Spaces:
				
			
			
	
			
			
		Paused
		
	
	
	
			
			
	
	
	
	
		
		
		Paused
		
	| # Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # /// script | |
| # dependencies = [ | |
| # "trl @ git+https://github.com/huggingface/trl.git", | |
| # "peft", | |
| # ] | |
| # /// | |
| import argparse | |
| import importlib | |
| import os | |
| import sys | |
| from dataclasses import dataclass, field | |
| from typing import Optional | |
| from datasets import load_dataset | |
| from transformers import AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer | |
| from trl import GRPOConfig, GRPOTrainer, ModelConfig, ScriptArguments, TrlParser, get_peft_config | |
| from trl.rewards import think_format_reward | |
| reward_funcs_registry = { | |
| "think_format_reward": think_format_reward, | |
| } | |
| class GRPOScriptArguments(ScriptArguments): | |
| """ | |
| Script arguments for the GRPO training script. | |
| Args: | |
| reward_model_name_or_path (`str` or `None`, *optional*, defaults to `None`): | |
| Reward model id of a pretrained model hosted inside a model repo on huggingface.co or local path to a | |
| directory containing model weights saved using [`~transformers.PreTrainedModel.save_pretrained`]. | |
| reward_funcs (`list[str]` or `None`, *optional*, defaults to `None`): | |
| Reward functions to use. It can be either one of `"think_format_reward"`; or a dotted import path " (e.g., | |
| `'my_lib.rewards.custom_reward'`). | |
| """ | |
| reward_model_name_or_path: Optional[str] = field( | |
| default=None, | |
| metadata={ | |
| "help": "Reward model id of a pretrained model hosted inside a model repo on huggingface.co or " | |
| "local path to a directory containing model weights saved using `PreTrainedModel.save_pretrained`." | |
| }, | |
| ) | |
| reward_funcs: Optional[list[str]] = field( | |
| default=None, | |
| metadata={ | |
| "help": "Reward functions to use. It can be either one of 'think_format_reward'; or a dotted " | |
| "import path. (e.g., 'my_lib.rewards.custom_reward')." | |
| }, | |
| ) | |
| def main(script_args, training_args, model_args): | |
| # Load a pretrained model | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code | |
| ) | |
| # Get the reward models and functions | |
| reward_funcs = [] | |
| if script_args.reward_model_name_or_path: | |
| reward_model = AutoModelForSequenceClassification.from_pretrained( | |
| script_args.reward_model_name_or_path, trust_remote_code=model_args.trust_remote_code, num_labels=1 | |
| ) | |
| reward_funcs.append(reward_model) | |
| if script_args.reward_funcs: | |
| for func_name in script_args.reward_funcs: | |
| if func_name in reward_funcs_registry: | |
| reward_funcs.append(reward_funcs_registry[func_name]) | |
| elif "." in func_name: | |
| module_path, func_name = func_name.rsplit(".", 1) | |
| sys.path.insert(0, os.getcwd()) | |
| module = importlib.import_module(module_path) | |
| reward_func = getattr(module, func_name) | |
| reward_funcs.append(reward_func) | |
| else: | |
| raise ValueError( | |
| f"Could not load reward function '{func_name}'. Expected one of " | |
| f"{list(reward_funcs_registry.keys())} or a valid import path." | |
| ) | |
| # Load the dataset | |
| dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config) | |
| # Initialize the GRPO trainer | |
| trainer = GRPOTrainer( | |
| model=model, | |
| reward_funcs=reward_funcs, | |
| args=training_args, | |
| train_dataset=dataset[script_args.dataset_train_split], | |
| eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None, | |
| processing_class=tokenizer, | |
| peft_config=get_peft_config(model_args), | |
| ) | |
| # Train and push the model to the Hub | |
| trainer.train() | |
| # Save and push to hub | |
| trainer.save_model(training_args.output_dir) | |
| if training_args.push_to_hub: | |
| trainer.push_to_hub(dataset_name=script_args.dataset_name) | |
| def make_parser(subparsers: argparse._SubParsersAction = None): | |
| dataclass_types = (GRPOScriptArguments, GRPOConfig, ModelConfig) | |
| if subparsers is not None: | |
| parser = subparsers.add_parser("grpo", help="Run the GRPO training script", dataclass_types=dataclass_types) | |
| else: | |
| parser = TrlParser(dataclass_types) | |
| return parser | |
| if __name__ == "__main__": | |
| parser = make_parser() | |
| script_args, training_args, model_args = parser.parse_args_and_config() | |
| main(script_args, training_args, model_args) | |