Update app.py
Browse files
app.py
CHANGED
@@ -10,6 +10,7 @@ from langchain.llms import HuggingFacePipeline
|
|
10 |
from langchain.chains import ConversationChain
|
11 |
from langchain.memory import ConversationBufferMemory
|
12 |
from langchain.llms import HuggingFaceHub
|
|
|
13 |
|
14 |
from pathlib import Path
|
15 |
import chromadb
|
@@ -127,24 +128,13 @@ def initialize_llmchain(temperature, max_tokens, top_k, vector_db, progress=gr.P
|
|
127 |
"load_in_8bit": True})
|
128 |
|
129 |
progress(0.75, desc="Defining buffer memory...")
|
130 |
-
memory = ConversationBufferMemory(
|
131 |
-
|
132 |
-
output_key='answer',
|
133 |
-
return_messages=True
|
134 |
-
)
|
135 |
# retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3})
|
136 |
retriever=vector_db.as_retriever()
|
137 |
progress(0.8, desc="Defining retrieval chain...")
|
138 |
-
qa_chain = ConversationalRetrievalChain.from_llm(
|
139 |
-
|
140 |
-
retriever=retriever,
|
141 |
-
chain_type="stuff",
|
142 |
-
memory=memory,
|
143 |
-
# combine_docs_chain_kwargs={"prompt": your_prompt})
|
144 |
-
return_source_documents=True,
|
145 |
-
#return_generated_question=False,
|
146 |
-
verbose=False,
|
147 |
-
)
|
148 |
progress(0.9, desc="Done!")
|
149 |
return qa_chain
|
150 |
|
@@ -269,7 +259,7 @@ def demo():
|
|
269 |
with gr.Row():
|
270 |
slider_temperature = gr.Slider(value = 0.1,visible=False)
|
271 |
with gr.Row():
|
272 |
-
slider_maxtokens = gr.Slider(value =
|
273 |
with gr.Row():
|
274 |
slider_topk = gr.Slider(value = 3, visible=False)
|
275 |
|
|
|
10 |
from langchain.chains import ConversationChain
|
11 |
from langchain.memory import ConversationBufferMemory
|
12 |
from langchain.llms import HuggingFaceHub
|
13 |
+
from langchain.memory import ConversationTokenBufferMemory
|
14 |
|
15 |
from pathlib import Path
|
16 |
import chromadb
|
|
|
128 |
"load_in_8bit": True})
|
129 |
|
130 |
progress(0.75, desc="Defining buffer memory...")
|
131 |
+
#memory = ConversationBufferMemory(memory_key="chat_history",output_key='answer',return_messages=True)
|
132 |
+
memory = ConversationTokenBufferMemory(llm = llm, max_token_limit=100)
|
|
|
|
|
|
|
133 |
# retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3})
|
134 |
retriever=vector_db.as_retriever()
|
135 |
progress(0.8, desc="Defining retrieval chain...")
|
136 |
+
qa_chain = ConversationalRetrievalChain.from_llm(llm,retriever=retriever,chain_type="stuff",
|
137 |
+
memory=memory,return_source_documents=True,verbose=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
progress(0.9, desc="Done!")
|
139 |
return qa_chain
|
140 |
|
|
|
259 |
with gr.Row():
|
260 |
slider_temperature = gr.Slider(value = 0.1,visible=False)
|
261 |
with gr.Row():
|
262 |
+
slider_maxtokens = gr.Slider(value = 4000, visible=False)
|
263 |
with gr.Row():
|
264 |
slider_topk = gr.Slider(value = 3, visible=False)
|
265 |
|