Comparative-Analysis-of-Speech-Synthesis-Models
/
TensorFlowTTS
/examples
/tacotron2
/train_tacotron2.py
| # -*- coding: utf-8 -*- | |
| # Copyright 2020 Minh Nguyen (@dathudeptrai) | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Train Tacotron2.""" | |
| import tensorflow as tf | |
| physical_devices = tf.config.list_physical_devices("GPU") | |
| for i in range(len(physical_devices)): | |
| tf.config.experimental.set_memory_growth(physical_devices[i], True) | |
| import sys | |
| sys.path.append(".") | |
| import argparse | |
| import logging | |
| import os | |
| import numpy as np | |
| import yaml | |
| from tqdm import tqdm | |
| import tensorflow_tts | |
| from examples.tacotron2.tacotron_dataset import CharactorMelDataset | |
| from tensorflow_tts.configs.tacotron2 import Tacotron2Config | |
| from tensorflow_tts.models import TFTacotron2 | |
| from tensorflow_tts.optimizers import AdamWeightDecay, WarmUp | |
| from tensorflow_tts.trainers import Seq2SeqBasedTrainer | |
| from tensorflow_tts.utils import calculate_2d_loss, calculate_3d_loss, return_strategy | |
| class Tacotron2Trainer(Seq2SeqBasedTrainer): | |
| """Tacotron2 Trainer class based on Seq2SeqBasedTrainer.""" | |
| def __init__( | |
| self, | |
| config, | |
| strategy, | |
| steps=0, | |
| epochs=0, | |
| is_mixed_precision=False, | |
| ): | |
| """Initialize trainer. | |
| Args: | |
| steps (int): Initial global steps. | |
| epochs (int): Initial global epochs. | |
| config (dict): Config dict loaded from yaml format configuration file. | |
| is_mixed_precision (bool): Use mixed precision or not. | |
| """ | |
| super(Tacotron2Trainer, self).__init__( | |
| steps=steps, | |
| epochs=epochs, | |
| config=config, | |
| strategy=strategy, | |
| is_mixed_precision=is_mixed_precision, | |
| ) | |
| # define metrics to aggregates data and use tf.summary logs them | |
| self.list_metrics_name = [ | |
| "stop_token_loss", | |
| "mel_loss_before", | |
| "mel_loss_after", | |
| "guided_attention_loss", | |
| ] | |
| self.init_train_eval_metrics(self.list_metrics_name) | |
| self.reset_states_train() | |
| self.reset_states_eval() | |
| self.config = config | |
| def compile(self, model, optimizer): | |
| super().compile(model, optimizer) | |
| self.binary_crossentropy = tf.keras.losses.BinaryCrossentropy( | |
| from_logits=True, reduction=tf.keras.losses.Reduction.NONE | |
| ) | |
| self.mse = tf.keras.losses.MeanSquaredError( | |
| reduction=tf.keras.losses.Reduction.NONE | |
| ) | |
| self.mae = tf.keras.losses.MeanAbsoluteError( | |
| reduction=tf.keras.losses.Reduction.NONE | |
| ) | |
| def _train_step(self, batch): | |
| """Here we re-define _train_step because apply input_signature make | |
| the training progress slower on my experiment. Note that input_signature | |
| is apply on based_trainer by default. | |
| """ | |
| if self._already_apply_input_signature is False: | |
| self.one_step_forward = tf.function( | |
| self._one_step_forward, experimental_relax_shapes=True | |
| ) | |
| self.one_step_evaluate = tf.function( | |
| self._one_step_evaluate, experimental_relax_shapes=True | |
| ) | |
| self.one_step_predict = tf.function( | |
| self._one_step_predict, experimental_relax_shapes=True | |
| ) | |
| self._already_apply_input_signature = True | |
| # run one_step_forward | |
| self.one_step_forward(batch) | |
| # update counts | |
| self.steps += 1 | |
