SadTalker / app.py
vinthony's picture
Update app.py
2299694
raw
history blame
18.2 kB
import pickle
import time
import numpy as np
import scipy, cv2, os, sys, argparse
from tqdm import tqdm
import torch
import librosa
from networks import define_G
from pcavs.config.AudioConfig import AudioConfig
sys.path.append('spectre')
from config import cfg as spectre_cfg
from src.spectre import SPECTRE
from audio2mesh_helper import *
from pcavs.models import create_model, networks
torch.manual_seed(0)
from scipy.signal import savgol_filter
class SimpleWrapperV2(nn.Module):
def __init__(self, cfg, use_ref=True, exp_dim=53, noload=False) -> None:
super().__init__()
self.audio_encoder = networks.define_A_sync(cfg)
self.mapping1 = nn.Linear(512+exp_dim, exp_dim)
nn.init.constant_(self.mapping1.weight, 0.)
nn.init.constant_(self.mapping1.bias, 0.)
self.use_ref = use_ref
def forward(self, x, ref, use_tanh=False):
x = self.audio_encoder.forward_feature(x).view(x.size(0), -1)
ref_reshape = ref.reshape(x.size(0), -1) #20, -1
y = self.mapping1(torch.cat([x, ref_reshape], dim=1))
if self.use_ref:
out = y.reshape(ref.shape[0], ref.shape[1], -1) + ref # resudial
else:
out = y.reshape(ref.shape[0], ref.shape[1], -1)
if use_tanh:
out[:, :50] = torch.tanh(out[:, :50]) * 3
return out
class Audio2Mesh(object):
def __init__(self, args) -> None:
self.args = args
spectre_cfg.model.use_tex = True
spectre_cfg.model.mask_type = args.mask_type
spectre_cfg.debug = self.args.debug
spectre_cfg.model.netA_sync = 'ressesync'
spectre_cfg.model.gpu_ids = [0]
self.spectre = SPECTRE(spectre_cfg)
self.spectre.eval()
self.face_tracker = None #FaceTrackerV2() # face landmark detection
self.mel_step_size = 16
self.fps = args.fps
self.Nw = args.tframes
self.device = self.args.device
self.image_size = self.args.image_size
### only audio
args.netA_sync = 'ressesync'
args.gpu_ids = [0]
args.exp_dim = 53
args.use_tanh = False
args.K = 20
self.audio2exp = 'pcavs'
#
self.avmodel = SimpleWrapperV2(args, exp_dim=args.exp_dim).cuda()
self.avmodel.load_state_dict(torch.load('../packages/pretrained/audio2expression_v2_model.tar')['opt'])
# 5, 160 = 25fps
self.audio = AudioConfig(frame_rate=args.fps, num_frames_per_clip=5, hop_size=160)
with open(os.path.join(args.source_dir, 'deca_infos.pkl'), 'rb') as f: # ?
self.fitting_coeffs = pickle.load(f, encoding='bytes')
self.coeffs_dict = { key: torch.Tensor(self.fitting_coeffs[key]).cuda().squeeze(1) for key in ['cam', 'pose', 'light', 'tex', 'shape', 'exp']}
#### find the close month
exp_tensors = torch.sum(self.coeffs_dict['exp'], dim=1)
ssss, sorted_indices = torch.sort(exp_tensors)
self.exp_id = sorted_indices[0].item()
if '.ts' in args.render_path:
self.render = torch.jit.load(args.render_path).cuda()
self.trt = True
else:
self.render = define_G(self.Nw*6, 3, args.ngf, args.netR).eval().cuda()
self.render.load_state_dict(torch.load(args.render_path))
self.trt = False
print('loaded cached images...')
@torch.no_grad()
def cg2real(self, rendedimages, start_frame=0):
## load original image and the mask
self.source_images = np.concatenate(load_image_from_dir(os.path.join(self.args.source_dir, 'original_frame'),\
resize=self.image_size, limit=len(rendedimages)+start_frame))[start_frame:]
self.source_masks = np.concatenate(load_image_from_dir(os.path.join(self.args.source_dir, 'original_mask'),\
resize=self.image_size, limit=len(rendedimages)+start_frame))[start_frame:]
self.source_masks = torch.FloatTensor(np.transpose(self.source_masks,(0,3,1,2))/255.)
self.padded_real_tensor = torch.FloatTensor(np.transpose(self.source_images,(0,3,1,2))/255.)
