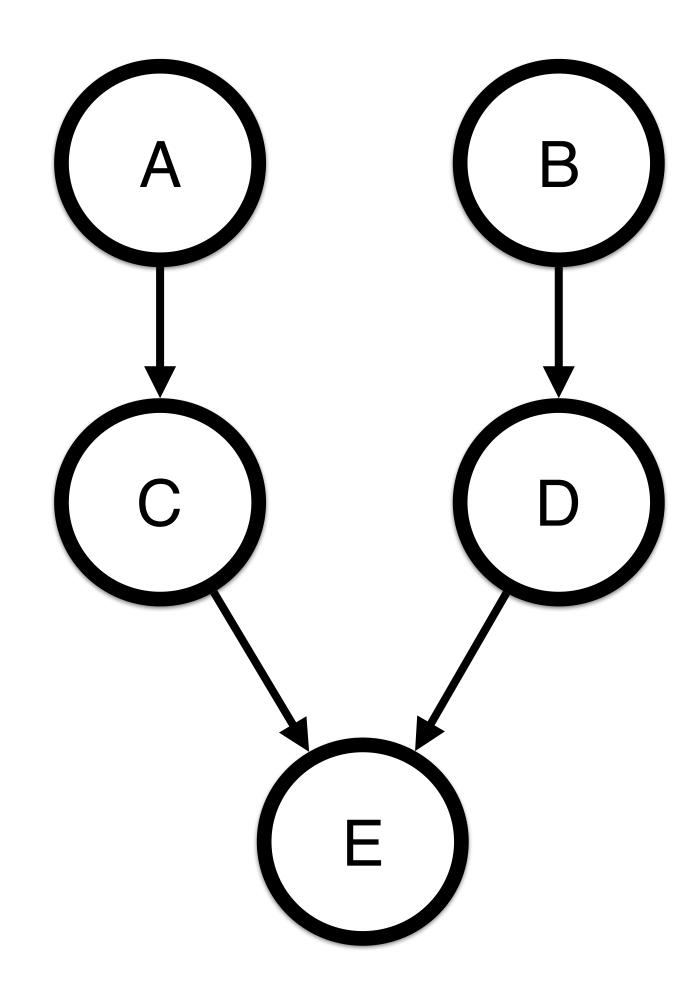
naive Bayes



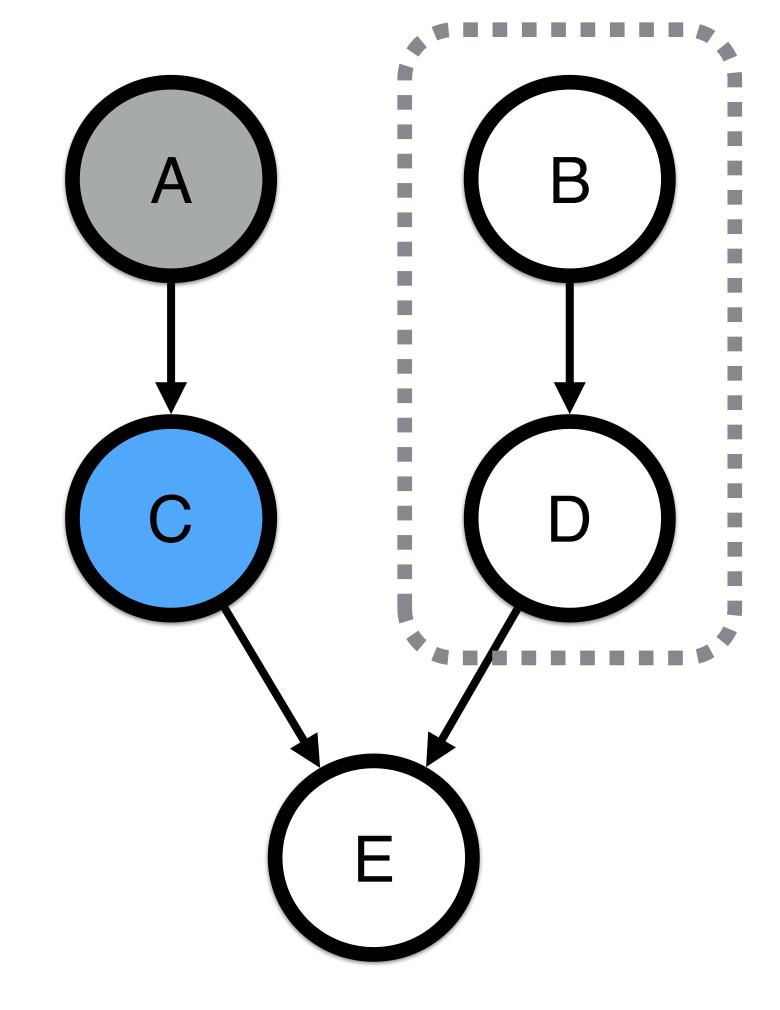


logistic regression (with input likelihood)

