Spaces:
Paused
Paused
| # Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import gc | |
| import math | |
| import os | |
| import textwrap | |
| import time | |
| from collections import defaultdict | |
| from contextlib import contextmanager, nullcontext | |
| from pathlib import Path | |
| from typing import Optional, Union | |
| import numpy as np | |
| import pandas as pd | |
| import torch | |
| import torch.nn as nn | |
| from accelerate import Accelerator | |
| from accelerate.utils import broadcast, gather_object | |
| from datasets import Dataset | |
| from torch.utils.data import DataLoader | |
| from transformers import ( | |
| BaseImageProcessor, | |
| DataCollatorWithPadding, | |
| FeatureExtractionMixin, | |
| GenerationConfig, | |
| PreTrainedTokenizerBase, | |
| ProcessorMixin, | |
| Trainer, | |
| TrainerCallback, | |
| TrainerControl, | |
| is_wandb_available, | |
| ) | |
| from transformers.integrations import get_reporting_integration_callbacks | |
| from transformers.trainer import DEFAULT_CALLBACKS, DEFAULT_PROGRESS_CALLBACK | |
| from transformers.trainer_callback import CallbackHandler, ExportableState, PrinterCallback | |
| from transformers.utils import is_peft_available, is_rich_available | |
| from ..core import masked_mean, masked_whiten | |
| from ..models import create_reference_model | |
| from ..models.utils import unwrap_model_for_generation | |
| from .ppo_config import PPOConfig | |
| from .utils import ( | |
| OnlineTrainerState, | |
| batch_generation, | |
| disable_dropout_in_model, | |
| empty_cache, | |
| exact_div, | |
| first_true_indices, | |
| forward, | |
| generate_model_card, | |
| get_comet_experiment_url, | |
| get_reward, | |
| log_table_to_comet_experiment, | |
| peft_module_casting_to_bf16, | |
| prepare_deepspeed, | |
| print_rich_table, | |
| selective_log_softmax, | |
| truncate_response, | |
| ) | |
| if is_peft_available(): | |
| from peft import PeftConfig, PeftModel, get_peft_model | |
| if is_wandb_available(): | |
| import wandb | |
| INVALID_LOGPROB = 1.0 | |
| # taken from https://github.com/OpenLMLab/MOSS-RLHF/blob/40b91eb2f2b71b16919addede0341d2bef70825d/ppo/ppo_trainer.py#L29 | |
| # we did this we can do a single `model = accelerator.prepare(model)` | |
| class PolicyAndValueWrapper(nn.Module): | |
| def __init__(self, policy, value_model) -> None: | |
| super().__init__() | |
| self.policy = policy | |
| self.value_model = value_model | |
| self.critic_backbone = getattr(value_model, value_model.base_model_prefix) | |
| def forward(self, **kwargs): | |
| output = self.critic_backbone(**kwargs) | |
| logits = self.value_model.score(output.hidden_states[-1]) | |
| return self.policy(**kwargs), logits | |
| class PPOTrainer(Trainer): | |
| _tag_names = ["trl", "ppo"] | |
| def __init__( | |
| self, | |
| args: PPOConfig, | |
| processing_class: Optional[ | |
| Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin] | |
| ], | |
| model: nn.Module, | |
| ref_model: Optional[nn.Module], | |
| reward_model: nn.Module, | |
| train_dataset: Dataset, | |
| value_model: nn.Module, | |
| data_collator: Optional[DataCollatorWithPadding] = None, | |
| eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None, | |
| # less commonly used | |
| optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None), | |
| callbacks: Optional[list[TrainerCallback]] = None, | |
| peft_config: Optional["PeftConfig"] = None, | |
| ) -> None: | |
| if ref_model is model: | |
| raise ValueError( | |
| "`model` and `ref_model` cannot be the same object. If you want `ref_model` to be the " | |
| "same as `model`, you must make a copy of it, or `None` if you use peft." | |
| ) | |
| self.args = args | |
| self.processing_class = processing_class | |
| self.policy_model = model | |
| # Define the collator if not provided | |
| if data_collator is None: | |
| data_collator = DataCollatorWithPadding(self.processing_class) | |
| # Handle stop token settings: update policy model's generation_config to use provided stop token | |
| if args.stop_token and args.stop_token_id: | |
| raise ValueError("You cannot set both `stop_token` and `stop_token_id`.") | |
| elif args.stop_token: | |
| if args.stop_token == "eos": | |
