Update app.py
Browse files
app.py
CHANGED
@@ -246,55 +246,55 @@ def demo():
|
|
246 |
When generating answers, it takes past questions into account (via conversational memory), and includes document references for clarity purposes.</i>
|
247 |
<br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate an output.<br>
|
248 |
""")
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
with gr.Row():
|
257 |
-
slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
|
258 |
-
with gr.Row():
|
259 |
-
slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
|
260 |
with gr.Row():
|
261 |
-
|
262 |
with gr.Row():
|
263 |
-
|
|
|
|
|
|
|
|
|
264 |
|
265 |
-
|
|
|
|
|
|
|
|
|
266 |
with gr.Row():
|
267 |
-
|
268 |
-
label="LLM models", value = list_llm_simple[0], type="index", info="Choose your LLM model")
|
269 |
-
with gr.Accordion("Advanced options - LLM model", open=False):
|
270 |
-
with gr.Row():
|
271 |
-
slider_temperature = gr.Slider(minimum = 0.0, maximum = 1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
|
272 |
-
with gr.Row():
|
273 |
-
slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
|
274 |
-
with gr.Row():
|
275 |
-
slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
|
276 |
with gr.Row():
|
277 |
-
|
278 |
with gr.Row():
|
279 |
-
|
|
|
|
|
|
|
|
|
|
|
280 |
|
281 |
-
|
282 |
-
|
283 |
-
with gr.
|
284 |
-
|
285 |
-
|
286 |
-
source1_page = gr.Number(label="Page", scale=1)
|
287 |
-
with gr.Row():
|
288 |
-
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
|
289 |
-
source2_page = gr.Number(label="Page", scale=1)
|
290 |
-
with gr.Row():
|
291 |
-
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
|
292 |
-
source3_page = gr.Number(label="Page", scale=1)
|
293 |
with gr.Row():
|
294 |
-
|
|
|
295 |
with gr.Row():
|
296 |
-
|
297 |
-
|
|
|
|
|
|
|
|
|
|
|
298 |
|
299 |
# Preprocessing events
|
300 |
#upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
|
|
|
246 |
When generating answers, it takes past questions into account (via conversational memory), and includes document references for clarity purposes.</i>
|
247 |
<br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate an output.<br>
|
248 |
""")
|
249 |
+
|
250 |
+
with gr.Row():
|
251 |
+
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
|
252 |
+
# upload_btn = gr.UploadButton("Loading document...", height=100, file_count="multiple", file_types=["pdf"], scale=1)
|
253 |
+
with gr.Row():
|
254 |
+
db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database")
|
255 |
+
with gr.Accordion("Advanced options - Document text splitter", open=False):
|
|
|
|
|
|
|
|
|
256 |
with gr.Row():
|
257 |
+
slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
|
258 |
with gr.Row():
|
259 |
+
slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
|
260 |
+
with gr.Row():
|
261 |
+
db_progress = gr.Textbox(label="Vector database initialization", value="None")
|
262 |
+
with gr.Row():
|
263 |
+
db_btn = gr.Button("Generate vector database...")
|
264 |
|
265 |
+
|
266 |
+
with gr.Row():
|
267 |
+
llm_btn = gr.Radio(list_llm_simple, \
|
268 |
+
label="LLM models", value = list_llm_simple[0], type="index", info="Choose your LLM model")
|
269 |
+
with gr.Accordion("Advanced options - LLM model", open=False):
|
270 |
with gr.Row():
|
271 |
+
slider_temperature = gr.Slider(minimum = 0.0, maximum = 1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
with gr.Row():
|
273 |
+
slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
|
274 |
with gr.Row():
|
275 |
+
slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
|
276 |
+
with gr.Row():
|
277 |
+
llm_progress = gr.Textbox(value="None",label="QA chain initialization")
|
278 |
+
with gr.Row():
|
279 |
+
qachain_btn = gr.Button("Initialize question-answering chain...")
|
280 |
+
|
281 |
|
282 |
+
chatbot = gr.Chatbot(height=300)
|
283 |
+
with gr.Accordion("Advanced - Document references", open=False):
|
284 |
+
with gr.Row():
|
285 |
+
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
|
286 |
+
source1_page = gr.Number(label="Page", scale=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
287 |
with gr.Row():
|
288 |
+
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
|
289 |
+
source2_page = gr.Number(label="Page", scale=1)
|
290 |
with gr.Row():
|
291 |
+
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
|
292 |
+
source3_page = gr.Number(label="Page", scale=1)
|
293 |
+
with gr.Row():
|
294 |
+
msg = gr.Textbox(placeholder="Type message", container=True)
|
295 |
+
with gr.Row():
|
296 |
+
submit_btn = gr.Button("Submit")
|
297 |
+
clear_btn = gr.ClearButton([msg, chatbot])
|
298 |
|
299 |
# Preprocessing events
|
300 |
#upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
|