Spaces:
Paused
Paused
| # Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from dataclasses import dataclass, field | |
| from typing import Any, Optional | |
| from transformers import TrainingArguments | |
| class KTOConfig(TrainingArguments): | |
| r""" | |
| Configuration class for the [`KTOTrainer`]. | |
| This class includes only the parameters that are specific to KTO training. For a full list of training arguments, | |
| please refer to the [`~transformers.TrainingArguments`] documentation. Note that default values in this class may | |
| differ from those in [`~transformers.TrainingArguments`]. | |
| Using [`~transformers.HfArgumentParser`] we can turn this class into | |
| [argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the | |
| command line. | |
| Parameters: | |
| max_length (`int` or `None`, *optional*, defaults to `1024`): | |
| Maximum length of the sequences (prompt + completion) in the batch. This argument is required if you want | |
| to use the default data collator. | |
| max_prompt_length (`int` or `None`, *optional*, defaults to `512`): | |
| Maximum length of the prompt. This argument is required if you want to use the default data collator. | |
| max_completion_length (`int` or `None`, *optional*, defaults to `None`): | |
| Maximum length of the completion. This argument is required if you want to use the default data collator | |
| and your model is an encoder-decoder. | |
| beta (`float`, *optional*, defaults to `0.1`): | |
| Parameter controlling the deviation from the reference model. Higher β means less deviation from the | |
| reference model. | |
| loss_type (`str`, *optional*, defaults to `"kto"`): | |
| Type of loss to use. Possible values are: | |
| - `"kto"`: KTO loss from the [KTO](https://huggingface.co/papers/2402.01306) paper. | |
| - `"apo_zero_unpaired"`: Unpaired variant of APO-zero loss from the | |
| [APO](https://huggingface.co/papers/2408.06266) paper. | |
| desirable_weight (`float`, *optional*, defaults to `1.0`): | |
| Desirable losses are weighed by this factor to counter unequal number of desirable and undesirable paris. | |
| undesirable_weight (`float`, *optional*, defaults to `1.0`): | |
| Undesirable losses are weighed by this factor to counter unequal number of desirable and undesirable pairs. | |
| label_pad_token_id (`int`, *optional*, defaults to `-100`): | |
| Label pad token id. This argument is required if you want to use the default data collator. | |
| padding_value (`int` or `None`, *optional*, defaults to `None`): | |
| Padding value to use. If `None`, the padding value of the tokenizer is used. | |
| truncation_mode (`str`, *optional*, defaults to `"keep_end"`): | |
| Truncation mode to use when the prompt is too long. Possible values are `"keep_end"` or `"keep_start"`. | |
| This argument is required if you want to use the default data collator. | |
| generate_during_eval (`bool`, *optional*, defaults to `False`): | |
| If `True`, generates and logs completions from both the model and the reference model to W&B or Comet | |
| during evaluation. | |
| is_encoder_decoder (`bool` or `None`, *optional*, defaults to `None`): | |
| When using the `model_init` argument (callable) to instantiate the model instead of the `model` argument, | |
| you need to specify if the model returned by the callable is an encoder-decoder model. | |
| precompute_ref_log_probs (`bool`, *optional*, defaults to `False`): | |
| Whether to precompute reference model log probabilities for training and evaluation datasets. This is | |
| useful when training without the reference model to reduce the total GPU memory needed. | |
| model_init_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`): | |
| Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the model from a | |
| string. | |
| ref_model_init_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`): | |
| Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the reference model | |
| from a string. | |
| dataset_num_proc: (`int` or `None`, *optional*, defaults to `None`): | |
| Number of processes to use for processing the dataset. | |
| disable_dropout (`bool`, *optional*, defaults to `True`): | |
| Whether to disable dropout in the model and reference model. | |
| use_liger_loss (`bool`, *optional*, defaults to `False`): | |
| Whether to use Liger loss. It requires liger-kernel to be installed. | |
| base_model_attribute_name (`str`, *optional*, defaults to `"model"`): | |
| Name of the attribute in the model that contains the base model. This is used to get the base model from | |
| the model when the model does not have a `get_decoder` method in the case when `use_liger_loss` is `True`. | |
| """ | |
| _VALID_DICT_FIELDS = TrainingArguments._VALID_DICT_FIELDS + ["model_init_kwargs", "ref_model_init_kwargs"] | |
| # Parameters whose default values are overridden from TrainingArguments | |
| learning_rate: float = field( | |
| default=1e-6, | |
| metadata={"help": "The initial learning rate for AdamW."}, | |