## padding the rended_imgs
paded_tensor = torch.cat([rendedimages[0:1]]* (self.Nw // 2) + [rendedimages] + [rendedimages[-1:]]* (self.Nw // 2)).contiguous()
paded_mask_tensor = torch.cat([self.source_masks[0:1]]* (self.Nw // 2) + [self.source_masks] + [self.source_masks[-1:]]* (self.Nw // 2)).contiguous()
paded_real_tensor = torch.cat([self.padded_real_tensor[0:1]]* (self.Nw // 2) + [self.padded_real_tensor] + [self.padded_real_tensor[-1:]]* (self.Nw // 2)).contiguous()
# paded_mask_tensor = maskErosion(paded_mask_tensor, offY=self.args.mask)
padded_input = ((paded_real_tensor-0.5)*2 ) # *(1-paded_mask_tensor)
padded_input = torch.nn.functional.interpolate(padded_input, (self.image_size, self.image_size), mode='bilinear', align_corners=False)
paded_tensor = torch.nn.functional.interpolate(paded_tensor, (self.image_size, self.image_size), mode='bilinear', align_corners=False)
paded_tensor = (paded_tensor-0.5)*2
result = []
for index in tqdm(range(0, len(rendedimages), self.args.renderbs), desc='CG2REAL:'):
list_A = []
list_R = []
list_M = []
for i in range(self.args.renderbs):
idx = index + i
if idx+self.Nw > len(padded_input):
list_A.append(torch.zeros(self.Nw*3,self.image_size,self.image_size).unsqueeze(0))
list_R.append(torch.zeros(self.Nw*3,self.image_size,self.image_size).unsqueeze(0))
list_M.append(torch.zeros(self.Nw*3,self.image_size,self.image_size).unsqueeze(0))
else:
list_A.append(padded_input[idx:idx+self.Nw].view(-1, self.image_size, self.image_size).unsqueeze(0))
list_R.append(paded_tensor[idx:idx+self.Nw].view(-1, self.image_size, self.image_size).unsqueeze(0))
list_M.append(paded_mask_tensor[idx:idx+self.Nw].view(-1, self.image_size, self.image_size).unsqueeze(0))
list_A = torch.cat(list_A)
list_R = torch.cat(list_R)
list_M = torch.cat(list_M)
idx = (self.Nw//2) * 3
mask = list_M[:, idx:idx+3]
# list_A = padded_input
mask = maskErosion(mask, offY=self.args.mask)
list_A = list_A * (1 - mask[:,0:1])
A = torch.cat([list_A, list_R], 1)
if self.trt:
B = self.render(A.half().cuda())
elif self.args.netR == 'unet_256':
# import pdb; pdb.set_trace()
idx = (self.Nw//2) * 3
mask = list_M[:, idx:idx+3].cuda()
mask = maskErosion(mask, offY=self.args.mask)
B0 = list_A[:, idx:idx+3].cuda()
B = self.render(A.cuda()) * mask[:,0:1] + (1 - mask[:,0:1]) * B0
elif self.args.netR == 's2am':
# import pdb; pdb.set_trace()
idx = (self.Nw//2) * 3
mask = list_M[:, idx:idx+3].cuda()
mask = maskErosion(mask, offY=self.args.mask)
B0 = list_A[:, idx:idx+3].cuda()
B = self.render(A.cuda(), mask[:,0:1] ) * mask[:,0:1] + (1 - mask[:,0:1]) * B0
else:
B = self.render(A.cuda())
result.append((B.cpu() + 1) * 0.5) # -1,1 -> 0,1
return torch.cat(result)[:len(rendedimages)]
@torch.no_grad()
def coeffs_to_img(self, vertices, coeffs, zero_pose=False, XK = 20):
xlen = vertices.shape[0]
all_shape_images = []
landmark2d = []