| self.policy_model.generation_config.eos_token_id = self.stop_token_id = processing_class.eos_token_id | |
| else: | |
| raise ValueError( | |
| f"Unknown `stop_token` {args.stop_token}. Allowed values are: `'eos'` and `None` (no stop token)." | |
| ) | |
| else: | |
| self.policy_model.generation_config.eos_token_id = self.stop_token_id = args.stop_token_id # None or int | |
| # Check that the kl estimator is valid | |
| if self.args.kl_estimator not in {"k1", "k3"}: | |
| raise ValueError( | |
| "kl_estimator must be either 'k1' (straightforward, unbiased) or 'k3' (lower variance, unbiased, " | |
| "appears to be a strictly better estimator). See " | |
| "[Approximating KL Divergence](http://joschu.net/blog/kl-approx.html) for details." | |
| ) | |
| # peft support | |
| if not is_peft_available() and peft_config is not None: | |
| raise ImportError( | |
| "PEFT is not installed and you passed a `peft_config` in the trainer's kwargs, please install it to use the PEFT models" | |
| ) | |
| elif is_peft_available() and peft_config is not None: | |
| # if model is a peft model and we have a peft_confg, we merge and unload it first | |
| if isinstance(self.policy_model, PeftModel): | |
| self.policy_model = self.policy_model.merge_and_unload() | |
| # get peft model with the given config | |
| self.policy_model = get_peft_model(self.policy_model, peft_config) | |
| if args.bf16 and getattr(self.policy_model, "is_loaded_in_4bit", False): | |
| peft_module_casting_to_bf16(self.policy_model) | |
| self.is_peft_model = is_peft_available() and isinstance(self.policy_model, PeftModel) | |
| self.model_adapter_name = args.model_adapter_name | |
| self.ref_adapter_name = args.ref_adapter_name | |
| if ref_model: | |
| self.ref_model = ref_model | |
| elif self.is_peft_model: | |
| self.ref_model = None | |
| else: | |
| self.ref_model = create_reference_model(self.policy_model) | |
| self.reward_model = reward_model | |
| self.train_dataset = train_dataset | |
| self.train_dataset_len = len(train_dataset) | |
| self.value_model = value_model | |
| self.data_collator = data_collator | |
| self.eval_dataset = eval_dataset | |
| self.optimizer, self.lr_scheduler = optimizers | |
| self.optimizer_cls_and_kwargs = None # needed for transformers >= 4.47 | |
| ######### | |
| # calculate various batch sizes | |
| ######### | |
| if args.total_episodes is None: # allow the users to define episodes in terms of epochs. | |
| args.total_episodes = int(args.num_train_epochs * self.train_dataset_len) | |
| accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps) | |
| self.accelerator = accelerator | |
| args.world_size = accelerator.num_processes | |
| args.local_batch_size = args.per_device_train_batch_size * args.gradient_accumulation_steps | |
| args.micro_batch_size = int(args.per_device_train_batch_size * args.world_size) | |
| args.batch_size = int(args.local_batch_size * args.world_size) | |
| args.mini_batch_size = exact_div( | |
| args.batch_size, args.num_mini_batches, "`batch_size` must be a multiple of `num_mini_batches`" | |
| ) | |
| args.local_mini_batch_size = exact_div( | |
| args.local_batch_size, args.num_mini_batches, "`local_batch_size` must be a multiple of `num_mini_batches`" | |
| ) | |
| if args.whiten_rewards: | |
| assert args.local_mini_batch_size >= 8, ( | |
| f"Per-rank minibatch size {args.local_mini_batch_size} is insufficient for whitening" | |
| ) | |
| # `per_rank_rollout_batch_size` is our `args.local_batch_size` | |
| # `per_rank_minibatch_size` is our `args.local_mini_batch_size` | |
| args.num_total_batches = math.ceil( | |
| args.total_episodes / args.batch_size | |
| ) # we may train for more than `total_episodes` | |
| time_tensor = torch.tensor(int(time.time()), device=accelerator.device) | |
| time_int = broadcast(time_tensor, 0).item() # avoid different timestamps across processes | |
| args.run_name = f"{args.exp_name}__{args.seed}__{time_int}" | |
| self.local_seed = args.seed + accelerator.process_index * 100003 # Prime | |
| if args.num_sample_generations > 0: | |
| self.sample_generations_freq = max(1, args.num_total_batches // args.num_sample_generations) | |
| self.local_dataloader_batch_size = args.local_batch_size | |