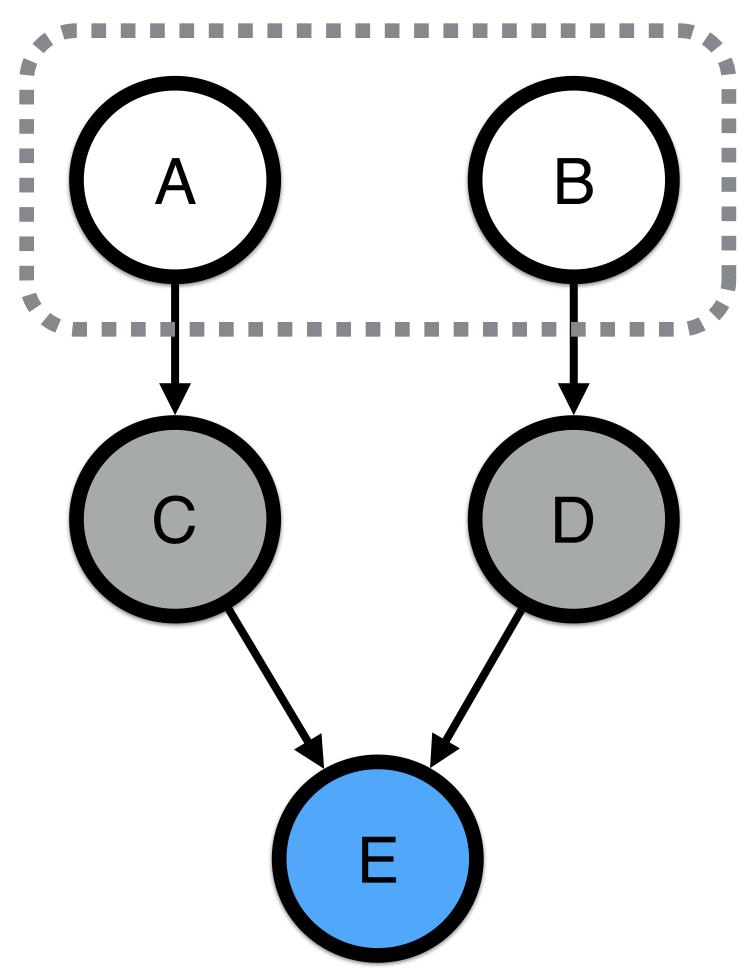
 Each variable is conditionally independent of its non-descendents given its parents



