Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
from diffusers import
|
| 4 |
from huggingface_hub import hf_hub_download
|
| 5 |
import spaces
|
| 6 |
from PIL import Image
|
|
@@ -22,7 +22,8 @@ CSS = """
|
|
| 22 |
|
| 23 |
# Ensure model and scheduler are initialized in GPU-enabled function
|
| 24 |
if torch.cuda.is_available():
|
| 25 |
-
|
|
|
|
| 26 |
|
| 27 |
|
| 28 |
# Function
|
|
@@ -35,7 +36,7 @@ def generate_image(prompt, ckpt):
|
|
| 35 |
num_inference_steps = checkpoints[ckpt][1]
|
| 36 |
|
| 37 |
if loaded != num_inference_steps:
|
| 38 |
-
pipe.scheduler =
|
| 39 |
pipe.unet.load_state_dict(torch.load(hf_hub_download(repo, checkpoint), map_location="cuda"))
|
| 40 |
loaded = num_inference_steps
|
| 41 |
|
|
@@ -54,7 +55,7 @@ with gr.Blocks(css=CSS) as demo:
|
|
| 54 |
with gr.Group():
|
| 55 |
with gr.Row():
|
| 56 |
prompt = gr.Textbox(label='Enter your prompt (English)', scale=8)
|
| 57 |
-
ckpt = gr.Dropdown(label='Select inference steps',choices=['1-Step', '
|
| 58 |
submit = gr.Button(scale=1, variant='primary')
|
| 59 |
img = gr.Image(label='DMD2 Generated Image')
|
| 60 |
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler
|
| 4 |
from huggingface_hub import hf_hub_download
|
| 5 |
import spaces
|
| 6 |
from PIL import Image
|
|
|
|
| 22 |
|
| 23 |
# Ensure model and scheduler are initialized in GPU-enabled function
|
| 24 |
if torch.cuda.is_available():
|
| 25 |
+
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16)
|
| 26 |
+
pipe = DiffusionPipeline.from_pretrained(base, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
| 27 |
|
| 28 |
|
| 29 |
# Function
|
|
|
|
| 36 |
num_inference_steps = checkpoints[ckpt][1]
|
| 37 |
|
| 38 |
if loaded != num_inference_steps:
|
| 39 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample" if num_inference_steps==1 else "epsilon")
|
| 40 |
pipe.unet.load_state_dict(torch.load(hf_hub_download(repo, checkpoint), map_location="cuda"))
|
| 41 |
loaded = num_inference_steps
|
| 42 |
|
|
|
|
| 55 |
with gr.Group():
|
| 56 |
with gr.Row():
|
| 57 |
prompt = gr.Textbox(label='Enter your prompt (English)', scale=8)
|
| 58 |
+
ckpt = gr.Dropdown(label='Select inference steps',choices=['1-Step', '4-Step'], value='4-Step', interactive=True)
|
| 59 |
submit = gr.Button(scale=1, variant='primary')
|
| 60 |
img = gr.Image(label='DMD2 Generated Image')
|
| 61 |
|