| self.tqdm.update(1) | |
| self._check_train_finish() | |
| def _one_step_evaluate_per_replica(self, batch): | |
| """One step evaluate per GPU | |
| Tacotron-2 used teacher-forcing when training and evaluation. | |
| So we need pass `training=True` for inference step. | |
| """ | |
| outputs = self._model(**batch, training=True) | |
| _, dict_metrics_losses = self.compute_per_example_losses(batch, outputs) | |
| self.update_eval_metrics(dict_metrics_losses) | |
| def _one_step_predict_per_replica(self, batch): | |
| """One step predict per GPU | |
| Tacotron-2 used teacher-forcing when training and evaluation. | |
| So we need pass `training=True` for inference step. | |
| """ | |
| outputs = self._model(**batch, training=True) | |
| return outputs | |
| def compute_per_example_losses(self, batch, outputs): | |
| """Compute per example losses and return dict_metrics_losses | |
| Note that all element of the loss MUST has a shape [batch_size] and | |
| the keys of dict_metrics_losses MUST be in self.list_metrics_name. | |
| Args: | |
| batch: dictionary batch input return from dataloader | |
| outputs: outputs of the model | |
| Returns: | |
| per_example_losses: per example losses for each GPU, shape [B] | |
| dict_metrics_losses: dictionary loss. | |
| """ | |
| ( | |
| decoder_output, | |
| post_mel_outputs, | |
| stop_token_predictions, | |
| alignment_historys, | |
| ) = outputs | |
| mel_loss_before = calculate_3d_loss( | |
| batch["mel_gts"], decoder_output, loss_fn=self.mae | |
| ) | |
| mel_loss_after = calculate_3d_loss( | |
| batch["mel_gts"], post_mel_outputs, loss_fn=self.mae | |
| ) | |
| # calculate stop_loss | |
| max_mel_length = ( | |
| tf.reduce_max(batch["mel_lengths"]) | |
| if self.config["use_fixed_shapes"] is False | |
| else [self.config["max_mel_length"]] | |
| ) | |
| stop_gts = tf.expand_dims( | |
| tf.range(tf.reduce_max(max_mel_length), dtype=tf.int32), 0 | |
| ) # [1, max_len] | |
| stop_gts = tf.tile( | |
| stop_gts, [tf.shape(batch["mel_lengths"])[0], 1] | |
| ) # [B, max_len] | |
| stop_gts = tf.cast( | |
| tf.math.greater_equal(stop_gts, tf.expand_dims(batch["mel_lengths"], 1)), | |
| tf.float32, | |
| ) | |
| stop_token_loss = calculate_2d_loss( | |
| stop_gts, stop_token_predictions, loss_fn=self.binary_crossentropy | |
| ) | |
| # calculate guided attention loss. | |
| attention_masks = tf.cast( | |
| tf.math.not_equal(batch["g_attentions"], -1.0), tf.float32 | |
| ) | |
| loss_att = tf.reduce_sum( | |
| tf.abs(alignment_historys * batch["g_attentions"]) * attention_masks, | |
| axis=[1, 2], | |
| ) | |
| loss_att /= tf.reduce_sum(attention_masks, axis=[1, 2]) | |
| per_example_losses = ( | |
| stop_token_loss + mel_loss_before + mel_loss_after + loss_att | |
| ) | |
| dict_metrics_losses = { | |
| "stop_token_loss": stop_token_loss, | |
| "mel_loss_before": mel_loss_before, | |
| "mel_loss_after": mel_loss_after, | |
| "guided_attention_loss": loss_att, | |
| } | |
| return per_example_losses, dict_metrics_losses | |
| def generate_and_save_intermediate_result(self, batch): | |
| """Generate and save intermediate result.""" | |
| import matplotlib.pyplot as plt | |
| # predict with tf.function for faster. | |
| outputs = self.one_step_predict(batch) | |
| ( | |
| decoder_output, | |
| mel_outputs, | |
| stop_token_predictions, | |
| alignment_historys, | |
| ) = outputs | |