| ######### | |
| # setup model, optimizer, and others | |
| ######### | |
| for module in [self.policy_model, self.ref_model, self.value_model, self.reward_model]: | |
| if module is not None: | |
| disable_dropout_in_model(module) | |
| self.model = PolicyAndValueWrapper(self.policy_model, self.value_model) | |
| self.model.config = self.policy_model.config # needed for pushing to hub | |
| self.create_optimizer_and_scheduler( | |
| num_training_steps=args.num_total_batches | |
| ) # note that we are calling `self.lr_scheduler.step()` manually only at the batch level | |
| ######### | |
| ### trainer specifics | |
| ######### | |
| default_callbacks = DEFAULT_CALLBACKS + get_reporting_integration_callbacks(self.args.report_to) | |
| self.callbacks = default_callbacks if callbacks is None else default_callbacks + callbacks | |
| self.callback_handler = CallbackHandler( | |
| self.callbacks, self.model, self.processing_class, self.optimizer, self.lr_scheduler | |
| ) | |
| self.add_callback(PrinterCallback if self.args.disable_tqdm else DEFAULT_PROGRESS_CALLBACK) | |
| self.control = TrainerControl() | |
| self.state = OnlineTrainerState( | |
| is_local_process_zero=self.is_local_process_zero(), | |
| is_world_process_zero=self.is_world_process_zero(), | |
| stateful_callbacks=[ | |
| cb for cb in self.callback_handler.callbacks + [self.control] if isinstance(cb, ExportableState) | |
| ], | |
| ) | |
| self.current_flos = 0 | |
| self.hp_search_backend = None | |
| self.is_deepspeed_enabled = getattr(self.accelerator.state, "deepspeed_plugin", None) is not None | |
| self.is_fsdp_enabled = getattr(self.accelerator.state, "fsdp_plugin", None) is not None | |
| # Create distant repo and output directory if needed | |
| self.hub_model_id = None | |
| if self.args.push_to_hub: | |
| self.init_hf_repo() | |
| if self.args.should_save: | |
| os.makedirs(self.args.output_dir, exist_ok=True) | |
| # Add tags for models that have been loaded with the correct transformers version | |
| if hasattr(self.model, "add_model_tags"): | |
| self.model.add_model_tags(self._tag_names) | |
| ######### | |
| ### setup dataloader | |
| ######### | |
| self.dataloader = DataLoader( | |
| self.train_dataset, | |
| batch_size=self.local_dataloader_batch_size, | |
| shuffle=True, | |
| collate_fn=self.data_collator, | |
| drop_last=True, # needed; otherwise the last batch will be of ragged shape | |
| ) | |
| # sync random states for DataLoader(shuffle=True) before `accelerator.prepare` | |
| # see https://gist.github.com/vwxyzjn/2581bff1e48e185e0b85b6dfe1def79c | |
| torch.manual_seed(args.seed) | |
| self.model, self.optimizer, self.dataloader = accelerator.prepare(self.model, self.optimizer, self.dataloader) | |
| torch.manual_seed(self.local_seed) # reset the local seed again | |
| self.eval_dataloader = DataLoader( | |
| self.eval_dataset, | |
| batch_size=args.per_device_eval_batch_size, | |
| collate_fn=self.data_collator, | |
| drop_last=True, | |
| ) # no need to shuffle eval dataset | |
| self.eval_dataloader = accelerator.prepare(self.eval_dataloader) | |
| if self.is_deepspeed_enabled: | |
| self.reward_model = prepare_deepspeed( | |
| self.reward_model, args.per_device_train_batch_size, args.fp16, args.bf16 | |
| ) | |
| if self.ref_model is None: | |
| if not self.is_peft_model: | |
| raise ValueError("No reference model and model is not a Peft model.") | |
| else: | |
| self.ref_model = prepare_deepspeed( | |
| self.ref_model, args.per_device_train_batch_size, args.fp16, args.bf16 | |
| ) | |
| else: | |
| if self.ref_model is None: | |
| if not self.is_peft_model: | |
| raise ValueError("No reference model and model is not a Peft model.") | |
| else: | |
| self.ref_model = self.ref_model.to(self.accelerator.device) | |
| self.reward_model = self.reward_model.to(self.accelerator.device) | |
| def get_train_dataloader(self) -> DataLoader: | |
| return self.dataloader | |
| def get_eval_dataloader(self) -> DataLoader: | |
| return self.eval_dataloader | |
| def null_ref_context(self): | |
| """Context manager for handling null reference model (that is, peft adapter manipulation).""" | |
| with ( | |
| self.accelerator.unwrap_model(self.model.policy).disable_adapter() | |
