Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,243 +1,65 @@
|
|
| 1 |
-
from diffusers import
|
| 2 |
-
from transformers import AutoTokenizer, CLIPTextModel, CLIPTextModelWithProjection
|
| 3 |
-
from accelerate import Accelerator
|
| 4 |
from huggingface_hub import hf_hub_download
|
|
|
|
| 5 |
import spaces
|
| 6 |
import gradio as gr
|
| 7 |
-
import numpy as np
|
| 8 |
import torch
|
| 9 |
-
import time
|
| 10 |
import PIL
|
| 11 |
|
|
|
|
| 12 |
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
self.accelerator = accelerator
|
| 40 |
-
self.image_resolution = image_resolution
|
| 41 |
-
self.latent_resolution = latent_resolution
|
| 42 |
-
self.num_train_timesteps = num_train_timesteps
|
| 43 |
-
self.vae_downsample_ratio = image_resolution // latent_resolution
|
| 44 |
-
self.conditioning_timestep = conditioning_timestep
|
| 45 |
-
|
| 46 |
-
self.scheduler = DDIMScheduler.from_pretrained(model_id,subfolder="scheduler")
|
| 47 |
-
self.alphas_cumprod = self.scheduler.alphas_cumprod.to(self.device)
|
| 48 |
-
self.num_step = num_step
|
| 49 |
-
|
| 50 |
-
def create_generator(self, model_id, checkpoint_path):
|
| 51 |
-
generator = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet").to(self.DTYPE)
|
| 52 |
-
state_dict = torch.load(checkpoint_path)
|
| 53 |
-
generator.load_state_dict(state_dict, strict=True)
|
| 54 |
-
generator.requires_grad_(False)
|
| 55 |
-
return generator
|
| 56 |
-
|
| 57 |
-
def build_condition_input(self, height, width):
|
| 58 |
-
original_size = (height, width)
|
| 59 |
-
target_size = (height, width)
|
| 60 |
-
crop_top_left = (0, 0)
|
| 61 |
-
|
| 62 |
-
add_time_ids = list(original_size + crop_top_left + target_size)
|
| 63 |
-
add_time_ids = torch.tensor([add_time_ids], device="cuda", dtype=self.DTYPE)
|
| 64 |
-
return add_time_ids
|
| 65 |
-
|
| 66 |
-
def _encode_prompt(self, prompt):
|
| 67 |
-
text_input_ids_one = self.tokenizer_one([prompt], padding="max_length", max_length=self.tokenizer_one.model_max_length, truncation=True, return_tensors="pt").input_ids
|
| 68 |
-
text_input_ids_two = self.tokenizer_two([prompt], padding="max_length", max_length=self.tokenizer_two.model_max_length, truncation=True, return_tensors="pt").input_ids
|
| 69 |
-
|
| 70 |
-
prompt_dict = {
|
| 71 |
-
'text_input_ids_one': text_input_ids_one.unsqueeze(0).to(self.device),
|
| 72 |
-
'text_input_ids_two': text_input_ids_two.unsqueeze(0).to(self.device)
|
| 73 |
-
}
|
| 74 |
-
return prompt_dict
|
| 75 |
-
|
| 76 |
-
@staticmethod
|
| 77 |
-
def _get_time():
|
| 78 |
-
return time.time()
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
def sample(self, noise, unet_added_conditions, prompt_embed, fast_vae_decode):
|
| 82 |
-
#alphas_cumprod = self.scheduler.alphas_cumprod.to(self.device)
|
| 83 |
-
print("sampling...")