| mel_gts = batch["mel_gts"] | |
| utt_ids = batch["utt_ids"] | |
| # convert to tensor. | |
| # here we just take a sample at first replica. | |
| try: | |
| mels_before = decoder_output.values[0].numpy() | |
| mels_after = mel_outputs.values[0].numpy() | |
| mel_gts = mel_gts.values[0].numpy() | |
| alignment_historys = alignment_historys.values[0].numpy() | |
| utt_ids = utt_ids.values[0].numpy() | |
| except Exception: | |
| mels_before = decoder_output.numpy() | |
| mels_after = mel_outputs.numpy() | |
| mel_gts = mel_gts.numpy() | |
| alignment_historys = alignment_historys.numpy() | |
| utt_ids = utt_ids.numpy() | |
| # check directory | |
| dirname = os.path.join(self.config["outdir"], f"predictions/{self.steps}steps") | |
| if not os.path.exists(dirname): | |
| os.makedirs(dirname) | |
| for idx, (mel_gt, mel_before, mel_after, alignment_history) in enumerate( | |
| zip(mel_gts, mels_before, mels_after, alignment_historys), 0 | |
| ): | |
| mel_gt = tf.reshape(mel_gt, (-1, 80)).numpy() # [length, 80] | |
| mel_before = tf.reshape(mel_before, (-1, 80)).numpy() # [length, 80] | |
| mel_after = tf.reshape(mel_after, (-1, 80)).numpy() # [length, 80] | |
| # plot figure and save it | |
| utt_id = utt_ids[idx] | |
| figname = os.path.join(dirname, f"{utt_id}.png") | |
| fig = plt.figure(figsize=(10, 8)) | |
| ax1 = fig.add_subplot(311) | |
| ax2 = fig.add_subplot(312) | |
| ax3 = fig.add_subplot(313) | |
| im = ax1.imshow(np.rot90(mel_gt), aspect="auto", interpolation="none") | |
| ax1.set_title("Target Mel-Spectrogram") | |
| fig.colorbar(mappable=im, shrink=0.65, orientation="horizontal", ax=ax1) | |
| ax2.set_title(f"Predicted Mel-before-Spectrogram @ {self.steps} steps") | |
| im = ax2.imshow(np.rot90(mel_before), aspect="auto", interpolation="none") | |
| fig.colorbar(mappable=im, shrink=0.65, orientation="horizontal", ax=ax2) | |
| ax3.set_title(f"Predicted Mel-after-Spectrogram @ {self.steps} steps") | |
| im = ax3.imshow(np.rot90(mel_after), aspect="auto", interpolation="none") | |
| fig.colorbar(mappable=im, shrink=0.65, orientation="horizontal", ax=ax3) | |
| plt.tight_layout() | |
| plt.savefig(figname) | |
| plt.close() | |
| # plot alignment | |
| figname = os.path.join(dirname, f"{idx}_alignment.png") | |
| fig = plt.figure(figsize=(8, 6)) | |
| ax = fig.add_subplot(111) | |
| ax.set_title(f"Alignment @ {self.steps} steps") | |
| im = ax.imshow( | |
| alignment_history, aspect="auto", origin="lower", interpolation="none" | |
| ) | |
| fig.colorbar(im, ax=ax) | |
| xlabel = "Decoder timestep" | |
| plt.xlabel(xlabel) | |
| plt.ylabel("Encoder timestep") | |
| plt.tight_layout() | |
| plt.savefig(figname) | |
| plt.close() | |
| def main(): | |
| """Run training process.""" | |
| parser = argparse.ArgumentParser( | |
| description="Train FastSpeech (See detail in tensorflow_tts/bin/train-fastspeech.py)" | |
| ) | |
| parser.add_argument( | |
| "--train-dir", | |
| default=None, | |
| type=str, | |
| help="directory including training data. ", | |
| ) | |
| parser.add_argument( | |
| "--dev-dir", | |
| default=None, | |
| type=str, | |
| help="directory including development data. ", | |
| ) | |
| parser.add_argument( | |
| "--use-norm", default=1, type=int, help="usr norm-mels for train or raw." | |
| ) | |
| parser.add_argument( | |
| "--outdir", type=str, required=True, help="directory to save checkpoints." | |
| ) | |