| if self.is_peft_model and not self.ref_adapter_name | |
| else nullcontext() | |
| ): | |
| if self.ref_adapter_name: | |
| self.model.policy.set_adapter(self.ref_adapter_name) | |
| yield | |
| if self.ref_adapter_name: | |
| self.model.policy.set_adapter(self.model_adapter_name or "default") | |
| def save_model(self, output_dir: Optional[str] = None, _internal_call: bool = False): | |
| backup_model = self.model | |
| self.model = self.model.policy # save only the policy | |
| if self.is_deepspeed_enabled: | |
| backup_deepspeed = self.deepspeed | |
| self.deepspeed = self.model | |
| super().save_model(output_dir, _internal_call) | |
| self.model = backup_model | |
| if self.is_deepspeed_enabled: | |
| self.deepspeed = backup_deepspeed | |
| def train(self): | |
| args = self.args | |
| accelerator = self.accelerator | |
| optimizer = self.optimizer | |
| model = self.model | |
| ref_policy = self.ref_model | |
| reward_model = self.reward_model | |
| processing_class = self.processing_class | |
| dataloader = self.dataloader | |
| device = accelerator.device | |
| def repeat_generator(): | |
| while True: | |
| yield from dataloader | |
| iter_dataloader = iter(repeat_generator()) | |
| generation_config = GenerationConfig( | |
| max_new_tokens=args.response_length, | |
| temperature=(args.temperature + 1e-7), | |
| top_k=0.0, | |
| top_p=1.0, | |
| do_sample=True, | |
| ) | |
| accelerator.print("===training policy===") | |
| start_time = time.time() | |
| stats_shape = (args.num_ppo_epochs, args.num_mini_batches, args.gradient_accumulation_steps) | |
| approxkl_stats = torch.zeros(stats_shape, device=device) | |
| pg_clipfrac_stats = torch.zeros(stats_shape, device=device) | |
| pg_loss_stats = torch.zeros(stats_shape, device=device) | |
| vf_loss_stats = torch.zeros(stats_shape, device=device) | |
| vf_clipfrac_stats = torch.zeros(stats_shape, device=device) | |
| entropy_stats = torch.zeros(stats_shape, device=device) | |
| ratio_stats = torch.zeros(stats_shape, device=device) | |
| model.train() | |
| # trainer state initialization | |
| self.state.global_step = 0 | |
| self.state.episode = 0 | |
| self.state.max_steps = args.num_total_batches | |
| self.state.num_train_epochs = args.total_episodes / self.train_dataset_len | |
| # Compute absolute values for logging, eval, and save if given as ratio | |
| if args.logging_steps is not None: | |
| if args.logging_steps < 1: | |
| self.state.logging_steps = math.ceil(self.state.max_steps * args.logging_steps) | |
| else: | |
| self.state.logging_steps = args.logging_steps | |
| if args.eval_steps is not None: | |
| if args.eval_steps < 1: | |
| self.state.eval_steps = math.ceil(self.state.max_steps * args.eval_steps) | |
| else: | |
| self.state.eval_steps = args.eval_steps | |
| if args.save_steps is not None: | |
| if args.save_steps < 1: | |
| self.state.save_steps = math.ceil(self.state.max_steps * args.save_steps) | |
| else: | |
| self.state.save_steps = args.save_steps | |
| self.control = self.callback_handler.on_train_begin(args, self.state, self.control) | |
| # backward compatibility | |
| if self.is_deepspeed_enabled: | |
| self.deepspeed = self.model | |
| self.model_wrapped = self.model | |
| for update in range(1, args.num_total_batches + 1): | |
| self.state.episode += 1 * args.batch_size | |
| data = next(iter_dataloader) | |
| with torch.no_grad(): | |
| queries = data["input_ids"].to(device) | |
| context_length = queries.shape[1] | |
| responses = [] | |
| postprocessed_responses = [] | |
| logprobs = [] | |
| ref_logprobs = [] | |
| scores = [] | |
| sequence_lengths = [] | |
| values = [] | |
| with unwrap_model_for_generation( | |
| self.model, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation | |
| ) as unwrapped_model: | |
| query_responses, logitss = batch_generation( | |
| unwrapped_model.policy, | |
| queries, | |
| args.local_rollout_forward_batch_size, | |
| processing_class.pad_token_id, | |
| generation_config, | |
| ) | |
| for i in range(0, queries.shape[0], args.local_rollout_forward_batch_size): | |
| query = queries[i : i + args.local_rollout_forward_batch_size] | |
| query_response = query_responses[i : i + args.local_rollout_forward_batch_size] | |
| response = query_response[:, context_length:] | |
| logits = logitss[i : i + args.local_rollout_forward_batch_size] | |
| logprob = selective_log_softmax(logits, response) | |
| del logits | |
| empty_cache() | |
| if ref_policy is None: | |
| with self.null_ref_context(): | |
| ref_output = forward(model.policy, query_response, processing_class.pad_token_id) | |
| else: | |
| ref_output = forward(ref_policy, query_response, processing_class.pad_token_id) | |
| ref_logits = ref_output.logits[:, context_length - 1 : -1] | |
| ref_logits /= args.temperature + 1e-7 | |
| ref_logprob = selective_log_softmax(ref_logits, response) | |
| del ref_output, ref_logits | |
| empty_cache() | |
| # Response Processing 1. truncate response after the first occurrence of `stop_token_id` | |
| postprocessed_response = response | |
| if self.stop_token_id is not None: # handle the edge case when stop_token_id exists but is 0 | |
| postprocessed_response = truncate_response( | |
| self.stop_token_id, processing_class.pad_token_id, response | |
| ) | |
| # Response Processing 2. run reward model on the truncated responses | |
| postprocessed_query_response = torch.cat((query, postprocessed_response), 1) | |
| sequence_length = first_true_indices(postprocessed_response == processing_class.pad_token_id) - 1 | |
| unwrapped_value_model = accelerator.unwrap_model(model).value_model | |
| full_value, _, _ = get_reward( | |
| unwrapped_value_model, query_response, processing_class.pad_token_id, context_length | |
| ) | |
| value = full_value[:, context_length - 1 : -1].squeeze(-1) | |
| _, score, _ = get_reward( | |
| reward_model, postprocessed_query_response, processing_class.pad_token_id, context_length | |
| ) | |
| responses.append(response) | |
| postprocessed_responses.append(postprocessed_response) | |
| logprobs.append(logprob) | |
| ref_logprobs.append(ref_logprob) | |
| sequence_lengths.append(sequence_length) | |
| scores.append(score) | |
| values.append(value) | |
| responses = torch.cat(responses, 0) | |
| postprocessed_responses = torch.cat(postprocessed_responses, 0) | |
| logprobs = torch.cat(logprobs, 0) | |
| ref_logprobs = torch.cat(ref_logprobs, 0) | |
| sequence_lengths = torch.cat(sequence_lengths, 0) | |
| scores = torch.cat(scores, 0) | |
| values = torch.cat(values, 0) | |
| del (logprob, ref_logprob, full_value, value, score, unwrapped_model) | |
| empty_cache() | |
| gc.collect() | |
| # Response Processing 3. Filter completion. Ensure that the sample contains stop_token_id | |
| # Completions not passing that filter will receive a lower score. | |
| contain_eos_token = torch.any(postprocessed_responses == self.processing_class.eos_token_id, dim=-1) | |
| if self.args.missing_eos_penalty is not None: | |
| scores[~contain_eos_token] -= self.args.missing_eos_penalty | |
| # accelerator.print(f"{scores=}, {(contain_eos_token.sum() / len(contain_eos_token))=}") | |
| # be very careful with `padding_mask_p1`; see https://excalidraw.com/#json=LWnzG4w2k5DjF_EOL_xPt,e2w3a-hFJ_gX5vOfeyXGTw | |
| response_idxs = torch.arange(responses.shape[1], device=responses.device).repeat(responses.shape[0], 1) | |
| padding_mask = response_idxs > sequence_lengths.unsqueeze(1) | |
| logprobs = torch.masked_fill(logprobs, padding_mask, INVALID_LOGPROB) | |
| ref_logprobs = torch.masked_fill(ref_logprobs, padding_mask, INVALID_LOGPROB) | |
| sequence_lengths_p1 = sequence_lengths + 1 | |
| padding_mask_p1 = response_idxs > (sequence_lengths_p1.unsqueeze(1)) | |
| values = torch.masked_fill(values, padding_mask_p1, 0) | |
| # 4. compute rewards | |
| # Formula used by http://joschu.net/blog/kl-approx.html for the k1 and k3 estimators | |
| logr = ref_logprobs - logprobs | |
| kl = -logr if args.kl_estimator == "k1" else (logr.exp() - 1) - logr # Else statement is k3 | |
| non_score_reward = -args.kl_coef * kl | |
| rewards = non_score_reward.clone() | |
| actual_start = torch.arange(rewards.size(0), device=rewards.device) | |
| actual_end = torch.where(sequence_lengths_p1 < rewards.size(1), sequence_lengths_p1, sequence_lengths) | |
| rewards[[actual_start, actual_end]] += scores | |
| # 5. whiten rewards | |
| if args.whiten_rewards: | |
| rewards = masked_whiten(rewards, mask=~padding_mask_p1, shift_mean=False) | |
| rewards = torch.masked_fill(rewards, padding_mask_p1, 0) | |
| # 6. compute advantages and returns | |
| lastgaelam = 0 | |
| advantages_reversed = [] | |
| gen_length = responses.shape[1] | |
| for t in reversed(range(gen_length)): | |
| nextvalues = values[:, t + 1] if t < gen_length - 1 else 0.0 | |
| delta = rewards[:, t] + args.gamma * nextvalues - values[:, t] | |
| lastgaelam = delta + args.gamma * args.lam * lastgaelam | |
| advantages_reversed.append(lastgaelam) | |
| advantages = torch.stack(advantages_reversed[::-1], axis=1) | |
| returns = advantages + values | |
| advantages = masked_whiten(advantages, ~padding_mask) | |
| advantages = torch.masked_fill(advantages, padding_mask, 0) | |
| empty_cache() | |
| # Do multiple epochs of PPO training, with a fresh random shuffle in each epoch | |
| for ppo_epoch_idx in range(args.num_ppo_epochs): | |
| b_inds = np.random.permutation(args.local_batch_size) | |
| minibatch_idx = 0 | |
| for mini_batch_start in range(0, args.local_batch_size, args.local_mini_batch_size): | |
| mini_batch_end = mini_batch_start + args.local_mini_batch_size | |
| mini_batch_inds = b_inds[mini_batch_start:mini_batch_end] | |
| gradient_accumulation_idx = 0 | |
| for micro_batch_start in range(0, args.local_mini_batch_size, args.per_device_train_batch_size): | |
| with accelerator.accumulate(model): | |
| micro_batch_end = micro_batch_start + args.per_device_train_batch_size | |
| micro_batch_inds = mini_batch_inds[micro_batch_start:micro_batch_end] | |
| mb_advantage = advantages[micro_batch_inds] | |
| mb_responses = responses[micro_batch_inds] | |
| mb_query_responses = query_responses[micro_batch_inds] | |
| mb_logprobs = logprobs[micro_batch_inds] | |
| mb_return = returns[micro_batch_inds] | |
| mb_values = values[micro_batch_inds] | |
| output, vpred_temp = forward(model, mb_query_responses, processing_class.pad_token_id) | |
| logits = output.logits[:, context_length - 1 : -1] | |
| logits /= args.temperature + 1e-7 | |
| new_logprobs = selective_log_softmax(logits, mb_responses) | |
| new_logprobs = torch.masked_fill( | |
| new_logprobs, padding_mask[micro_batch_inds], INVALID_LOGPROB | |
| ) | |
| vpred = vpred_temp[:, context_length - 1 : -1].squeeze(-1) | |
| vpred = torch.masked_fill(vpred, padding_mask_p1[micro_batch_inds], 0) | |
| vpredclipped = torch.clamp( | |
| vpred, | |
| mb_values - args.cliprange_value, | |
| mb_values + args.cliprange_value, | |
| ) | |
| vf_losses1 = torch.square(vpred - mb_return) | |
| vf_losses2 = torch.square(vpredclipped - mb_return) | |
| vf_loss_max = torch.max(vf_losses1, vf_losses2) | |
| vf_loss = 0.5 * masked_mean(vf_loss_max, ~padding_mask_p1[micro_batch_inds]) | |
| vf_clipfrac = masked_mean( | |
| (vf_losses2 > vf_losses1).float(), ~padding_mask_p1[micro_batch_inds] | |
| ) | |
| logprobs_diff = new_logprobs - mb_logprobs | |
| ratio = torch.exp(logprobs_diff) | |
| pg_losses = -mb_advantage * ratio | |
| pg_losses2 = -mb_advantage * torch.clamp(ratio, 1.0 - args.cliprange, 1.0 + args.cliprange) | |
| pg_loss_max = torch.max(pg_losses, pg_losses2) | |
| pg_loss = masked_mean(pg_loss_max, ~padding_mask[micro_batch_inds]) | |
| loss = pg_loss + args.vf_coef * vf_loss | |
| accelerator.backward(loss) | |
| optimizer.step() | |
| optimizer.zero_grad() | |
| with torch.no_grad(): | |
| pg_clipfrac = masked_mean( | |
| (pg_losses2 > pg_losses).float(), ~padding_mask[micro_batch_inds] | |
| ) | |
| prob_dist = torch.nn.functional.softmax(logits, dim=-1) | |
| entropy = torch.logsumexp(logits, dim=-1) - torch.sum(prob_dist * logits, dim=-1) | |
| approxkl = 0.5 * (logprobs_diff**2).mean() | |
| approxkl_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = approxkl | |
| pg_clipfrac_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = ( | |
| pg_clipfrac | |
| ) | |
| pg_loss_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = pg_loss | |
| vf_loss_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = vf_loss | |
| vf_clipfrac_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = ( | |
| vf_clipfrac | |
| ) | |
| entropy_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = entropy.mean() | |
