Spaces:
Runtime error
Runtime error
| model = "gemma2:27b" | |
| import os | |
| os.system("sudo apt install lshw") | |
| os.system("curl https://ollama.ai/install.sh | sh") | |
| import nest_asyncio | |
| nest_asyncio.apply() | |
| import asyncio | |
| # Run Async Ollama | |
| # Taken from: https://stackoverflow.com/questions/77697302/how-to-run-ollama-in-google-colab | |
| # NB: You may need to set these depending and get cuda working depending which backend you are running. | |
| # Set environment variable for NVIDIA library | |
| # Set environment variables for CUDA | |
| os.environ['PATH'] += ':/usr/local/cuda/bin' | |
| # Set LD_LIBRARY_PATH to include both /usr/lib64-nvidia and CUDA lib directories | |
| os.environ['LD_LIBRARY_PATH'] = '/usr/lib64-nvidia:/usr/local/cuda/lib64' | |
| async def run_process(cmd): | |
| print('>>> starting', *cmd) | |
| process = await asyncio.create_subprocess_exec( | |
| *cmd, | |
| stdout=asyncio.subprocess.PIPE, | |
| stderr=asyncio.subprocess.PIPE | |
| ) | |
| # define an async pipe function | |
| async def pipe(lines): | |
| async for line in lines: | |
| print(line.decode().strip()) | |
| await asyncio.gather( | |
| pipe(process.stdout), | |
| pipe(process.stderr), | |
| ) | |
| # call it | |
| await asyncio.gather(pipe(process.stdout), pipe(process.stderr)) | |
| import threading | |
| async def start_ollama_serve(): | |
| await run_process(['ollama', 'serve']) | |
| def run_async_in_thread(loop, coro): | |
| asyncio.set_event_loop(loop) | |
| loop.run_until_complete(coro) | |
| loop.close() | |
| # Create a new event loop that will run in a new thread | |
| new_loop = asyncio.new_event_loop() | |
| # Start ollama serve in a separate thread so the cell won't block execution | |
| thread = threading.Thread(target=run_async_in_thread, args=(new_loop, start_ollama_serve())) | |
| thread.start() | |
| # Load up model | |
| os.system(f"ollama pull {model}") | |
| import copy | |
| import gradio as gr | |
| import spaces | |
| from llama_index.llms.ollama import Ollama | |
| import llama_index | |
| from llama_index.core.llms import ChatMessage | |
| HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
| MODEL_ID = "google/gemma-2-27b-it" | |
| MODEL_NAME = MODEL_ID.split("/")[-1] | |
| os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" | |
| gemma2 = Ollama(model=model, request_timeout=30.0) | |
| TITLE = "<h1><center>Chatbox</center></h1>" | |
| DESCRIPTION = f""" | |
| <h3>MODEL: <a href="https://hf.co/{MODEL_ID}">{MODEL_NAME}</a></h3> | |
| <center> | |
| <p>Gemma is the large language model built by Google. | |
| <br> | |
| Feel free to test without log. | |
| </p> | |
| </center> | |
| """ | |
| CSS = """ | |
| .duplicate-button { | |
| margin: auto !important; | |
| color: white !important; | |
| background: black !important; | |
| border-radius: 100vh !important; | |
| } | |
| h3 { | |
| text-align: center; | |
| } | |
| """ | |
| def stream_chat(message: str, history: list, temperature: float, context_window: int, top_p: float, top_k: int, penalty: float): | |
| print(f'message is - {message}') | |
| print(f'history is - {history}') | |
| conversation = [] | |
| for prompt, answer in history: | |
| conversation.extend([ | |
| ChatMessage( | |
| role="user", content=prompt | |
| ), | |
| ChatMessage(role="assistant", content=answer), | |
| ]) | |
| messages = [ChatMessage(role="user", content=message)] | |
| print(f"Conversation is -\n{conversation}") | |
| resp = gemma2.stream_chat( | |
| message = messages, | |
| chat_history = conversation, | |
| top_p=top_p, | |
| top_k=top_k, | |
| repeat_penalty=penalty, | |
| context_window=context_window, | |
| ) | |
| for r in resp: | |
| yield r.delta | |
| chatbot = gr.Chatbot(height=600) | |
| with gr.Blocks(css=CSS, theme="soft") as demo: | |
| gr.HTML(TITLE) | |
| gr.HTML(DESCRIPTION) | |
| gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button") | |
| gr.ChatInterface( | |
| fn=stream_chat, | |
| chatbot=chatbot, | |
| fill_height=True, | |
| additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), | |
| additional_inputs=[ | |
| gr.Slider( | |
| minimum=0, | |
| maximum=1, | |
| step=0.1, | |
| value=0.8, | |
| label="Temperature", | |
| render=False, | |
| ), | |
| gr.Slider( | |
| minimum=128, | |
| maximum=2048, | |
| step=1, | |
| value=1024, | |
| label="Context window", | |
| render=False, | |
| ), | |
| gr.Slider( | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.1, | |
| value=0.8, | |
| label="top_p", | |
| render=False, | |
| ), | |
| gr.Slider( | |
| minimum=1, | |
| maximum=20, | |
| step=1, | |
| value=20, | |
| label="top_k", | |
| render=False, | |
| ), | |
| gr.Slider( | |
| minimum=0.0, | |
| maximum=2.0, | |
| step=0.1, | |
| value=1.0, | |
| label="Repetition penalty", | |
| render=False, | |
| ), | |
| ], | |
| examples=[ | |
| ["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."], | |
| ["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."], | |
| ["Tell me a random fun fact about the Roman Empire."], | |
| ["Show me a code snippet of a website's sticky header in CSS and JavaScript."], | |
| ], | |
| cache_examples=False, | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |