|
|
|
from peft import PeftModel |
|
from transformers import Qwen2VLForConditionalGeneration |
|
from transformers import AutoProcessor |
|
import gradio as gr |
|
from transformers import Qwen2VLProcessor |
|
from qwen_vl_utils import process_vision_info |
|
|
|
|
|
base_model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct") |
|
model = PeftModel.from_pretrained(base_model, "vignesha7/qwen2-2b-instruct-Brain-MRI-Description") |
|
|
|
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct") |
|
|
|
|
|
def generate_description(sample): |
|
system_message = "You are an expert MRI radiographer. you can describe what you see in the mri image" |
|
|
|
prompt = "Describe accurately what you see in this radiology image." |
|
messages = [ |
|
{ "role": "system", |
|
"content": [{"type": "text", "text": system_message}] |
|
}, |
|
{ "role": "user", |
|
"content" : [ |
|
{"type" : "text", "text" : prompt}, |
|
{"type" : "image", "image" : sample}] |
|
}, |
|
] |
|
|
|
text = processor.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True |
|
) |
|
image_inputs, video_inputs = process_vision_info(messages) |
|
inputs = processor( |
|
text=[text], |
|
images=image_inputs, |
|
videos=video_inputs, |
|
padding=True, |
|
return_tensors="pt", |
|
) |
|
inputs = inputs.to(model.device) |
|
|
|
generated_ids = model.generate(**inputs, max_new_tokens=256, top_p=1.0, do_sample=True, temperature=0.8) |
|
generated_ids_trimmed = [out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] |
|
output_text = processor.batch_decode( |
|
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
) |
|
return output_text[0] |
|
|
|
|
|
title = "BrainMRI Radiology Expert" |
|
description = "An Qwen2-VL-2B-Instruct model fine tuned on brain mri images.Describes the brain image" |
|
|
|
demo = gr.Interface( |
|
fn=generate_description, |
|
inputs=gr.Image(type='pil'), |
|
outputs='text', |
|
title=title, |
|
description=description, |
|
) |
|
|
|
demo.launch() |
|
|
|
|