| ratio_stats[ppo_epoch_idx, minibatch_idx, gradient_accumulation_idx] = ratio.mean() | |
| gradient_accumulation_idx += 1 | |
| minibatch_idx += 1 | |
| # del everything and empty cache | |
| # fmt: off | |
| del ( | |
| output, vpred_temp, logits, new_logprobs, vpred, vpredclipped, | |
| vf_losses1, vf_losses2, vf_loss, vf_clipfrac, logprobs_diff, ratio, pg_losses, pg_losses2, pg_loss_max, | |
| pg_loss, loss, pg_clipfrac, prob_dist, entropy, approxkl, mb_return, | |
| mb_advantage, mb_values, mb_responses, mb_query_responses, mb_logprobs, | |
| ) | |
| # fmt: on | |
| empty_cache() | |
| with torch.no_grad(): | |
| mean_kl = kl.sum(1).mean() | |
| mean_entropy = (-logprobs).sum(1).mean() | |
| mean_non_score_reward = non_score_reward.sum(1).mean() | |
| rlhf_reward = mean_non_score_reward + scores.mean() | |
| eps = int(self.state.episode / (time.time() - start_time)) | |
| metrics = {} | |
| metrics["eps"] = eps | |
| metrics["objective/kl"] = self.accelerator.gather_for_metrics(mean_kl).mean().item() | |
| metrics["objective/entropy"] = self.accelerator.gather_for_metrics(mean_entropy).mean().item() | |
| metrics["objective/non_score_reward"] = ( | |
| self.accelerator.gather_for_metrics(mean_non_score_reward).mean().item() | |
| ) | |
| metrics["objective/rlhf_reward"] = self.accelerator.gather_for_metrics(rlhf_reward).mean().item() | |
| metrics["objective/scores"] = self.accelerator.gather_for_metrics(scores.mean()).mean().item() | |
| metrics["policy/approxkl_avg"] = self.accelerator.gather_for_metrics(approxkl_stats).mean().item() | |
| metrics["policy/clipfrac_avg"] = self.accelerator.gather_for_metrics(pg_clipfrac_stats).mean().item() | |
| metrics["loss/policy_avg"] = self.accelerator.gather_for_metrics(pg_loss_stats).mean().item() | |
| metrics["loss/value_avg"] = self.accelerator.gather_for_metrics(vf_loss_stats).mean().item() | |
| metrics["val/clipfrac_avg"] = self.accelerator.gather_for_metrics(vf_clipfrac_stats).mean().item() | |
| metrics["policy/entropy_avg"] = self.accelerator.gather_for_metrics(entropy_stats).mean().item() | |
| metrics["val/ratio"] = self.accelerator.gather_for_metrics(ratio_stats).mean().item() | |
| metrics["val/ratio_var"] = self.accelerator.gather_for_metrics(ratio_stats).var().item() | |
| metrics["val/num_eos_tokens"] = (responses == processing_class.eos_token_id).sum().item() | |
| metrics["lr"] = self.lr_scheduler.get_last_lr()[0] | |
| metrics["episode"] = self.state.episode | |
| self.state.epoch = self.state.episode / self.train_dataset_len # used by self.log | |
| self.state.global_step += 1 | |
| self.log(metrics) | |
| self.lr_scheduler.step() | |
| self.control = self.callback_handler.on_step_end(args, self.state, self.control) | |
| if self.control.should_save: | |
| self._save_checkpoint(model, trial=None) | |
| self.control = self.callback_handler.on_save(self.args, self.state, self.control) | |
| del kl, mean_kl, mean_entropy, mean_non_score_reward, scores, metrics, non_score_reward | |
| empty_cache() | |
| gc.collect() | |
| if args.num_sample_generations > 0 and (update - 1) % self.sample_generations_freq == 0: | |
| self.generate_completions(sampling=True) | |
| empty_cache() | |
| del ( | |
| query_responses, | |
| responses, | |
| postprocessed_responses, | |
| logprobs, | |
| ref_logprobs, | |
| values, | |
| sequence_lengths, | |
| contain_eos_token, | |
| sequence_lengths_p1, | |
| response_idxs, | |
| padding_mask, | |
| padding_mask_p1, | |
| rewards, | |
| actual_start, | |
| actual_end, | |
| advantages, | |
| returns, | |
| ) | |
| empty_cache() | |
| # HF trainer specifics | |
| self.control = self.callback_handler.on_train_end(args, self.state, self.control) | |
| if self.control.should_save: | |
| self._save_checkpoint(model, trial=None, metrics=None) | |
| self.control = self.callback_handler.on_save(self.args, self.state, self.control) | |
| def generate_completions(self, sampling: bool = False): | |
| args = self.args | |
| processing_class = self.processing_class | |
| generation_config = GenerationConfig( | |
| max_new_tokens=self.args.response_length, | |
| temperature=(0.01 + 1e-7), | |
| top_k=0.0, | |
| top_p=1.0, | |
| do_sample=True, | |
| ) | |
| table = defaultdict(list) | |
