import gradio as gr from tool import VisualRAGTool tool = VisualRAGTool() def search(query, k, api_key): """Searches for the most relevant pages based on the query.""" print("=============== SEARCHING ===============") context, answer = tool.search(query, k, api_key) context_gallery = [(page.image, page.caption) for page in context] print("========================================") return gr.Gallery(value=context_gallery, label="Retrieved Documents", height=400, show_label=True, visible=True), answer def index(files, contextualize_embeds, api_key): """Indexes the uploaded files.""" print("=============== INDEXING ===============") indexed_files_num = tool.index( files=files, contextualize=contextualize_embeds, api_key=api_key, overwrite_db=True ) print("========================================") return gr.Textbox(f"Uploaded and processed {indexed_files_num} pages!"),\ gr.Textbox( lines=2, label="Query", show_label=False, placeholder="Enter your prompt here and press Shift+Enter or press the button", interactive=True, ) def show_processing_status(): """Updates the upload status.""" return gr.Textbox(label="Processing Status", interactive=False, visible=True),\ gr.Checkbox(label="Contextualize Embeddings", visible=False),\ gr.Textbox( lines=2, label="Query", show_label=False, placeholder="Enter your prompt here and press Shift+Enter or press the button", interactive=False, ) with gr.Blocks( theme=gr.themes.Ocean(), title="ColPali Tool Demo", ) as demo: gr.Markdown("""\ # ColPali: Efficient Document Retrieval with Vision Language Models (ColQwen2) 📚 Demo to test the ColPali RAG Tool powered by ColQwen2 (ColPali) on PDF documents. ColPali is implemented from the [ColPali paper](https://arxiv.org/abs/2407.01449). This tool allows you to upload PDF files and search for the most relevant pages based on your query. Refresh the page if you change documents! ⚠️ This demo uses a CPU version of the model, so it may be slow! For faster results you may want to fork the space and run it on a GPU. """) api_key = gr.Textbox(placeholder="Enter your OpenAI KEY here", label="API key") stored_messages = gr.State(value=[]) gr.Markdown("## 1️⃣ Upload PDFs") gr.Markdown("Upload PDF files to index and search.") with gr.Group(): contextualize_embeds = gr.Checkbox(label="Contextualize Embeddings", info="Add images surrouding context as metadata. Generated using gpt-4o-mini. ⚠️ Indexing will be longer!", value=True) upload_files = gr.File(file_types=[".pdf"], file_count="multiple", label="Upload files") processing_status = gr.Textbox(label="Processing Status", interactive=False, visible=False) gr.Markdown("## 2️⃣ Search") gr.Markdown("Ask a question relevant to the documents you uploaded.") with gr.Group(): chatbot = gr.Textbox(label="AI Assistant", placeholder="Generated response based on retrieved documents.", lines=6) output_gallery = gr.Gallery(label="Retrieved Documents", height=600, show_label=True, visible=False) with gr.Row(equal_height=True): with gr.Column(scale=4): text_input = gr.Textbox( lines=2, label="Query", show_label=False, placeholder="Enter your prompt here and press Shift+Enter or press the button", ) with gr.Column(scale=1): k = gr.Slider(minimum=1, maximum=10, step=1, value=3, label="Pages to retrieve") search_button = gr.Button("🔍 Search", variant="primary") # Define the flow of the demo # upload_files.change(index, inputs=[upload_files, api_key], outputs=[upload_status]) upload_files.change(show_processing_status, inputs=[], outputs=[processing_status, contextualize_embeds, text_input])\ .then(index, inputs=[upload_files, contextualize_embeds, api_key], outputs=[processing_status, text_input]) text_input.submit(search, inputs=[text_input, k, api_key], outputs=[output_gallery, chatbot]) search_button.click(search, inputs=[text_input, k, api_key], outputs=[output_gallery, chatbot]) if __name__ == "__main__": demo.queue(max_size=5).launch(debug=True, server_name="0.0.0.0")