#### find the most larger pose 51 in the coeffs.
max_pose_51 = torch.max(self.coeffs_dict['pose'][..., 3:4].squeeze(-1))
for i in tqdm(range(0, xlen, XK)):
if i + XK > xlen:
XK = xlen - i
codedictdecoder = {}
codedictdecoder['shape'] = torch.zeros_like(self.coeffs_dict['shape'][i:i+XK].cuda())
codedictdecoder['tex'] = self.coeffs_dict['tex'][i:i+XK].cuda()
codedictdecoder['exp'] = torch.zeros_like(self.coeffs_dict['exp'][i:i+XK].cuda()) # all_exps[i:i+XK, :50].cuda() # # # vid_exps[i:i+1].cuda() i:i+XK
codedictdecoder['pose'] = self.coeffs_dict['pose'][i:i+XK] # vid_poses[i:i+1].cuda()
codedictdecoder['cam'] = self.coeffs_dict['cam'][i:i+XK].cuda() # vid_poses[i:i+1].cuda()
codedictdecoder['light'] = self.coeffs_dict['light'][i:i+XK].cuda() # vid_poses[i:i+1].cuda()
codedictdecoder['images'] = torch.zeros((XK,3,256,256)).cuda()
codedictdecoder['pose'][..., 3:4] = torch.clip(coeffs[i:i+XK, 50:51], 0, max_pose_51*0.9) # torch.zeros_like(self.coeffs_dict['pose'][i:i+XK, 3:])
codedictdecoder['pose'][..., 4:6] = 0 # coeffs[i:i+XK, 50:]*( - 0.25) # torch.zeros_like(self.coeffs_dict['pose'][i:i+XK, 3:])
sub_vertices = vertices[i:i+XK].cuda()
opdict = self.spectre.decode_verts(codedictdecoder, sub_vertices, rendering=True, vis_lmk=False, return_vis=False)
landmark2d.append(opdict['landmarks2d'].cpu())
all_shape_images.append(opdict['rendered_images'].cpu())
rendedimages = torch.cat(all_shape_images)
lmk2d = torch.cat(landmark2d)
return rendedimages, lmk2d
@torch.no_grad()
def run_spectre_v3(self, wav=None, ds_features=None, L=20):
wav = audio_normalize(wav)
all_mel = self.audio.melspectrogram(wav).astype(np.float32).T
frames_from_audio = np.arange(2, len(all_mel) // self.audio.num_bins_per_frame - 2) # 2,[]mmmmmmmmmmmmmmmmmmmmmmmmmmmm
audio_inds = frame2audio_indexs(frames_from_audio, self.audio.num_frames_per_clip, self.audio.num_bins_per_frame)
vid_exps = self.coeffs_dict['exp'][self.exp_id:self.exp_id+1]
vid_poses = self.coeffs_dict['pose'][self.exp_id:self.exp_id+1]
ref = torch.cat([vid_exps.view(1, 50), vid_poses[:, 3:].view(1, 3)], dim=-1)
ref = ref[...,:self.args.exp_dim]
K = 20
xlens = len(audio_inds) # len(self.coeffs_dict['exp'])
exps = []
for i in tqdm(range(0, xlens, K), desc='S2 DECODER:'+ str(xlens) + ' '):
mels = []
for j in range(K):
if i + j < xlens:
idx = i+j # //3 * 3
mel = load_spectrogram(all_mel, audio_inds[idx], self.audio.num_frames_per_clip * self.audio.num_bins_per_frame).cuda()
mel = mel.view(-1, 1, 80, self.audio.num_frames_per_clip * self.audio.num_bins_per_frame)
mels.append(mel)
else:
break
mels = torch.cat(mels, dim=0)
new_exp = self.avmodel(mels, ref.repeat(mels.shape[0], 1, 1).cuda(), self.args.use_tanh) # exp 53
exps+= [new_exp.view(-1, 53)]
all_exps = torch.cat(exps,axis=0)
return all_exps
@torch.no_grad()
def test_model(self, wav_path):
sys.path.append('../FaceFormer')
from faceformer import Faceformer
from transformers import Wav2Vec2FeatureExtractor,Wav2Vec2Processor
from faceformer import PeriodicPositionalEncoding, init_biased_mask
#build model
self.args.train_subjects = " ".join(["A"]*8) # suitable for pre-trained faceformer checkpoint
model = Faceformer(self.args)
model.load_state_dict(torch.load('/apdcephfs/private_shadowcun/Avatar2dFF/medias/videos/c8/mask5000_l2/6_model.pth')) # ../packages/pretrained/28_ff_model.pth
model = model.to(torch.device(self.device))
model.eval()
# hacking for long audio generation
model.PPE = PeriodicPositionalEncoding(self.args.feature_dim, period = self.args.period, max_seq_len=6000).cuda()
model.biased_mask = init_biased_mask(n_head = 4, max_seq_len = 6000, period=self.args.period).cuda()
train_subjects_list = ["A"] * 8
one_hot_labels = np.eye(len(train_subjects_list))
one_hot = one_hot_labels[0]
one_hot = np.reshape(one_hot,(-1,one_hot.shape[0]))
one_hot = torch.FloatTensor(one_hot).to(device=self.device)
vertices_npy = np.load(self.args.source_dir + '/mesh_pose0.npy')
vertices_npy = np.array(vertices_npy).reshape(-1, 5023*3)
temp = vertices_npy[33] # 829
template = temp.reshape((-1))
template = np.reshape(template,(-1,template.shape[0]))
template = torch.FloatTensor(template).to(device=self.device)
speech_array, sampling_rate = librosa.load(os.path.join(wav_path), sr=16000)
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")
audio_feature = np.squeeze(processor(speech_array,sampling_rate=16000).input_values)
audio_feature = np.reshape(audio_feature,(-1,audio_feature.shape[0]))
audio_feature = torch.FloatTensor(audio_feature).to(device=self.device)