| parser.add_argument( | |
| "--config", type=str, required=True, help="yaml format configuration file." | |
| ) | |
| parser.add_argument( | |
| "--resume", | |
| default="", | |
| type=str, | |
| nargs="?", | |
| help='checkpoint file path to resume training. (default="")', | |
| ) | |
| parser.add_argument( | |
| "--verbose", | |
| type=int, | |
| default=1, | |
| help="logging level. higher is more logging. (default=1)", | |
| ) | |
| parser.add_argument( | |
| "--mixed_precision", | |
| default=0, | |
| type=int, | |
| help="using mixed precision for generator or not.", | |
| ) | |
| parser.add_argument( | |
| "--pretrained", | |
| default="", | |
| type=str, | |
| nargs="?", | |
| help="pretrained weights .h5 file to load weights from. Auto-skips non-matching layers", | |
| ) | |
| parser.add_argument( | |
| "--use-fal", | |
| default=0, | |
| type=int, | |
| help="Use forced alignment guided attention loss or regular", | |
| ) | |
| args = parser.parse_args() | |
| # return strategy | |
| STRATEGY = return_strategy() | |
| # set mixed precision config | |
| if args.mixed_precision == 1: | |
| tf.config.optimizer.set_experimental_options({"auto_mixed_precision": True}) | |
| args.mixed_precision = bool(args.mixed_precision) | |
| args.use_norm = bool(args.use_norm) | |
| args.use_fal = bool(args.use_fal) | |
| # set logger | |
| if args.verbose > 1: | |
| logging.basicConfig( | |
| level=logging.DEBUG, | |
| stream=sys.stdout, | |
| format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", | |
| ) | |
| elif args.verbose > 0: | |
| logging.basicConfig( | |
| level=logging.INFO, | |
| stream=sys.stdout, | |
| format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", | |
| ) | |
| else: | |
| logging.basicConfig( | |
| level=logging.WARN, | |
| stream=sys.stdout, | |
| format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", | |
| ) | |
| logging.warning("Skip DEBUG/INFO messages") | |
| # check directory existence | |
| if not os.path.exists(args.outdir): | |
| os.makedirs(args.outdir) | |
| # check arguments | |
| if args.train_dir is None: | |
| raise ValueError("Please specify --train-dir") | |
| if args.dev_dir is None: | |
| raise ValueError("Please specify --valid-dir") | |
| # load and save config | |
| with open(args.config) as f: | |
| config = yaml.load(f, Loader=yaml.Loader) | |
| config.update(vars(args)) | |
| config["version"] = tensorflow_tts.__version__ | |
| # get dataset | |
| if config["remove_short_samples"]: | |
| mel_length_threshold = config["mel_length_threshold"] | |
| else: | |
| mel_length_threshold = 0 | |
| if config["format"] == "npy": | |
| charactor_query = "*-ids.npy" | |
| mel_query = "*-raw-feats.npy" if args.use_norm is False else "*-norm-feats.npy" | |
| align_query = "*-alignment.npy" if args.use_fal is True else "" | |
| charactor_load_fn = np.load | |
| mel_load_fn = np.load | |
| else: | |
| raise ValueError("Only npy are supported.") | |
| train_dataset = CharactorMelDataset( | |
| dataset=config["tacotron2_params"]["dataset"], | |
| root_dir=args.train_dir, | |
| charactor_query=charactor_query, | |
| mel_query=mel_query, | |
| charactor_load_fn=charactor_load_fn, | |
| mel_load_fn=mel_load_fn, | |
| mel_length_threshold=mel_length_threshold, | |
| reduction_factor=config["tacotron2_params"]["reduction_factor"], | |
| use_fixed_shapes=config["use_fixed_shapes"], | |
