Comparative-Analysis-of-Speech-Synthesis-Models
/
TensorFlowTTS
/examples
/tacotron2
/extract_duration.py
| # -*- coding: utf-8 -*- | |
| # Copyright 2020 Minh Nguyen (@dathudeptrai) | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Extract durations based-on tacotron-2 alignments for FastSpeech.""" | |
| import argparse | |
| import logging | |
| import os | |
| from numba import jit | |
| import sys | |
| sys.path.append(".") | |
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| import tensorflow as tf | |
| import yaml | |
| from tqdm import tqdm | |
| from examples.tacotron2.tacotron_dataset import CharactorMelDataset | |
| from tensorflow_tts.configs import Tacotron2Config | |
| from tensorflow_tts.models import TFTacotron2 | |
| def get_duration_from_alignment(alignment): | |
| D = np.array([0 for _ in range(np.shape(alignment)[0])]) | |
| for i in range(np.shape(alignment)[1]): | |
| max_index = list(alignment[:, i]).index(alignment[:, i].max()) | |
| D[max_index] = D[max_index] + 1 | |
| return D | |
| def main(): | |
| """Running extract tacotron-2 durations.""" | |
| parser = argparse.ArgumentParser( | |
| description="Extract durations from charactor with trained Tacotron-2 " | |
| "(See detail in tensorflow_tts/example/tacotron-2/extract_duration.py)." | |
| ) | |
| parser.add_argument( | |
| "--rootdir", | |
| default=None, | |
| type=str, | |
| required=True, | |
| help="directory including ids/durations files.", | |
| ) | |
| parser.add_argument( | |
| "--outdir", type=str, required=True, help="directory to save generated speech." | |
| ) | |
| parser.add_argument( | |
| "--checkpoint", type=str, required=True, help="checkpoint file to be loaded." | |
| ) | |
| parser.add_argument( | |
| "--use-norm", default=1, type=int, help="usr norm-mels for train or raw." | |
| ) | |
| parser.add_argument("--batch-size", default=8, type=int, help="batch size.") | |
| parser.add_argument("--win-front", default=2, type=int, help="win-front.") | |
| parser.add_argument("--win-back", default=2, type=int, help="win-front.") | |
| parser.add_argument( | |
| "--use-window-mask", default=1, type=int, help="toggle window masking." | |
| ) | |
| parser.add_argument("--save-alignment", default=0, type=int, help="save-alignment.") | |
| parser.add_argument( | |
| "--config", | |
| default=None, | |
| type=str, | |
| required=True, | |
| help="yaml format configuration file. if not explicitly provided, " | |
| "it will be searched in the checkpoint directory. (default=None)", | |
| ) | |
| parser.add_argument( | |
| "--verbose", | |
| type=int, | |
| default=1, | |
| help="logging level. higher is more logging. (default=1)", | |
| ) | |
| args = parser.parse_args() | |
| # set logger | |
| if args.verbose > 1: | |
| logging.basicConfig( | |
| level=logging.DEBUG, | |
| format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", | |
| ) | |
| elif args.verbose > 0: | |
| logging.basicConfig( | |
| level=logging.INFO, | |
| format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", | |
| ) | |
| else: | |
| logging.basicConfig( | |
| level=logging.WARN, | |
| format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", | |
| ) | |
| logging.warning("Skip DEBUG/INFO messages") | |
| # check directory existence | |
| if not os.path.exists(args.outdir): | |
| os.makedirs(args.outdir) | |
| # load config | |
| with open(args.config) as f: | |
| config = yaml.load(f, Loader=yaml.Loader) | |
| config.update(vars(args)) | |
| if config["format"] == "npy": | |
| char_query = "*-ids.npy" | |
| mel_query = "*-raw-feats.npy" if args.use_norm is False else "*-norm-feats.npy" | |
| char_load_fn = np.load | |