prediction = model.predict(audio_feature, template, one_hot, 1.0) # (1, seq_len, V*3)
return prediction.squeeze()
@torch.no_grad()
def run(self, face, audio, start_frame=0):
wav, sr = librosa.load(audio, sr=16000) # 16*80 ? 20*80
wav_tensor = torch.FloatTensor(wav).unsqueeze(0) if len(wav.shape) == 1 else torch.FloatTensor(wav)
_, frames = parse_audio_length(wav_tensor.shape[1], 16000, self.args.fps)
##### audio-guided, only use the jaw movement
all_exps = self.run_spectre_v3(wav)
# #### temp. interpolation
all_exps = torch.nn.functional.interpolate(all_exps.unsqueeze(0).permute([0,2,1]), size=frames, mode='linear')
all_exps = all_exps.permute([0,2,1]).squeeze(0)
# run faceformer for face mesh generation
predicted_vertices = self.test_model(audio)
predicted_vertices = predicted_vertices.view(-1, 5023*3)
#### temp. interpolation
predicted_vertices = torch.nn.functional.interpolate(predicted_vertices.unsqueeze(0).permute([0,2,1]), size=frames, mode='linear')
predicted_vertices = predicted_vertices.permute([0,2,1]).squeeze(0).view(-1, 5023, 3)
all_exps = torch.Tensor(savgol_filter(all_exps.cpu().numpy(), 5, 3, axis=0)).cpu() # smooth GT
rendedimages, lm2d = self.coeffs_to_img(predicted_vertices, all_exps, zero_pose=True)
debug_video_gen(rendedimages, self.args.result_dir+"/debug_before_ff.mp4", wav_tensor, self.args.fps, sr)
# cg2real
debug_video_gen(self.cg2real(rendedimages, start_frame=start_frame), self.args.result_dir+"/debug_cg2real_raw.mp4", wav_tensor, self.args.fps, sr)
exit()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Stylization and Seamless Video Dubbing')
parser.add_argument('--face', default='examples', type=str, help='')
parser.add_argument('--audio', default='examples', type=str, help='')
parser.add_argument('--source_dir', default='examples', type=str,help='TODO')
parser.add_argument('--result_dir', default='examples', type=str,help='TODO')
parser.add_argument('--backend', default='wav2lip', type=str,help='wav2lip or pcavs')
parser.add_argument('--result_tag', default='result', type=str,help='TODO')
parser.add_argument('--netR', default='unet_256', type=str,help='TODO')
parser.add_argument('--render_path', default='', type=str,help='TODO')
parser.add_argument('--ngf', default=16, type=int,help='TODO')
parser.add_argument('--fps', default=20, type=int,help='TODO')
parser.add_argument('--mask', default=100, type=int,help='TODO')
parser.add_argument('--mask_type', default='v3', type=str,help='TODO')
parser.add_argument('--image_size', default=256, type=int,help='TODO')
parser.add_argument('--input_nc', default=21, type=int,help='TODO')
parser.add_argument('--output_nc', default=3, type=int,help='TODO')
parser.add_argument('--renderbs', default=16, type=int,help='TODO')
parser.add_argument('--tframes', default=1, type=int,help='TODO')
parser.add_argument('--debug', action='store_true')
parser.add_argument('--enhance', action='store_true')
parser.add_argument('--phone', action='store_true')
#### faceformer
parser.add_argument("--model_name", type=str, default="VOCA")
parser.add_argument("--dataset", type=str, default="vocaset", help='vocaset or BIWI')
parser.add_argument("--feature_dim", type=int, default=64, help='64 for vocaset; 128 for BIWI')
parser.add_argument("--period", type=int, default=30, help='period in PPE - 30 for vocaset; 25 for BIWI')
parser.add_argument("--vertice_dim", type=int, default=5023*3, help='number of vertices - 5023*3 for vocaset; 23370*3 for BIWI')
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--train_subjects", type=str, default="FaceTalk_170728_03272_TA ")
parser.add_argument("--test_subjects", type=str, default="FaceTalk_170809_00138_TA FaceTalk_170731_00024_TA")
parser.add_argument("--condition", type=str, default="FaceTalk_170904_00128_TA", help='select a conditioning subject from train_subjects')
parser.add_argument("--subject", type=str, default="FaceTalk_170731_00024_TA", help='select a subject from test_subjects or train_subjects')
parser.add_argument("--background_black", type=bool, default=True, help='whether to use black background')
parser.add_argument("--template_path", type=str, default="templates.pkl", help='path of the personalized templates')
parser.add_argument("--render_template_path", type=str, default="templates", help='path of the mesh in BIWI/FLAME topology')
opt = parser.parse_args()
opt.img_size = 96
opt.static = True
opt.device = torch.device("cuda")
a2m = Audio2Mesh(opt)
print('link start!')
t = time.time()
# 02780
a2m.run(opt.face, opt.audio, 0)
print(time.time() - t)