Medster / app.py
vilarin's picture
Update app.py
fbdf06c verified
raw
history blame
4.27 kB
import gradio as gr
import openai
from openai import OpenAI
import os
import io
import base64
# Set API key and organization ID from environment variables
api_key = os.environ.get("OPENAI_API_KEY")
#base_url = os.environ.get("OPENAI_API_BASE")
client = OpenAI(api_key=api_key)
# Define the model to be used
MODEL = os.environ.get("MODEL")
def read(filename):
with open(filename) as f:
data = f.read()
return data
SYS_PROMPT = read('system_prompt.txt')
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">诊疗助手Alpha</h1>
<p>一个帮助您分析症状和检验报告的AI工具。</p>
<p>🔎 选择您需要咨询的科室,在输入框中输入症状描述或者体检信息等;您也可以在图片框中上传检测报告图。</p>
<p>🦕 请注意生成信息可能不准确,且不具备任何实际参考价值,如有需要请联系专业医生。</p>
</div>
'''
css = """
h1 {
text-align: center;
display: block;
}
footer {
display:none !important
}
"""
LICENSE = '采用 ' + MODEL + ' 模型'
def process_text(text_input, unit):
if text_input:
completion = client.chat.completions.create(
model=MODEL,
messages=[
{"role": "system", "content": f" You are a experienced {unit} doctor." + SYS_PROMPT},
{"role": "user", "content": f"Hello! Could you solve {text_input}?"}
]
)
return completion.choices[0].message.content
return ""
def encode_image_to_base64(image_input):
buffered = io.BytesIO()
image_input.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return img_str
def process_image(image_input, unit):
if image_input is not None:
#with open(image_input.name, "rb") as f:
# base64_image = base64.b64encode(f.read()).decode("utf-8")
base64_image = encode_image_to_base64(image_input)
response = client.chat.completions.create(
model=MODEL,
messages=[
{"role": "system", "content": f" You are a experienced {unit} doctor." + SYS_PROMPT},
{"role": "user", "content": [
{"type": "text", "text": "Help me understand what is in this picture and analysis."},
{"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}",
"detail":"low"}
}
]}
],
temperature=0.0,
max_tokens=1024,
)
return response.choices[0].message.content
def main(text_input="", image_input=None, unit=""):
if text_input and image_input is None:
return process_text(text_input,unit)
elif image_input is not None:
return process_image(image_input,unit)
with gr.Blocks(theme='shivi/calm_seafoam', css=css, title="诊疗助手Alpha") as iface:
with gr.Accordion(""):
gr.Markdown(DESCRIPTION)
unit = gr.Dropdown(label="🩺科室", value='中医科', elem_id="units",
choices=["中医科", "内科", "外科", "妇产科", "儿科", \
"五官科", "男科", "皮肤性病科", "传染科", "精神心理科", \
"整形美容科", "营养科", "生殖中心", "麻醉医学科", "医学影像科", \
"骨科", "肿瘤科", "急诊科", "检验科"])
with gr.Row():
output_box = gr.Markdown(label="分析") # Create an output textbox
with gr.Row():
image_input = gr.Image(type="pil", label="上传图片") # Create an image upload button
text_input = gr.Textbox(label="输入") # Create a text input box
with gr.Row():
submit_btn = gr.Button("🚀 确认") # Create a submit button
clear_btn = gr.ClearButton(output_box, value="🗑️ 清空") # Create a clear button
# Set up the event listeners
submit_btn.click(main, inputs=[text_input, image_input, unit], outputs=output_box)
gr.Markdown(LICENSE)
#gr.close_all()
iface.queue().launch(show_api=False) # Launch the Gradio interface