vilarin's picture
Update app.py
925bdcb verified
raw
history blame
4.87 kB
import os
import gradio as gr
import torch
import spaces
import random
from PIL import Image
#import numpy as np
from glob import glob
from pathlib import Path
from typing import Optional
from diffsynth import ModelManager, SVDVideoPipeline, HunyuanDiTImagePipeline
from diffsynth import ModelManager
from diffusers.utils import load_image, export_to_video
import uuid
HF_TOKEN = os.environ.get("HF_TOKEN", None)
# Constants
#MAX_SEED = np.iinfo(np.int32).max
MAX_SEED= 2147483647
CSS = """
footer {
visibility: hidden;
}
"""
JS = """function () {
gradioURL = window.location.href
if (!gradioURL.endsWith('?__theme=dark')) {
window.location.replace(gradioURL + '?__theme=dark');
}
}"""
# Ensure model and scheduler are initialized in GPU-enabled function
if torch.cuda.is_available():
model_manager = ModelManager(
torch_dtype=torch.float16,
device="cuda",
model_id_list=["stable-video-diffusion-img2vid-xt", "ExVideo-SVD-128f-v1"],
downloading_priority=["HuggingFace"])
pipe = SVDVideoPipeline.from_model_manager(model_manager)
@spaces.GPU(duration=120)
def generate(
image,
seed: Optional[int] = -1,
motion_bucket_id: int = 127,
fps_id: int = 25,
num_inference_steps: int = 10,
num_frames: int = 50,
output_folder: str = "outputs",
progress=gr.Progress(track_tqdm=True)):
if seed == -1:
seed = random.randint(0, MAX_SEED)
image = Image.open(image)
torch.manual_seed(seed)
os.makedirs(output_folder, exist_ok=True)
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
frames = pipe(
input_image=image.resize((512, 512)),
num_frames=num_frames,
fps=fps_id,
height=512,
width=512,
motion_bucket_id=motion_bucket_id,
num_inference_steps=num_inference_steps,
min_cfg_scale=2,
max_cfg_scale=2,
contrast_enhance_scale=1.2
).frames[0]
export_to_video(frames, video_path, fps=fps_id)
return video_path, seed
examples = [
"./train.jpg",
"./girl.webp",
"./robo.jpg",
]
# Gradio Interface
with gr.Blocks(css=CSS, js=JS, theme="soft") as demo:
gr.HTML("<h1><center>Exvideo📽️</center></h1>")
gr.HTML("<p><center><a href='https://huggingface.co/ECNU-CILab/ExVideo-SVD-128f-v1'>ExVideo</a> image-to-video generation<br><b>Update</b>: first version</center></p>")
with gr.Row():
image = gr.Image(label='Upload Image', height=600, scale=2, image_mode="RGB", type="filepath")
video = gr.Video(label="Generated Video", height=600, scale=2)
with gr.Accordion("Advanced Options", open=True):
with gr.Column(scale=1):
seed = gr.Slider(
label="Seed (-1 Random)",
minimum=-1,
maximum=MAX_SEED,
step=1,
value=-1,
)
motion_bucket_id = gr.Slider(
label="Motion bucket id",
info="Controls how much motion to add/remove from the image",
value=127,
step=1,
minimum=1,
maximum=255
)
fps_id = gr.Slider(
label="Frames per second",
info="The length of your video in seconds will be 25/fps",
value=6,
step=1,
minimum=5,
maximum=30
)
num_inference_steps = gr.Slider(
label="Inference steps",
info="Inference steps",
step=1,
value=10,
minimum=1,
maximum=50
)
num_frames = gr.Slider(
label="Frames num",
info="Frames num",
step=1,
value=50,
minimum=1,
maximum=128
)
with gr.Row():
submit_btn = gr.Button(value="Generate")
#stop_btn = gr.Button(value="Stop", variant="stop")
clear_btn = gr.ClearButton([image, seed, video])
gr.Examples(
examples=examples,
inputs=image,
outputs=[video, seed],
fn=generate,
cache_examples="lazy",
examples_per_page=4,
)
submit_event = submit_btn.click(fn=generate, inputs=[image, seed, motion_bucket_id, fps_id,num_inference_steps, num_frames], outputs=[video, seed], api_name="video")
#stop_btn.click(fn=None, inputs=None, outputs=None, cancels=[submit_event])
demo.queue().launch()