Spaces:
Running
Running
Fix utils bug
Browse files
tool.py
CHANGED
@@ -29,6 +29,26 @@ class VisualRAGTool(Tool):
|
|
29 |
|
30 |
model_name: str = "vidore/colqwen2-v1.0"
|
31 |
api_key: str = os.getenv("OPENAI_KEY")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
def __init__(self, *args, **kwargs):
|
34 |
self.is_initialized = False
|
@@ -58,20 +78,103 @@ class VisualRAGTool(Tool):
|
|
58 |
|
59 |
self.is_initialized = True
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
def _extract_contexts(self, images, api_key, window=10) -> list:
|
62 |
"""Extracts context from images."""
|
63 |
-
from
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
65 |
try:
|
66 |
args = [
|
67 |
{
|
68 |
'query': "Give the general context about these pages. Give the context in the same language as the documents.",
|
69 |
-
'pages': [Page(image=im) for im in images[max(i-window+1, 0):i+1]],
|
70 |
'api_key': api_key,
|
71 |
'system_prompt': CONTEXT_SYSTEM_PROMPT,
|
72 |
} for i in range(0, len(images), window)
|
73 |
]
|
74 |
-
window_contexts = pqdm(args, query_openai, n_jobs=8, argument_type='kwargs')
|
75 |
|
76 |
# code sequentially ftm with tqdm
|
77 |
# query = "Give the general context about these pages. Give the context in the same language as the documents."
|
@@ -95,7 +198,6 @@ class VisualRAGTool(Tool):
|
|
95 |
def _preprocess_file(self, file: str, contextualize: bool = True, api_key: str = None, window: int = 10) -> list:
|
96 |
"""Converts a file to images and extracts metadata."""
|
97 |
from pdf2image import convert_from_path
|
98 |
-
from utils import Metadata, Page
|
99 |
|
100 |
title = file.split("/")[-1]
|
101 |
images = convert_from_path(file, thread_count=4)
|
@@ -103,15 +205,15 @@ class VisualRAGTool(Tool):
|
|
103 |
contexts = self._extract_contexts(images, api_key, window=window)
|
104 |
else:
|
105 |
contexts = [None for _ in range(len(images))]
|
106 |
-
metadatas = [
|
107 |
|
108 |
-
return [Page(image=img, metadata=metadata) for img, metadata in zip(images, metadatas)]
|
109 |
|
110 |
def preprocess(self, files: list, contextualize: bool = True, api_key: str = None, window: int = 10) -> list:
|
111 |
"""Preprocesses the files and extracts metadata."""
|
112 |
pages = [page for file in files for page in self._preprocess_file(file, contextualize=contextualize, api_key=api_key, window=window)]
|
113 |
|
114 |
-
print(f"Example metadata:\n{pages[0].metadata.context}")
|
115 |
|
116 |
return pages
|
117 |
|
@@ -183,7 +285,7 @@ class VisualRAGTool(Tool):
|
|
183 |
top_k_idx = scores.topk(k).indices.tolist()
|
184 |
|
185 |
print("Top Scores:")
|
186 |
-
[print(f'Page {self.pages[idx].metadata.page_id}: {scores[idx]}') for idx in top_k_idx]
|
187 |
|
188 |
# Get the top k results
|
189 |
results = [self.pages[idx] for idx in top_k_idx]
|
@@ -192,8 +294,25 @@ class VisualRAGTool(Tool):
|
|
192 |
|
193 |
def generate_answer(self, query: str, docs: list, api_key: str = None):
|
194 |
"""Generates an answer based on the query and the retrieved documents."""
|
195 |
-
|
196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
return result
|
198 |
|
199 |
def search(self, query: str, k: int = 1, api_key: str = None) -> tuple:
|
|
|
29 |
|
30 |
model_name: str = "vidore/colqwen2-v1.0"
|
31 |
api_key: str = os.getenv("OPENAI_KEY")
|
32 |
+
|
33 |
+
class Page:
|
34 |
+
from typing import Optional, Dict, Any
|
35 |
+
from PIL import Image
|
36 |
+
|
37 |
+
image: Image.Image
|
38 |
+
metadata: Optional[Dict[str, Any]] = None
|
39 |
+
|
40 |
+
def __init__(self, image, metadata=None):
|
41 |
+
self.image = image
|
42 |
+
self.metadata = metadata
|
43 |
+
|
44 |
+
@property
|
45 |
+
def caption(self):
|
46 |
+
if self.metadata is None:
|
47 |
+
return None
|
48 |
+
return f"Document: {self.metadata.get('doc_title')}, Context: {self.metadata.get('context')}"
|
49 |
+
|
50 |
+
def __hash__(self):
|
51 |
+
return hash(self.image)
|
52 |
|
53 |
def __init__(self, *args, **kwargs):
|
54 |
self.is_initialized = False
|
|
|
78 |
|
79 |
self.is_initialized = True
|
80 |
|
81 |
+
def _encode_image_to_base64(self, image):
|
82 |
+
"""Encodes a PIL image to a base64 string."""
