vishnu23 commited on
Commit
1f4c82b
·
1 Parent(s): a693c36

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -0
app.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import tensorflow as tf
3
+ from tensorflow.keras.models import load_model
4
+ from tensorflow.keras.preprocessing.image import load_img, img_to_array
5
+ import numpy as np
6
+ from PIL import Image
7
+
8
+ model = load_model('/content/drive/MyDrive/Colab Notebooks/model_extended.h5')
9
+
10
+ def predict_image(image):
11
+ img_array = img_to_array(image)
12
+ img_array = img_array.reshape((1, 256, 256, 3))
13
+ img_array = img_array / 255.0
14
+ predictions = model.predict(img_array)
15
+ predicted_class_index = predictions.argmax()
16
+ class_labels = ['bacterial_leaf_blight', 'bacterial_leaf_streak', 'bacterial_panicle_blight','blast','brown_spot','dead_heart','downy_mildew','hispa','normal','tungro' ] # Replace with your actual class labels
17
+ predicted_class_label = class_labels[predicted_class_index]
18
+ return predicted_class_label
19
+
20
+ my_app = gr.Blocks()
21
+ with my_app:
22
+ gr.Markdown("<center><h1>Paddy Pest Disease Classification Application UI with Gradio</h1></center>")
23
+ with gr.Row():
24
+ with gr.Column():
25
+ img_source = gr.Image(label="Please select source Image", shape=(256, 256))
26
+ source_image_loader = gr.Button("Load Image")
27
+ with gr.Column():
28
+ output = gr.Textbox(label="Image Info")
29
+ source_image_loader.click(predict_image,img_source,output)
30
+
31
+ my_app.launch(debug=True)