virendravaishnav commited on
Commit
a02d815
·
1 Parent(s): 5426c44

Updated with OCR model and Gradio integration

Browse files
Files changed (1) hide show
  1. app.py +10 -5
app.py CHANGED
@@ -7,17 +7,22 @@ repo_id = "OpenGVLab/InternVL2-1B"
7
  # Load the tokenizer, processor, and model directly from the Hub
8
  tokenizer = AutoTokenizer.from_pretrained(repo_id, trust_remote_code=True)
9
  processor = AutoProcessor.from_pretrained(repo_id, trust_remote_code=True)
10
- model = AutoModel.from_pretrained(repo_id, trust_remote_code=True)
 
 
11
 
12
  # Move model to the appropriate device
13
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
14
  model.to(device)
15
 
16
  def analyze_image(image):
17
- img = image.convert("RGB")
18
- inputs = processor(images=img, text="describe this image", return_tensors="pt").to(device)
19
- outputs = model.generate(**inputs)
20
- return tokenizer.decode(outputs[0], skip_special_tokens=True)
 
 
 
21
 
22
  demo = gr.Interface(
23
  fn=analyze_image,
 
7
  # Load the tokenizer, processor, and model directly from the Hub
8
  tokenizer = AutoTokenizer.from_pretrained(repo_id, trust_remote_code=True)
9
  processor = AutoProcessor.from_pretrained(repo_id, trust_remote_code=True)
10
+ model = AutoModel.from_pretrained(
11
+ repo_id, trust_remote_code=True, torch_dtype=torch.float16
12
+ )
13
 
14
  # Move model to the appropriate device
15
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
16
  model.to(device)
17
 
18
  def analyze_image(image):
19
+ try:
20
+ img = image.convert("RGB")
21
+ inputs = processor(images=img, text="describe this image", return_tensors="pt").to(device)
22
+ outputs = model.generate(**inputs)
23
+ return tokenizer.decode(outputs[0], skip_special_tokens=True)
24
+ except Exception as e:
25
+ return f"An error occurred: {str(e)}"
26
 
27
  demo = gr.Interface(
28
  fn=analyze_image,