| mel_load_fn = np.load | |
| else: | |
| raise ValueError("Only npy is supported.") | |
| # define data-loader | |
| dataset = CharactorMelDataset( | |
| dataset=config["tacotron2_params"]["dataset"], | |
| root_dir=args.rootdir, | |
| charactor_query=char_query, | |
| mel_query=mel_query, | |
| charactor_load_fn=char_load_fn, | |
| mel_load_fn=mel_load_fn, | |
| reduction_factor=config["tacotron2_params"]["reduction_factor"], | |
| use_fixed_shapes=True, | |
| ) | |
| dataset = dataset.create(allow_cache=True, batch_size=args.batch_size, drop_remainder=False) | |
| # define model and load checkpoint | |
| tacotron2 = TFTacotron2( | |
| config=Tacotron2Config(**config["tacotron2_params"]), | |
| name="tacotron2", | |
| ) | |
| tacotron2._build() # build model to be able load_weights. | |
| tacotron2.load_weights(args.checkpoint) | |
| # apply tf.function for tacotron2. | |
| tacotron2 = tf.function(tacotron2, experimental_relax_shapes=True) | |
| for data in tqdm(dataset, desc="[Extract Duration]"): | |
| utt_ids = data["utt_ids"] | |
| input_lengths = data["input_lengths"] | |
| mel_lengths = data["mel_lengths"] | |
| utt_ids = utt_ids.numpy() | |
| real_mel_lengths = data["real_mel_lengths"] | |
| del data["real_mel_lengths"] | |
| # tacotron2 inference. | |
| mel_outputs, post_mel_outputs, stop_outputs, alignment_historys = tacotron2( | |
| **data, | |
| use_window_mask=args.use_window_mask, | |
| win_front=args.win_front, | |
| win_back=args.win_back, | |
| training=True, | |
| ) | |
| # convert to numpy | |
| alignment_historys = alignment_historys.numpy() | |
| for i, alignment in enumerate(alignment_historys): | |
| real_char_length = input_lengths[i].numpy() | |
| real_mel_length = real_mel_lengths[i].numpy() | |
| alignment_mel_length = int( | |
| np.ceil( | |
| real_mel_length / config["tacotron2_params"]["reduction_factor"] | |
| ) | |
| ) | |
| alignment = alignment[:real_char_length, :alignment_mel_length] | |
| d = get_duration_from_alignment(alignment) # [max_char_len] | |
| d = d * config["tacotron2_params"]["reduction_factor"] | |
| assert ( | |
| np.sum(d) >= real_mel_length | |
| ), f"{d}, {np.sum(d)}, {alignment_mel_length}, {real_mel_length}" | |
| if np.sum(d) > real_mel_length: | |
| rest = np.sum(d) - real_mel_length | |
| # print(d, np.sum(d), real_mel_length) | |
| if d[-1] > rest: | |
| d[-1] -= rest | |
| elif d[0] > rest: | |
| d[0] -= rest | |
| else: | |
| d[-1] -= rest // 2 | |
| d[0] -= rest - rest // 2 | |
| assert d[-1] >= 0 and d[0] >= 0, f"{d}, {np.sum(d)}, {real_mel_length}" | |
| saved_name = utt_ids[i].decode("utf-8") | |
| # check a length compatible | |
| assert ( | |
| len(d) == real_char_length | |
| ), f"different between len_char and len_durations, {len(d)} and {real_char_length}" | |
| assert ( | |
| np.sum(d) == real_mel_length | |
| ), f"different between sum_durations and len_mel, {np.sum(d)} and {real_mel_length}" | |
| # save D to folder. | |
| np.save( | |
| os.path.join(args.outdir, f"{saved_name}-durations.npy"), | |
| d.astype(np.int32), | |
| allow_pickle=False, | |
| ) | |
| # save alignment to debug. | |
| if args.save_alignment == 1: | |
| figname = os.path.join(args.outdir, f"{saved_name}_alignment.png") | |
| fig = plt.figure(figsize=(8, 6)) | |
| ax = fig.add_subplot(111) | |
| ax.set_title(f"Alignment of {saved_name}") | |
| im = ax.imshow( | |
| alignment, aspect="auto", origin="lower", interpolation="none" | |
| ) | |
| fig.colorbar(im, ax=ax) | |
| xlabel = "Decoder timestep" | |
| plt.xlabel(xlabel) | |
| plt.ylabel("Encoder timestep") | |
| plt.tight_layout() | |
| plt.savefig(figname) | |
| plt.close() | |
| if __name__ == "__main__": | |
| main() | |