Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import time
|
3 |
import spaces
|
4 |
import torch
|
5 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
import gradio as gr
|
7 |
from threading import Thread
|
8 |
|
9 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
10 |
-
MODEL = "
|
11 |
-
MODEL_BASE = "evabyte/EvaByte"
|
12 |
|
13 |
-
TITLE = "<h1><center>
|
14 |
|
15 |
PLACEHOLDER = """
|
16 |
<center>
|
@@ -33,12 +39,23 @@ h3 {
|
|
33 |
|
34 |
device = "cuda" # for GPU usage or "cpu" for CPU usage
|
35 |
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
model = AutoModelForCausalLM.from_pretrained(
|
38 |
MODEL,
|
39 |
-
torch_dtype=torch.
|
40 |
device_map="auto",
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
@spaces.GPU()
|
44 |
def stream_chat(
|
@@ -46,8 +63,10 @@ def stream_chat(
|
|
46 |
history: list,
|
47 |
system_prompt: str,
|
48 |
temperature: float = 0.8,
|
49 |
-
max_new_tokens: int =
|
50 |
top_p: float = 1.0,
|
|
|
|
|
51 |
):
|
52 |
print(f'message: {message}')
|
53 |
print(f'history: {history}')
|
@@ -63,26 +82,33 @@ def stream_chat(
|
|
63 |
|
64 |
conversation.append({"role": "user", "content": message})
|
65 |
|
66 |
-
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(device)
|
67 |
-
|
68 |
-
|
|
|
|
|
69 |
input_ids=input_ids,
|
70 |
max_new_tokens = max_new_tokens,
|
71 |
do_sample = False if temperature == 0 else True,
|
72 |
top_p = top_p,
|
|
|
|
|
|
|
73 |
temperature = temperature,
|
|
|
|
|
74 |
)
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
81 |
|
82 |
-
|
83 |
-
time.sleep(0.02)
|
84 |
-
yield response[: i + 1]
|
85 |
-
|
86 |
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
|
87 |
|
88 |
with gr.Blocks(css=CSS, theme="soft") as demo:
|
@@ -95,7 +121,7 @@ with gr.Blocks(css=CSS, theme="soft") as demo:
|
|
95 |
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
|
96 |
additional_inputs=[
|
97 |
gr.Textbox(
|
98 |
-
value="You are a
|
99 |
label="System Prompt",
|
100 |
lines=5,
|
101 |
render=False,
|
@@ -112,7 +138,7 @@ with gr.Blocks(css=CSS, theme="soft") as demo:
|
|
112 |
minimum=128,
|
113 |
maximum=8192,
|
114 |
step=1,
|
115 |
-
value=
|
116 |
label="Max new tokens",
|
117 |
render=False,
|
118 |
),
|
@@ -124,6 +150,22 @@ with gr.Blocks(css=CSS, theme="soft") as demo:
|
|
124 |
label="top_p",
|
125 |
render=False,
|
126 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
],
|
128 |
examples=[
|
129 |
["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
|
|
|
1 |
+
import subprocess
|
2 |
+
subprocess.run(
|
3 |
+
'pip install flash-attn --no-build-isolation',
|
4 |
+
env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"},
|
5 |
+
shell=True
|
6 |
+
)
|
7 |
+
|
8 |
import os
|
9 |
import time
|
10 |
import spaces
|
11 |
import torch
|
12 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer
|
13 |
import gradio as gr
|
14 |
from threading import Thread
|
15 |
|
16 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
17 |
+
MODEL = "NousResearch/DeepHermes-3-Llama-3-8B-Preview"
|
|
|
18 |
|
19 |
+
TITLE = "<h1><center>DeepHermes-3-Llama-3-8B</center></h1>"
|
20 |
|
21 |
PLACEHOLDER = """
|
22 |
<center>
|
|
|
39 |
|
40 |
device = "cuda" # for GPU usage or "cpu" for CPU usage
|
41 |
|
42 |
+