|
| 84 |
-
if self.num_step == 1:
|
| 85 |
-
all_timesteps = [self.conditioning_timestep]
|
| 86 |
-
step_interval = 0
|
| 87 |
-
elif self.num_step == 4:
|
| 88 |
-
all_timesteps = [999, 749, 499, 249]
|
| 89 |
-
step_interval = 250
|
| 90 |
-
else:
|
| 91 |
-
raise NotImplementedError()
|
| 92 |
-
|
| 93 |
-
noise = noise.to(torch.float16)
|
| 94 |
-
print(f'noise: {noise.dtype}')
|
| 95 |
-
#prompt_embed = prompt_embed.to(torch.float32)
|
| 96 |
-
DTYPE = prompt_embed.dtype
|
| 97 |
-
print(f'prompt_embed: {DTYPE}')
|
| 98 |
-
|
| 99 |
-
for constant in all_timesteps:
|
| 100 |
-
current_timesteps = torch.ones(len(prompt_embed), device="cuda", dtype=torch.long) * constant
|
| 101 |
-
#current_timesteps = current_timesteps.to(torch.float32)
|
| 102 |
-
print(f'current_timestpes: {current_timesteps.dtype}')
|
| 103 |
-
eval_images = self.model(noise, current_timesteps, prompt_embed, added_cond_kwargs=unet_added_conditions)
|
| 104 |
-
print(eval_images.dtype)
|
| 105 |
-
eval_images = get_x0_from_noise(noise, eval_images, alphas_cumprod, current_timesteps).to(self.DTYPE)
|
| 106 |
-
print(eval_images.dtype)
|
| 107 |
-
next_timestep = current_timesteps - step_interval
|
| 108 |
-
noise = self.scheduler.add_noise(eval_images, torch.randn_like(eval_images), next_timestep).to(DTYPE)
|
| 109 |
-
print(noise.dtype)
|
| 110 |
-
if fast_vae_decode:
|
| 111 |
-
eval_images = self.tiny_vae.decode(eval_images.to(self.tiny_vae_dtype) / self.tiny_vae.config.scaling_factor, return_dict=False)[0]
|
| 112 |
-
else:
|
| 113 |
-
eval_images = self.vae.decode(eval_images.to(self.vae_dtype) / self.vae.config.scaling_factor, return_dict=False)[0]
|
| 114 |
-
eval_images = ((eval_images + 1.0) * 127.5).clamp(0, 255).to(torch.uint8).permute(0, 2, 3, 1)
|
| 115 |
-
return eval_images
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
@torch.no_grad()
|
| 119 |
-
def inference(self, prompt, seed, height, width, num_images, fast_vae_decode):
|
| 120 |
-
print("Running model inference...")
|
| 121 |
-
|
| 122 |
-
if seed == -1:
|
| 123 |
-
seed = np.random.randint(0, 1000000)
|
| 124 |
-
|
| 125 |
-
generator = torch.manual_seed(seed)
|
| 126 |
-
|
| 127 |
-
add_time_ids = self.build_condition_input(height, width).repeat(num_images, 1)
|
| 128 |
-
|
| 129 |
-
noise = torch.randn(num_images, 4, height // self.vae_downsample_ratio, width // self.vae_downsample_ratio, generator=generator)
|
| 130 |
-
|
| 131 |
-
prompt_inputs = self._encode_prompt(prompt)
|
| 132 |
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
prompt_embeds, pooled_prompt_embeds = self.text_encoder(prompt_inputs)
|
| 136 |
-
|
| 137 |
-
batch_prompt_embeds, batch_pooled_prompt_embeds = (
|
| 138 |
-
prompt_embeds.repeat(num_images, 1, 1),
|
| 139 |
-
pooled_prompt_embeds.repeat(num_images, 1, 1)
|
| 140 |
-
)
|
| 141 |
-
|
| 142 |
-
unet_added_conditions = {
|
| 143 |
-
"time_ids": add_time_ids,
|
| 144 |
-
"text_embeds": batch_pooled_prompt_embeds.squeeze(1)
|
| 145 |
-
}
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
print(f'noise: {noise.dtype}')
|
| 149 |
-
print(f'prompt: {batch_prompt_embeds.dtype}')