|
83 |
+
from io import BytesIO
|
84 |
+
import base64
|
85 |
+
|
86 |
+
buffered = BytesIO()
|
87 |
+
image.save(buffered, format="JPEG")
|
88 |
+
return base64.b64encode(buffered.getvalue()).decode("utf-8")
|
89 |
+
|
90 |
+
def _build_query(self, query: str, pages: list) -> list:
|
91 |
+
"""Builds the query for OpenAI based on the pages and the query."""
|
92 |
+
messages = []
|
93 |
+
messages.append({"type": "text", "text": "PDF pages:\n"})
|
94 |
+
for page in pages:
|
95 |
+
capt = page.caption
|
96 |
+
if capt is not None:
|
97 |
+
messages.append({
|
98 |
+
"type": "text",
|
99 |
+
"text": capt
|
100 |
+
})
|
101 |
+
messages.append({
|
102 |
+
"type": "image_url",
|
103 |
+
"image_url": {
|
104 |
+
"url": f"data:image/jpeg;base64,{self._encode_image_to_base64(page.image)}"
|
105 |
+
},
|
106 |
+
})
|
107 |
+
messages.append({"type": "text", "text": f"Query:\n{query}"})
|
108 |
+
|
109 |
+
return messages
|
110 |
+
|
111 |
+
def query_openai(self, query, pages, api_key=None, system_prompt=None, model="gpt-4o-mini"):
|
112 |
+
"""Calls OpenAI's GPT-4o-mini with the query and image data."""
|
113 |
+
from smolagents import ChatMessage
|
114 |
+
|
115 |
+
system_prompt = system_prompt or \
|
116 |
+
"""You are a smart assistant designed to answer questions about a PDF document.
|
117 |
+
You are given relevant information in the form of PDF pages preceded by their metadata: document title, page identifier, surrounding context.
|
118 |
+
Use them to construct a short response to the question, and cite your sources in the following format: (document, page number).
|
119 |
+
If it is not possible to answer using the provided pages, do not attempt to provide an answer and simply say the answer is not present within the documents.
|
120 |
+
Give detailed and extensive answers, only containing info in the pages you are given.
|
121 |
+
You can answer using information contained in plots and figures if necessary.
|
122 |
+
Answer in the same language as the query."""
|
123 |
+
|
124 |
+
api_key = api_key or self.api_key
|
125 |
+
|
126 |
+
if api_key and api_key.startswith("sk"):
|
127 |
+
try:
|
128 |
+
from openai import OpenAI
|
129 |
+
|
130 |
+
client = OpenAI(api_key=api_key.strip())
|
131 |
+
|
132 |
+
response = client.chat.completions.create(
|
133 |
+
model=model,
|
134 |
+
messages=[
|
135 |
+
{
|
136 |
+
"role": "system",
|
137 |
+
"content": system_prompt
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"role": "user",
|
141 |
+
"content": self._build_query(query, pages)
|
142 |
+
}
|
143 |
+
],
|
144 |
+
max_tokens=500,
|
145 |
+
)
|
146 |
+
|
147 |
+
message = ChatMessage.from_dict(
|
148 |
+
response.choices[0].message.model_dump(include={"role", "content", "tool_calls"})
|
149 |
+
)
|
150 |
+
message.raw = response
|
151 |
+
|
152 |
+
return message
|
153 |
+
|
154 |
+
except Exception as e:
|
155 |
+
return "OpenAI API connection failure. Verify the provided key is correct (sk-***)."
|
156 |
+
|
157 |
+
return "Enter your OpenAI API key to get a custom response"
|
158 |
+
|
159 |
def _extract_contexts(self, images, api_key, window=10) -> list:
|
160 |
"""Extracts context from images."""