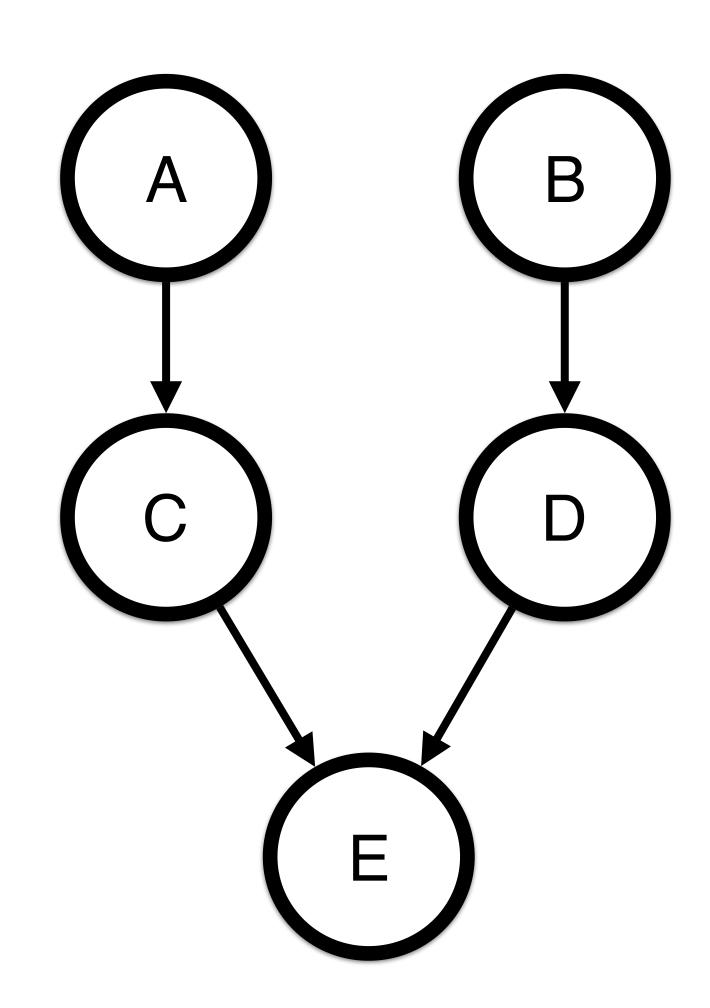
 Each variable is conditionally independent of its non-descendents given its parents



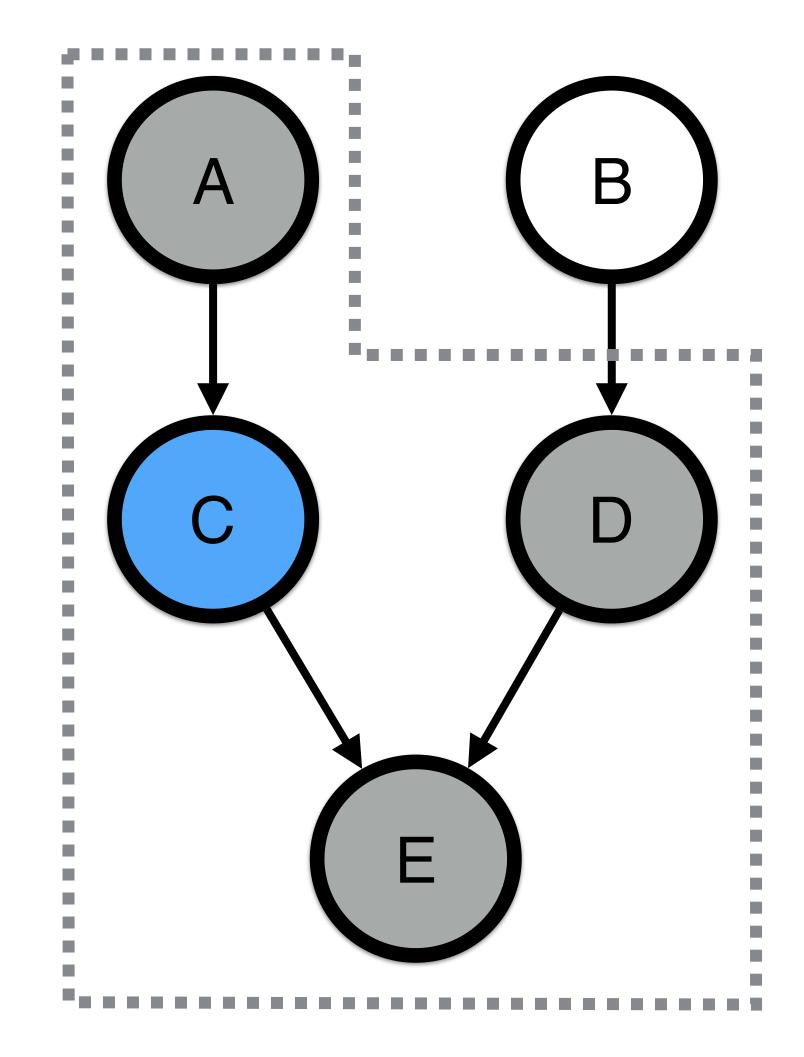
• Each variable is conditionally independent of its non-descendents given its parents



