Spaces:
Paused
Paused
| # Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # /// script | |
| # dependencies = [ | |
| # "trl @ git+https://github.com/huggingface/trl.git", | |
| # "peft", | |
| # ] | |
| # /// | |
| import shutil | |
| import torch | |
| from accelerate import PartialState | |
| from datasets import load_dataset | |
| from transformers import ( | |
| AutoModelForCausalLM, | |
| AutoModelForSequenceClassification, | |
| AutoTokenizer, | |
| HfArgumentParser, | |
| ) | |
| from trl import ( | |
| ModelConfig, | |
| PPOConfig, | |
| PPOTrainer, | |
| ScriptArguments, | |
| get_kbit_device_map, | |
| get_peft_config, | |
| get_quantization_config, | |
| ) | |
| from trl.trainer.utils import SIMPLE_CHAT_TEMPLATE | |
| """ | |
| python examples/scripts/ppo/ppo_tldr.py \ | |
| --dataset_name trl-internal-testing/tldr-preference-sft-trl-style \ | |
| --dataset_test_split validation \ | |
| --learning_rate 3e-6 \ | |
| --output_dir models/minimal/ppo_tldr \ | |
| --per_device_train_batch_size 1 \ | |
| --gradient_accumulation_steps 64 \ | |
| --total_episodes 30000 \ | |
| --model_name_or_path EleutherAI/pythia-1b-deduped \ | |
| --sft_model_path cleanrl/EleutherAI_pythia-1b-deduped__sft__tldr \ | |
| --reward_model_path cleanrl/EleutherAI_pythia-1b-deduped__reward__tldr \ | |
| --missing_eos_penalty 1.0 \ | |
| --stop_token eos \ | |
| --response_length 53 \ | |
| --eval_strategy steps \ | |
| --eval_steps 100 | |
| accelerate launch --config_file examples/accelerate_configs/deepspeed_zero2.yaml \ | |
| examples/scripts/ppo/ppo_tldr.py \ | |
| --dataset_name trl-internal-testing/tldr-preference-sft-trl-style \ | |
| --dataset_test_split validation \ | |
| --output_dir models/minimal/ppo_tldr \ | |
| --learning_rate 3e-6 \ | |
| --per_device_train_batch_size 16 \ | |
| --gradient_accumulation_steps 4 \ | |
| --total_episodes 1000000 \ | |
| --model_name_or_path EleutherAI/pythia-1b-deduped \ | |
| --sft_model_path cleanrl/EleutherAI_pythia-1b-deduped__sft__tldr \ | |
| --reward_model_path cleanrl/EleutherAI_pythia-1b-deduped__reward__tldr \ | |
| --local_rollout_forward_batch_size 16 \ | |
| --missing_eos_penalty 1.0 \ | |
| --stop_token eos \ | |
| --eval_strategy steps \ | |
| --eval_steps 100 | |
| """ | |
| if __name__ == "__main__": | |
| parser = HfArgumentParser((ScriptArguments, PPOConfig, ModelConfig)) | |
| script_args, training_args, model_args = parser.parse_args_into_dataclasses() | |
| # remove output_dir if exists | |
| shutil.rmtree(training_args.output_dir, ignore_errors=True) | |
| ################ | |
| # Model & Tokenizer | |
| ################ | |
| torch_dtype = ( | |
| model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype) | |
| ) | |
| quantization_config = get_quantization_config(model_args) | |
| model_kwargs = dict( | |
| revision=model_args.model_revision, | |
| attn_implementation=model_args.attn_implementation, | |
| torch_dtype=torch_dtype, | |
| device_map=get_kbit_device_map() if quantization_config is not None else None, | |
| quantization_config=quantization_config, | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| model_args.model_name_or_path, padding_side="left", trust_remote_code=model_args.trust_remote_code | |
| ) | |
| tokenizer.add_special_tokens({"pad_token": "[PAD]"}) | |
| if tokenizer.chat_template is None: | |
| tokenizer.chat_template = SIMPLE_CHAT_TEMPLATE | |
| value_model = AutoModelForSequenceClassification.from_pretrained( | |
| training_args.reward_model_path, trust_remote_code=model_args.trust_remote_code, num_labels=1 | |
| ) | |
| reward_model = AutoModelForSequenceClassification.from_pretrained( | |
| training_args.reward_model_path, trust_remote_code=model_args.trust_remote_code, num_labels=1 | |
| ) | |
| policy = AutoModelForCausalLM.from_pretrained( | |
| training_args.sft_model_path, trust_remote_code=model_args.trust_remote_code | |
| ) | |
| peft_config = get_peft_config(model_args) | |
| if peft_config is None: | |
| ref_policy = AutoModelForCausalLM.from_pretrained( | |
| training_args.sft_model_path, trust_remote_code=model_args.trust_remote_code | |
| ) | |
| else: | |
| ref_policy = None | |
| ################ | |
| # Dataset | |
| ################ | |
| dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config) | |
| train_dataset = dataset[script_args.dataset_train_split] | |
| eval_dataset = dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None | |
| def prepare_dataset(dataset, tokenizer): | |
| """pre-tokenize the dataset before training; only collate during training""" | |
| def tokenize(element): | |
| input_ids = tokenizer.apply_chat_template( | |
| element["messages"][:1], | |
| padding=False, | |
| add_generation_prompt=True, | |
| ) | |
| return {"input_ids": input_ids, "lengths": len(input_ids)} | |
| return dataset.map( | |
| tokenize, | |
| remove_columns=dataset.column_names, | |
| num_proc=training_args.dataset_num_proc, | |
| ) | |
| # Compute that only on the main process for faster data processing. | |
| # see: https://github.com/huggingface/trl/pull/1255 | |
| with PartialState().local_main_process_first(): | |
| train_dataset = prepare_dataset(train_dataset, tokenizer) | |
| if eval_dataset is not None: | |
| eval_dataset = prepare_dataset(eval_dataset, tokenizer) | |
| # filtering | |
| train_dataset = train_dataset.filter(lambda x: x["lengths"] <= 512, num_proc=training_args.dataset_num_proc) | |
| if eval_dataset is not None: | |
| eval_dataset = eval_dataset.filter(lambda x: x["lengths"] <= 512, num_proc=training_args.dataset_num_proc) | |
| assert train_dataset[0]["input_ids"][-1] != tokenizer.eos_token_id, "The last token should not be an EOS token" | |
| ################ | |
| # Training | |
| ################ | |
| trainer = PPOTrainer( | |
| args=training_args, | |
| processing_class=tokenizer, | |
| model=policy, | |
| ref_model=ref_policy, | |
| reward_model=reward_model, | |
| value_model=value_model, | |
| train_dataset=train_dataset, | |
| eval_dataset=eval_dataset, | |
| peft_config=peft_config, | |
| ) | |
| trainer.train() | |
| # Save and push to hub | |
| trainer.save_model(training_args.output_dir) | |
| if training_args.push_to_hub: | |
| trainer.push_to_hub(dataset_name=script_args.dataset_name) | |
| trainer.generate_completions() | |