| align_query=align_query, | |
| ) | |
| # update max_mel_length and max_char_length to config | |
| config.update({"max_mel_length": int(train_dataset.max_mel_length)}) | |
| config.update({"max_char_length": int(train_dataset.max_char_length)}) | |
| with open(os.path.join(args.outdir, "config.yml"), "w") as f: | |
| yaml.dump(config, f, Dumper=yaml.Dumper) | |
| for key, value in config.items(): | |
| logging.info(f"{key} = {value}") | |
| train_dataset = train_dataset.create( | |
| is_shuffle=config["is_shuffle"], | |
| allow_cache=config["allow_cache"], | |
| batch_size=config["batch_size"] | |
| * STRATEGY.num_replicas_in_sync | |
| * config["gradient_accumulation_steps"], | |
| ) | |
| valid_dataset = CharactorMelDataset( | |
| dataset=config["tacotron2_params"]["dataset"], | |
| root_dir=args.dev_dir, | |
| charactor_query=charactor_query, | |
| mel_query=mel_query, | |
| charactor_load_fn=charactor_load_fn, | |
| mel_load_fn=mel_load_fn, | |
| mel_length_threshold=mel_length_threshold, | |
| reduction_factor=config["tacotron2_params"]["reduction_factor"], | |
| use_fixed_shapes=False, # don't need apply fixed shape for evaluation. | |
| align_query=align_query, | |
| ).create( | |
| is_shuffle=config["is_shuffle"], | |
| allow_cache=config["allow_cache"], | |
| batch_size=config["batch_size"] * STRATEGY.num_replicas_in_sync, | |
| ) | |
| # define trainer | |
| trainer = Tacotron2Trainer( | |
| config=config, | |
| strategy=STRATEGY, | |
| steps=0, | |
| epochs=0, | |
| is_mixed_precision=args.mixed_precision, | |
| ) | |
| with STRATEGY.scope(): | |
| # define model. | |
| tacotron_config = Tacotron2Config(**config["tacotron2_params"]) | |
| tacotron2 = TFTacotron2(config=tacotron_config, name="tacotron2") | |
| tacotron2._build() | |
| tacotron2.summary() | |
| if len(args.pretrained) > 1: | |
| tacotron2.load_weights(args.pretrained, by_name=True, skip_mismatch=True) | |
| logging.info( | |
| f"Successfully loaded pretrained weight from {args.pretrained}." | |
| ) | |
| # AdamW for tacotron2 | |
| learning_rate_fn = tf.keras.optimizers.schedules.PolynomialDecay( | |
| initial_learning_rate=config["optimizer_params"]["initial_learning_rate"], | |
| decay_steps=config["optimizer_params"]["decay_steps"], | |
| end_learning_rate=config["optimizer_params"]["end_learning_rate"], | |
| ) | |
| learning_rate_fn = WarmUp( | |
| initial_learning_rate=config["optimizer_params"]["initial_learning_rate"], | |
| decay_schedule_fn=learning_rate_fn, | |
| warmup_steps=int( | |
| config["train_max_steps"] | |
| * config["optimizer_params"]["warmup_proportion"] | |
| ), | |
| ) | |
| optimizer = AdamWeightDecay( | |
| learning_rate=learning_rate_fn, | |
| weight_decay_rate=config["optimizer_params"]["weight_decay"], | |
| beta_1=0.9, | |
| beta_2=0.98, | |
| epsilon=1e-6, | |
| exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"], | |
| ) | |
| _ = optimizer.iterations | |
| # compile trainer | |
| trainer.compile(model=tacotron2, optimizer=optimizer) | |
| # start training | |
| try: | |
| trainer.fit( | |
| train_dataset, | |
| valid_dataset, | |
| saved_path=os.path.join(config["outdir"], "checkpoints/"), | |
| resume=args.resume, | |
| ) | |
| except KeyboardInterrupt: | |
| trainer.save_checkpoint() | |
| logging.info(f"Successfully saved checkpoint @ {trainer.steps}steps.") | |
| if __name__ == "__main__": | |
| main() | |