- Each variable is conditionally independent of its non-descendents given its parents
- Each variable is conditionally independent of any other variable given its **Markov blanket**
 - Parents, children, and children's parents



- Each variable is conditionally independent of its non-descendents given its parents
- Each variable is conditionally independent of any other variable given its Markov blanket
 - Parents, children, and children's parents



Inference

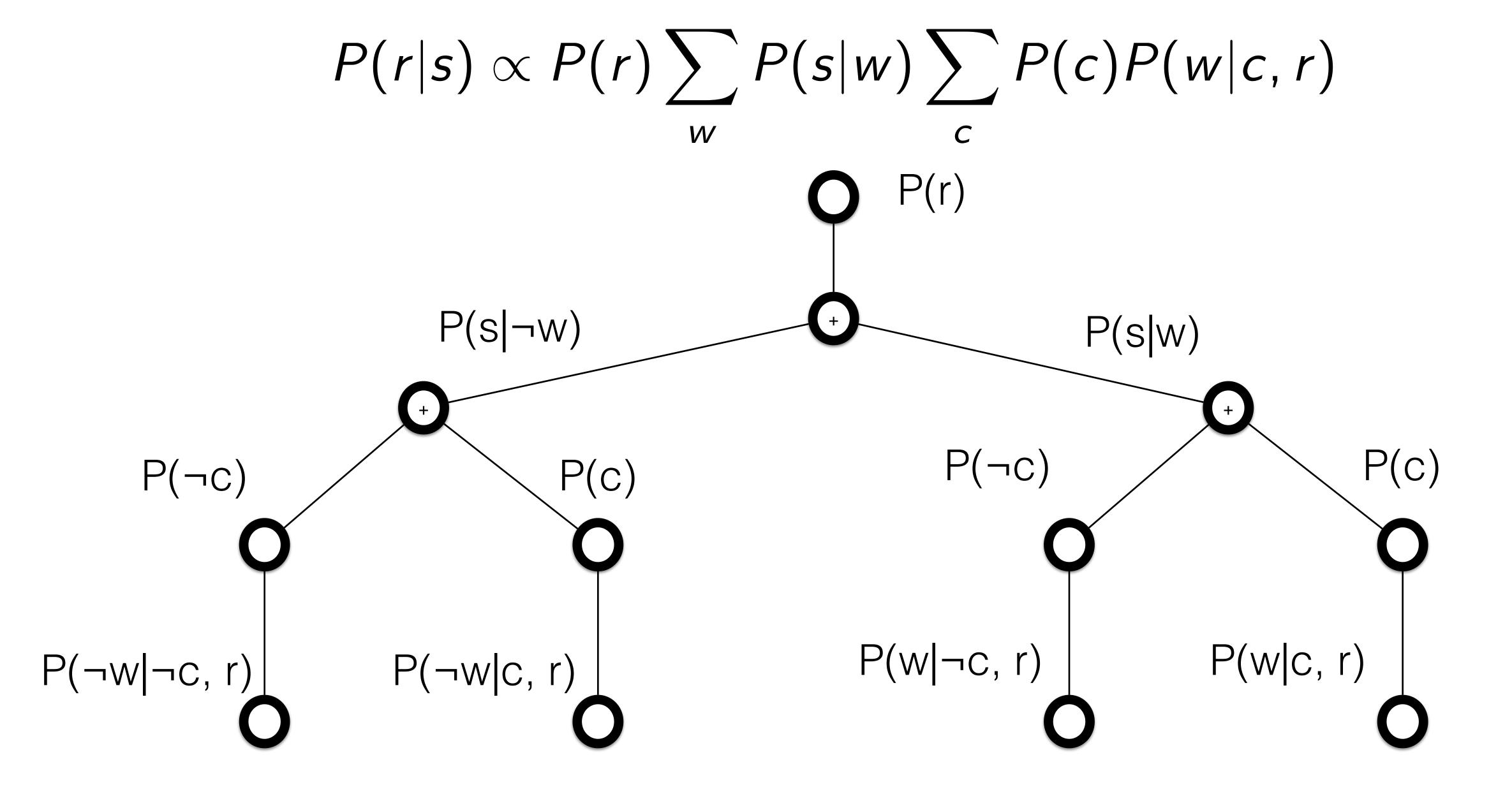
- Given a Bayesian Network describing P(X, Y, Z), what is P(Y)
 - First approach: enumeration

