Spaces:
Runtime error
Runtime error
File size: 1,959 Bytes
5071fce 6afb4da a074b00 5071fce 403d5d1 d98a25d a5975a1 d98a25d 5c031c4 d98a25d 19d6696 5c031c4 5071fce 0eef91c 7945e1e 5071fce aa1d224 4a0240d 90eac43 4a0240d 7945e1e aa1d224 96d8424 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import streamlit as st
from transformers import T5ForConditionalGeneration, AutoTokenizer
st.title("SpellCorrectorT5")
st.markdown('SpellCorrectorT5 is a fine-tuned version of **pre-trained t5-small model** modelled on randomly selected 50000 sentences modified by [imputing random noises/errors](./random_noiser.py) and trained using transformers. It not only looks for _spelling errors but also looks for the semantics_ in the sentence and suggest other possible words for the incorrect word.')
ttokenizer = AutoTokenizer.from_pretrained("./")
tmodel = T5ForConditionalGeneration.from_pretrained('./')
form = st.form("T5-form")
examples = ["I will return it to yu once it is donr",
"Iu is going to rain",
"Feel free to raach out to me",
"Wheir do you live?",
"It wis great mieting with you all"]
input_text = form.selectbox(label="Choose an example",
options=examples)
form.write("(or)")
input_text = form.text_input(label='Enter your own sentence', value=input_text)
submit = form.form_submit_button("Submit")
if submit:
input_ids = ttokenizer.encode('seq: '+ input_text, return_tensors='pt')
# generate text until the output length (which includes the context length) reaches 50
outputs = tmodel.generate(
input_ids,
do_sample=True,
max_length=50,
top_p=0.99,
top_k=50,
num_return_sequences=3
)
st.subheader("Most probable: ")
for y in outputs:
out_text = ttokenizer.decode(y, skip_special_tokens=True)
st.success(out_text.capitalize())
c_text = ""
for x in out_text.lower().split(" "):
if x in input_text.lower().split(" "):
c_text = c_text + x + " "
else:
c_text = c_text + '<span style="font-weight:bold; color:rgb(150,255,100);">' + x + '</span>' + " "
ct = c_text.capitalize()
st.markdown(str(ct), unsafe_allow_html=True)
st.markdown("***", unsafe_allow_html=True) |