| with unwrap_model_for_generation( | |
| self.model, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation | |
| ) as unwrapped_model: | |
| for batch in self.eval_dataloader: | |
| query = batch["input_ids"] | |
| with torch.no_grad(): | |
| context_length = query.shape[1] | |
| query_response, _ = batch_generation( | |
| unwrapped_model.policy, | |
| query, | |
| query.shape[0], | |
| processing_class.pad_token_id, | |
| generation_config, | |
| ) | |
| response = query_response[:, context_length:] | |
| postprocessed_response = response | |
| if self.stop_token_id is not None: # handle the edge case when stop_token_id exists but is 0 | |
| postprocessed_response = truncate_response( | |
| self.stop_token_id, processing_class.pad_token_id, response | |
| ) | |
| table["query"].extend( | |
| gather_object(processing_class.batch_decode(query, skip_special_tokens=True)) | |
| ) | |
| table["model response"].extend( | |
| gather_object(processing_class.batch_decode(postprocessed_response)) | |
| ) | |
| postprocessed_query_response = torch.cat((query, postprocessed_response), 1) | |
| _, score, _ = get_reward( | |
| self.reward_model, postprocessed_query_response, processing_class.pad_token_id, context_length | |
| ) | |
| table["score"].extend(self.accelerator.gather_for_metrics(score).float().cpu().numpy()) | |
| if sampling: | |
| break | |
| df = pd.DataFrame(table) | |
| if self.accelerator.is_main_process: | |
| if is_rich_available(): | |
| print_rich_table(df.iloc[0 : 0 + 5]) | |
| if "wandb" in args.report_to: | |
| import wandb | |
| if wandb.run is not None: | |
| wandb.log({"completions": wandb.Table(dataframe=df)}) | |
| if "comet_ml" in args.report_to: | |
| log_table_to_comet_experiment( | |
| name="completions.csv", | |
| table=df, | |
| ) | |
| # Ensure the model card is saved along with the checkpoint | |
| def _save_checkpoint(self, model, trial): | |
| if self.args.hub_model_id is None: | |
| model_name = Path(self.args.output_dir).name | |
| else: | |
| model_name = self.args.hub_model_id.split("/")[-1] | |
| self.create_model_card(model_name=model_name) | |
| super()._save_checkpoint(model, trial) | |
| def create_model_card( | |
| self, | |
| model_name: Optional[str] = None, | |
| dataset_name: Optional[str] = None, | |
| tags: Union[str, list[str], None] = None, | |
| ): | |
| """ | |
| Creates a draft of a model card using the information available to the `Trainer`. | |
| Args: | |
| model_name (`str` or `None`, *optional*, defaults to `None`): | |
| Name of the model. | |
| dataset_name (`str` or `None`, *optional*, defaults to `None`): | |
| Name of the dataset used for training. | |
| tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`): | |
| Tags to be associated with the model card. | |
| """ | |
| if not self.is_world_process_zero(): | |
| return | |
| if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path): | |
| base_model = self.model.config._name_or_path | |
| else: | |
| base_model = None | |
| # normalize `tags` to a mutable set | |
| if tags is None: | |
| tags = set() | |
| elif isinstance(tags, str): | |
| tags = {tags} | |
| else: | |
| tags = set(tags) | |
| if hasattr(self.model.config, "unsloth_version"): | |
| tags.add("unsloth") | |
| tags.update(self._tag_names) | |
| citation = textwrap.dedent("""\ | |
| @article{mziegler2019fine-tuning, | |
| title = {{Fine-Tuning Language Models from Human Preferences}}, | |
| author = {Daniel M. Ziegler and Nisan Stiennon and Jeffrey Wu and Tom B. Brown and Alec Radford and Dario Amodei and Paul F. Christiano and Geoffrey Irving}, | |
| year = 2019, | |
| eprint = {arXiv:1909.08593} | |
| }""") | |
| model_card = generate_model_card( | |
| base_model=base_model, | |
| model_name=model_name, | |
| hub_model_id=self.hub_model_id, | |
| dataset_name=dataset_name, | |
| tags=tags, | |
| wandb_url=wandb.run.url if is_wandb_available() and wandb.run is not None else None, | |
| comet_url=get_comet_experiment_url(), | |
| trainer_name="PPO", | |
| trainer_citation=citation, | |
| paper_title="Fine-Tuning Language Models from Human Preferences", | |
| paper_id="1909.08593", | |
| ) | |
| model_card.save(os.path.join(self.args.output_dir, "README.md")) | |