| ) | |
| logging_steps: float = field( | |
| default=10, | |
| metadata={ | |
| "help": "Log every X updates steps. Should be an integer or a float in range `[0,1)`. If smaller than 1, " | |
| "will be interpreted as ratio of total training steps." | |
| }, | |
| ) | |
| bf16: Optional[bool] = field( | |
| default=None, | |
| metadata={ | |
| "help": "Whether to use bf16 (mixed) precision instead of 32-bit. Requires Ampere or higher NVIDIA " | |
| "architecture or Intel XPU or using CPU (use_cpu) or Ascend NPU. If not set, it defaults to `True` if " | |
| "`fp16` is not set." | |
| }, | |
| ) | |
| max_length: Optional[int] = field( | |
| default=1024, | |
| metadata={"help": "Maximum length of the sequences (prompt + completion) in the batch."}, | |
| ) | |
| max_prompt_length: Optional[int] = field( | |
| default=512, | |
| metadata={ | |
| "help": "Maximum length of the prompt. This argument is required if you want to use the default data " | |
| "collator and your model is an encoder-decoder." | |
| }, | |
| ) | |
| max_completion_length: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": "Maximum length of the completion. This argument is required if you want to use the default data " | |
| "collator and your model is an encoder-decoder." | |
| }, | |
| ) | |
| beta: float = field( | |
| default=0.1, | |
| metadata={ | |
| "help": "Parameter controlling the deviation from the reference model. Higher β means less deviation from " | |
| "the reference model." | |
| }, | |
| ) | |
| loss_type: str = field( | |
| default="kto", | |
| metadata={ | |
| "help": "Type of loss to use.", | |
| "choices": ["kto", "apo_zero_unpaired"], | |
| }, | |
| ) | |
| desirable_weight: float = field( | |
| default=1.0, | |
| metadata={ | |
| "help": "Desirable losses are weighed by this factor to counter unequal number of desirable and " | |
| "undesirable pairs.", | |
| }, | |
| ) | |
| undesirable_weight: float = field( | |
| default=1.0, | |
| metadata={ | |
| "help": "Undesirable losses are weighed by this factor to counter unequal number of desirable and " | |
| "undesirable pairs.", | |
| }, | |
| ) | |
| label_pad_token_id: int = field( | |
| default=-100, | |
| metadata={ | |
| "help": "Label pad token id. This argument is required if you want to use the default data collator." | |
| }, | |
| ) | |
| padding_value: Optional[int] = field( | |
| default=None, | |
| metadata={"help": "Padding value to use. If `None`, the padding value of the tokenizer is used."}, | |
| ) | |
| truncation_mode: str = field( | |
| default="keep_end", | |
| metadata={ | |
| "help": "Truncation mode to use when the prompt is too long.", | |
| "choices": ["keep_end", "keep_start"], | |
| }, | |
| ) | |
| generate_during_eval: bool = field( | |
| default=False, | |
| metadata={ | |
| "help": "If `True`, generates and logs completions from both the model and the reference model to W&B " | |
| "during evaluation." | |
| }, | |
| ) | |
| is_encoder_decoder: Optional[bool] = field( | |
| default=None, | |
| metadata={ | |
| "help": "When using the `model_init` argument (callable) to instantiate the model instead of the `model` " | |
| "argument, you need to specify if the model returned by the callable is an encoder-decoder model." | |
| }, | |
| ) | |
| disable_dropout: bool = field( | |
| default=True, | |
| metadata={"help": "Whether to disable dropout in the model."}, | |
| ) | |
| precompute_ref_log_probs: bool = field( | |
| default=False, | |
| metadata={ | |
| "help": "Whether to precompute reference model log probabilities for training and evaluation datasets. " | |
| "This is useful when training without the reference model to reduce the total GPU memory needed." | |
| }, | |
| ) | |
| model_init_kwargs: Optional[dict[str, Any]] = field( | |
| default=None, | |
| metadata={ | |
| "help": "Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the model " | |
| "from a string." | |
| }, | |
| ) | |
| ref_model_init_kwargs: Optional[dict[str, Any]] = field( | |
| default=None, | |
| metadata={ | |
| "help": "Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the " | |
| "reference model from a string." | |
| }, | |
| ) | |
| dataset_num_proc: Optional[int] = field( | |
| default=None, | |
| metadata={"help": "Number of processes to use for processing the dataset."}, | |
| ) | |
| use_liger_loss: bool = field( | |
| default=False, | |
| metadata={"help": "Whether to use Liger loss. It requires liger-kernel to be installed."}, | |
| ) | |
| base_model_attribute_name: str = field( | |
| default="model", | |
| metadata={ | |
| "help": "Name of the attribute in the model that contains the base model. This is used to get the base " | |
| "model from the model when the model does not have a `get_decoder` method in the case when " | |
| "`use_liger_loss` is `True`." | |
| }, | |
| ) | |
| def __post_init__(self): | |
| self.bf16 = not (self.fp16) if self.bf16 is None else self.bf16 | |
| super().__post_init__() | |