|
| 150 |
-
print(unet_added_conditions['time_ids'].dtype)
|
| 151 |
-
print(unet_added_conditions['text_embeds'].dtype)
|
| 152 |
-
print("________")
|
| 153 |
-
|
| 154 |
-
eval_images = self.sample(noise=noise, unet_added_conditions=unet_added_conditions, prompt_embed=batch_prompt_embeds, fast_vae_decode=fast_vae_decode)
|
| 155 |
-
|
| 156 |
-
end_time = self._get_time()
|
| 157 |
-
|
| 158 |
-
output_image_list = []
|
| 159 |
-
for image in eval_images:
|
| 160 |
-
output_image_list.append(PIL.Image.fromarray(image.cpu().numpy()))
|
| 161 |
-
|
| 162 |
-
return output_image_list, f"Run successfully in {(end_time-start_time):.2f} seconds"
|
| 163 |
-
|
| 164 |
-
@spaces.GPU()
|
| 165 |
-
def get_x0_from_noise(sample, model_output, alphas_cumprod, timestep):
|
| 166 |
-
alpha_prod_t = alphas_cumprod[timestep].reshape(-1, 1, 1, 1)
|
| 167 |
-
beta_prod_t = 1 - alpha_prod_t
|
| 168 |
-
|
| 169 |
-
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
|
| 170 |
-
return pred_original_sample
|
| 171 |
|
| 172 |
-
|
| 173 |
-
def __init__(self, model_id, revision, accelerator, dtype=torch.float32):
|
| 174 |
-
super().__init__()
|
| 175 |
|
| 176 |
-
self.text_encoder_one = CLIPTextModel.from_pretrained(model_id, subfolder="text_encoder", revision=revision).to(0).to(dtype=dtype)
|
| 177 |
-
self.text_encoder_two = CLIPTextModelWithProjection.from_pretrained(model_id, subfolder="text_encoder_2", revision=revision).to(0).to(dtype=dtype)
|
| 178 |
|
| 179 |
-
self.accelerator = accelerator
|
| 180 |
|
| 181 |
-
|
| 182 |
-
text_input_ids_one = batch['text_input_ids_one'].to(0).squeeze(1)
|
| 183 |
-
text_input_ids_two = batch['text_input_ids_two'].to(0).squeeze(1)
|
| 184 |
-
prompt_embeds_list = []
|
| 185 |
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
prompt_embeds = prompt_embeds.hidden_states[-2]
|
| 192 |
-
bs_embed, seq_len, _ = prompt_embeds.shape
|
| 193 |
-
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
|
| 194 |
-
prompt_embeds_list.append(prompt_embeds)
|
| 195 |
-
|
| 196 |
-
prompt_embeds = torch.cat(prompt_embeds_list, dim=-1)
|
| 197 |
-
pooled_prompt_embeds = pooled_prompt_embeds.view(len(text_input_ids_one), -1)
|
| 198 |
-
|
| 199 |
-
return prompt_embeds, pooled_prompt_embeds
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
def create_demo():
|
| 203 |
-
TITLE = "# DMD2-SDXL Demo"
|
| 204 |
-
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
| 205 |
-
checkpoint_path = hf_hub_download(repo_id=repo_id, subfolder=subfolder,filename=filename)
|
| 206 |
-
precision = "float16"
|
| 207 |
-
image_resolution = 1024
|
| 208 |
-
latent_resolution = 128
|
| 209 |
-
num_train_timesteps = 1000
|
| 210 |
-
conditioning_timestep = 999
|
| 211 |
-
num_step = 4
|
| 212 |
-
revision = None
|
| 213 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
| 214 |
-
torch.backends.cudnn.allow_tf32 = True
|
| 215 |
-
|
| 216 |
-
accelerator = Accelerator()
|
| 217 |
-
|
| 218 |
-
model = ModelWrapper(model_id, checkpoint_path, precision, image_resolution, latent_resolution, num_train_timesteps, conditioning_timestep, num_step, revision, accelerator)