$$P(R, W, S, C) = P(R) P(C) P(W | C, R) P(S | W)$$

$$P(r|s) = \sum_{w} \sum_{c} P(r, w, s, c) / P(s)$$

$$P(r|s) \propto \sum_{w} \sum_{c} P(r)P(c)P(w|c,r)P(s|w)$$

$$P(r|s) \propto P(r) \sum_{w} P(s|w) \sum_{c} P(c)P(w|c,r)$$



Second Approach: Variable Elimination

$$P(r|s) \propto \sum_{w} \sum_{c} P(r) \frac{P(c)P(w|c,r)}{P(s|w)}$$
$$f_{C}(w) = \sum_{c} P(c)P(w|c,r)$$
$$P(r|s) \propto \sum_{w} P(r)P(s|w)f_{c}(w)$$

$$P(W, X, Y, Z) = P(W)P(X|W)P(Y|X)P(Z|Y)$$

$$P(Y)?$$

$$P(Y) = \sum_{w} \sum_{x} \sum_{z} P(w)P(x|w)P(Y|x)P(z|Y)$$

$$f_w(x) = \sum P(w)P(x|w)$$

$$P(Y) = \sum_{x} \sum_{z} f_w(x) P(Y|x) P(z|Y)$$

$$f_{\mathsf{x}}(Y) = \sum_{\mathsf{x}} f_{\mathsf{w}}(\mathsf{x}) P(Y|\mathsf{x}) \qquad P(Y) = \sum_{\mathsf{z}} f_{\mathsf{x}}(Y) P(\mathsf{z}|Y)$$

$$(V)$$
 (X) (Y) (Z)

$$P(Y) = \sum_{w} \sum_{x} \sum_{z} P(w)P(x|w)P(Y|x)P(z|Y)$$

$$f_w(x) = \sum P(w)P(x|w)$$

$$P(Y) = \sum_{x} \sum_{z} f_w(x) P(Y|x) P(z|Y)$$

$$f_{\mathsf{x}}(Y) = \sum_{\mathsf{x}} f_{\mathsf{w}}(\mathsf{x}) P(Y|\mathsf{x}) \qquad P(Y) = \sum_{\mathsf{z}} f_{\mathsf{x}}(Y) P(\mathsf{z}|Y)$$

Variable Elimination

- Every variable that is not an ancestor of a query variable or evidence variable is irrelevant to the query
- Iterate:
 - choose variable to eliminate
 - sum terms relevant to variable, generate new factor
 - until no more variables to eliminate
- Exact inference is #P-Hard
 - in tree-structured BNs, linear time (in number of table entries)

Learning in Bayes Nets

- Super easy!
- Estimate each conditional probability
 - just like we did for naive Bayes