quantization_config = BitsAndBytesConfig(
|
43 |
+
load_in_4bit=True,
|
44 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
45 |
+
bnb_4bit_use_double_quant=True,
|
46 |
+
bnb_4bit_quant_type= "nf4")
|
47 |
+
|
48 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
49 |
model = AutoModelForCausalLM.from_pretrained(
|
50 |
MODEL,
|
51 |
+
torch_dtype=torch.float16,
|
52 |
device_map="auto",
|
53 |
+
attn_implementation="flash_attention_2",
|
54 |
+
quantization_config=quantization_config)
|
55 |
+
|
56 |
+
# Ensure `pad_token_id` is set
|
57 |
+
if tokenizer.pad_token_id is None:
|
58 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
59 |
|
60 |
@spaces.GPU()
|
61 |
def stream_chat(
|
|
|
63 |
history: list,
|
64 |
system_prompt: str,
|
65 |
temperature: float = 0.8,
|
66 |
+
max_new_tokens: int = 2500,
|
67 |
top_p: float = 1.0,
|
68 |
+
top_k: int = 20,
|
69 |
+
penalty: float = 1.1,
|
70 |
):
|
71 |
print(f'message: {message}')
|
72 |
print(f'history: {history}')
|
|
|
82 |
|
83 |
conversation.append({"role": "user", "content": message})
|
84 |
|
85 |
+
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device)
|
86 |
+
|
87 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
88 |
+
|
89 |
+
generate_kwargs = dict(
|
90 |
input_ids=input_ids,
|
91 |
max_new_tokens = max_new_tokens,
|
92 |
do_sample = False if temperature == 0 else True,
|
93 |
top_p = top_p,
|
94 |
+
top_k = top_k,
|
95 |
+
eos_token_id = tokenizer.eos_token_id,
|
96 |
+
pad_token_id = tokenizer.pad_token_id,
|
97 |
temperature = temperature,
|
98 |
+
repetition_penalty=penalty,
|
99 |
+
streamer=streamer,
|
100 |
)
|
101 |
|
102 |
+
with torch.no_grad():
|
103 |
+
thread = Thread(target=model.generate, kwargs=generate_kwargs)
|
104 |
+
thread.start()
|
105 |
+
|
106 |
+
buffer = ""
|
107 |
+
for new_text in streamer:
|
108 |
+
buffer += new_text
|
109 |
+
yield buffer
|
110 |
|
111 |
+
|
|
|
|
|
|
|
112 |
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
|
113 |
|
114 |
with gr.Blocks(css=CSS, theme="soft") as demo:
|
|
|
121 |
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
|
122 |
additional_inputs=[
|
123 |
gr.Textbox(
|
124 |
+
value="You are a deep thinking AI, you may use extremely long chains of thought to deeply consider the problem and deliberate with yourself via systematic reasoning processes to help come to a correct solution prior to answering. You should enclose your thoughts and internal monologue inside <think> </think> tags, and then provide your solution or response to the problem.",
|
125 |
label="System Prompt",
|
126 |
lines=5,
|
127 |
render=False,
|
|
|
138 |
minimum=128,
|
139 |
maximum=8192,
|
140 |
step=1,
|
141 |
+
value= 2500,
|
142 |
label="Max new tokens",
|
143 |
render=False,
|
144 |
),
|
|
|
150 |
label="top_p",
|
151 |
render=False,
|
152 |
),
|
153 |
+
gr.Slider(
|
154 |
+
minimum=1,
|
155 |
+
maximum=20,
|
156 |
+
step=1,
|
157 |
+
value=20,
|
158 |
+
label="top_k",
|
159 |
+
render=False,
|
160 |
+
),
|
161 |
+
gr.Slider(
|
162 |
+
minimum=0.0,
|
163 |
+
maximum=2.0,
|
164 |
+
step=0.1,
|
165 |
+
value=1.1,
|
166 |
+
label="Repetition penalty",
|
167 |
+
render=False,
|
168 |
+
),
|
169 |
],
|
170 |
examples=[
|
171 |
["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
|