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• Probabilistic identities 

• Independence and conditional independence 

• Naive Bayes 

• Log tricks



Probability Identities
• Random variables in caps (A) 

• values in lowercase: A = a or just a for shorthand 

• P(a | b) = P(a, b) / P(b) 

• P(a, b) = P(a | b) P(b) 

• P(b | a) = P(a | b) P(b) / P(a)

conditional probability

joint probability



Probability via Counting
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Probability Identities
• Random variables in caps (A) 

• values in lowercase: A = a or just a for shorthand 

• P(a | b) = P(a, b) / P(b) 

• P(a, b) = P(a | b) P(b) 

• P(b | a) = P(a | b) P(b) / P(a)



Bayes Rule

• P(b | a) 

• P(b | a) = P(a, b) / P(a) 

• P(b | a) = P(a | b) P(b) / P(a)



Classification
• x ∈ {0,1}d,  y ∈ {0,1} 

• f(x) ∈ {0,1} 

• Accuracy: E[f(x) = y] 

• Bayes optimal classifier: f(x) = arg max y p(y | x)  

• Seems natural, but why is this optimal?



Back-of-Envelope for Bayes Optimal

• For each unique x, p(y | x) is a coin flip  

• Assume we need n samples to accurately estimate a coin flip 

• How many unique x’s?  

• |{0,1}d| = 2d 

• Need n2d samples

n = 100

d = 100

Need 1.2676506 x 1032 samples



1.2676506 x 10,000,000,000,000,000,000,000,000,000,000



How Many Samples?
• Concentration bounds





• A and B are independent iff p(A, B) = p(A) p(B)

• A and B are conditionally independent given C iff  
p(A, B | C) = p(A | C) p(B | C)

• | p(A, B) | = | A | x | B |                 | p(A) | = | A |         | p(B) | = | B |

Independence



Naive Bayes
• Assume dimensions of x are conditionally independent given y

• Bag of words: p(“virginia”, “tech” | y) = p(“virginia” | y) p(“tech” | y) 

• f(x) = arg max y  p(y | x) 

•       = arg max y  p(x | y) p(y) / p(x) 

•       = arg max y  p(x | y) p(y) 

•       = arg max y  p(y) ∏j p(xj | y)



Bernoulli Maximum Likelihood

• p(y) ∏j p(xj | y) 

• p(Y = y) ← (# examples where Y = y) / (# examples) 

• p( Xj = xj | y) ← (# ex. where Y = y and Xj = xj) / (# ex. where Y=y) 

• Learning by counting!



Breaking Maximum Likelihood
• Happy: “Great!” 

Happy: “Had a great day” 
Sad: “:-( Bad day” 
Sad: “:-(” 

• ???: “Had a bad day :-(” 

• p(y) = 0.5 

• p(happy | …) ∝ 0.5 x 0.0 …  

p(sad | …)     ∝ 0.5 x 1.0 x 0.0 x …

great had a bad day :-(
1 0 0 0 0 0
1 1 1 0 1 0
0 0 0 1 1 1
0 0 0 0 0 1

great had a bad day :-(
Happy 1.0 0.5 0.5 0.0 0.5 0

Sad 0.0 0.0 0.0 0.5 0.5 1.0
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Fixing Maximum Likelihood

• p(Z = z) ← (# examples where Y = y + ɑ) / (# examples + 2ɑ) 

• E.g., ɑ = 1 

• ɑ vanishes as # of examples grows toward infinity 

• When # is small, ɑ prevents 1.0 or 0.0 estimates



Breaking Maximum Likelihood
• Happy: “Great!” 

Happy: “Had a great day” 
Sad: “:-( Bad day” 
Sad: “:-(” 

• ???: “Had a bad day :-(” 

• p(y) = 0.5 

• p(happy | …) ∝ 0.5 x 0.25 x 0.5 x 0.5 x 0.25 x 0.5 x 0.75  

p(sad | …)     ∝ 0.5 x 0.75 x 0.25 x 0.25 x 0.5 x 0.5 x 0.75

great had a bad day :-(
1 0 0 0 0 0
1 1 1 0 1 0
0 0 0 1 1 1
0 0 0 0 0 1

great had a bad day :-(
Happy 0.75 0.5 0.5 0.25 0.5 0.25

Sad 0.25 0.25 0.25 0.5 0.5 0.75

=  0.0029

=  0.0044

2 + 1
2 + 2 (1)

= 3/4



Maximum a Posteriori
• Bernoulli: p(Z | θ) = θZ (1 - θ)(1-Z) 

• Maximum likelihood: θ ← arg maxθ’ p(Z | θ’) 

• Maximum a posteriori = maximize posterior: θ ← arg maxθ’ p(θ’ | Z) 

• p(θ’ | Z) = p(Z | θ’) p(θ’) / p(Z) 

• MAP: θ ← arg maxθ’ p(Z | θ’) p(θ’) 

• Previous trick equiv. to setting p(θ’) to a Beta distribution 



Continuous Data

• Conditional feature independence with continuous data? 

• E.g., use normal distribution for p(xj | y) 

• p(y) is the same as before 

• p(xj | y) is the MLE for univariate normal



Log Tricks
• Each p(xj | y) is in [0,1] 

• Multiplying d of them quickly goes to numerical zero 

• E.g., 0.9256 = 1.932334983E-12 

• Instead, use log probabilities: log ∏j p(xj | y) = ∑j log p(xj | y)  

• E.g., log 0.9256 = 256 log 0.9 = -11.71



Summary

• Probabilistic identities 

• Independence and conditional independence 

• Naive Bayes 

• Log tricks