|
| 219 |
-
|
| 220 |
-
with gr.Blocks() as demo:
|
| 221 |
-
gr.Markdown(TITLE)
|
| 222 |
with gr.Row():
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
return demo
|
| 239 |
-
|
| 240 |
-
if __name__ == "__main__":
|
| 241 |
-
demo = create_demo()
|
| 242 |
-
demo.queue(api_open=False)
|
| 243 |
-
demo.launch(show_error=True)
|
|
|
|
| 1 |
+
from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler
|
|
|
|
|
|
|
| 2 |
from huggingface_hub import hf_hub_download
|
| 3 |
+
from safetensors.torch import load_file
|
| 4 |
import spaces
|
| 5 |
import gradio as gr
|
|
|
|
| 6 |
import torch
|
|
|
|
| 7 |
import PIL
|
| 8 |
|
| 9 |
+
# Constants
|
| 10 |
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
| 11 |
+
repo = "tianweiy/DMD2"
|
| 12 |
+
checkpoints = {
|
| 13 |
+
"1-Step" : ["dmd2_sdxl_1step_unet.bin", 1],
|
| 14 |
+
"4-Step" : ["dmd2_sdxl_4step_unet.bin", 4],
|
| 15 |
+
}
|
| 16 |
+
loaded = None
|
| 17 |
+
|
| 18 |
+
# Ensure model and scheduler are initialized in GPU-enabled function
|
| 19 |
+
if torch.cuda.is_available():
|
| 20 |
+
pipe = DiffusionPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
# Function
|
| 24 |
+
@spaces.GPU(enable_queue=True)
|
| 25 |
+
def generate_image(prompt, ckpt):
|
| 26 |
+
global loaded
|
| 27 |
+
print(prompt, ckpt)
|
| 28 |
+
|
| 29 |
+
checkpoint = checkpoints[ckpt][0]
|
| 30 |
+
num_inference_steps = checkpoints[ckpt][1]
|
| 31 |
+
|
| 32 |
+
if loaded != num_inference_steps:
|
| 33 |
+
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16)
|
| 34 |
+
unet.load_state_dict(torch.load(hf_hub_download(repo, checkpoints)), map_location="cuda"))
|
| 35 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample" if num_inference_steps==1 else "epsilon")
|
| 36 |
+
loaded = num_inference_steps
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
+
results = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
+
return results.images[0]
|
|
|
|
|
|
|
| 41 |
|
|
|
|
|
|
|
| 42 |
|
|
|
|
| 43 |
|
| 44 |
+
# Gradio Interface
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
+
with gr.Blocks(css="style.css") as demo:
|
| 47 |
+
gr.HTML("<h1><center>Adobe DMD2🦖</center></h1>")
|
| 48 |
+
gr.HTML("<p><center><a href='https://huggingface.co/tianweiy/DMD2'>https://huggingface.co/tianweiy/DMD2</a> text-to-image generation</center></p>")
|
| 49 |
+
with gr.Group():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
with gr.Row():
|
| 51 |
+
prompt = gr.Textbox(label='Enter your prompt (English)', scale=8)
|
| 52 |
+
ckpt = gr.Dropdown(label='Select inference steps',choices=['1-Step', '2-Step', '4-Step', '8-Step'], value='4-Step', interactive=True)
|
| 53 |
+
submit = gr.Button(scale=1, variant='primary')
|
| 54 |
+
img = gr.Image(label='DMD2 Generated Image')
|
| 55 |
+
|
| 56 |
+
prompt.submit(fn=generate_image,
|
| 57 |
+
inputs=[prompt, ckpt],
|
| 58 |
+
outputs=img,
|
| 59 |
+
)
|
| 60 |
+
submit.click(fn=generate_image,
|
| 61 |
+
inputs=[prompt, ckpt],
|
| 62 |
+
outputs=img,
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
demo.queue().launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|