|
161 |
+
from pqdm.threads import pqdm
|
162 |
+
|
163 |
+
CONTEXT_SYSTEM_PROMPT = \
|
164 |
+
"""You are a smart assistant designed to extract context of PDF pages.
|
165 |
+
Give concise answers, only containing info in the pages you are given.
|
166 |
+
You can answer using information contained in plots and figures if necessary."""
|
167 |
+
|
168 |
try:
|
169 |
args = [
|
170 |
{
|
171 |
'query': "Give the general context about these pages. Give the context in the same language as the documents.",
|
172 |
+
'pages': [self.Page(image=im) for im in images[max(i-window+1, 0):i+1]],
|
173 |
'api_key': api_key,
|
174 |
'system_prompt': CONTEXT_SYSTEM_PROMPT,
|
175 |
} for i in range(0, len(images), window)
|
176 |
]
|
177 |
+
window_contexts = pqdm(args, self.query_openai, n_jobs=8, argument_type='kwargs')
|
178 |
|
179 |
# code sequentially ftm with tqdm
|
180 |
# query = "Give the general context about these pages. Give the context in the same language as the documents."
|
|
|
198 |
def _preprocess_file(self, file: str, contextualize: bool = True, api_key: str = None, window: int = 10) -> list:
|
199 |
"""Converts a file to images and extracts metadata."""
|
200 |
from pdf2image import convert_from_path
|
|
|
201 |
|
202 |
title = file.split("/")[-1]
|
203 |
images = convert_from_path(file, thread_count=4)
|
|
|
205 |
contexts = self._extract_contexts(images, api_key, window=window)
|
206 |
else:
|
207 |
contexts = [None for _ in range(len(images))]
|
208 |
+
metadatas = [{'doc_title': title, 'page_id': i, 'context': contexts[i]} for i in range(len(images))]
|
209 |
|
210 |
+
return [self.Page(image=img, metadata=metadata) for img, metadata in zip(images, metadatas)]
|
211 |
|
212 |
def preprocess(self, files: list, contextualize: bool = True, api_key: str = None, window: int = 10) -> list:
|
213 |
"""Preprocesses the files and extracts metadata."""
|
214 |
pages = [page for file in files for page in self._preprocess_file(file, contextualize=contextualize, api_key=api_key, window=window)]
|
215 |
|
216 |
+
print(f"Example metadata:\n{pages[0].metadata.get('context')}")
|
217 |
|
218 |
return pages
|
219 |
|
|
|
285 |
top_k_idx = scores.topk(k).indices.tolist()
|
286 |
|
287 |
print("Top Scores:")
|
288 |
+
[print(f'Page {self.pages[idx].metadata.get('page_id')}: {scores[idx]}') for idx in top_k_idx]
|
289 |
|
290 |
# Get the top k results
|
291 |
results = [self.pages[idx] for idx in top_k_idx]
|
|
|
294 |
|
295 |
def generate_answer(self, query: str, docs: list, api_key: str = None):
|
296 |
"""Generates an answer based on the query and the retrieved documents."""
|
297 |
+
|
298 |
+
RAG_SYSTEM_PROMPT = \
|
299 |
+
""" You are a smart assistant designed to answer questions about a PDF document.
|
300 |
+
|
301 |
+
You are given relevant information in the form of PDF pages preceded by their metadata: document title, page identifier, surrounding context.
|
302 |
+
Use them to construct a response to the question, and cite your sources.
|
303 |
+
Use the following citation format:
|
304 |
+
"Some information from a first document [1, p.Page Number]. Some information from the same first document but at a different page [1, p.Page Number]. Some more information from another document [2, p.Page Number].
|
305 |
+
...
|
306 |
+
Sources:
|
307 |
+
[1] Document Title
|
308 |
+
[2] Another Document Title"
|
309 |
+
|
310 |
+
You can answer using information contained in plots and figures if necessary.
|
311 |
+
If it is not possible to answer using the provided pages, do not attempt to provide an answer and simply say the answer is not present within the documents.
|
312 |
+
Give detailed answers, only containing info in the pages you are given.
|
313 |
+
Answer in the same language as the query."""
|
314 |
+
|
315 |
+
result = self.query_openai(query, docs, api_key or self.api_key, system_prompt=RAG_SYSTEM_PROMPT)
|
316 |
return result
|
317 |
|
318 |
def search(self, query: str, k: int = 1, api_key: str = None) -> tuple:
|
utils.py
DELETED
@@ -1,124 +0,0 @@
|
|
1 |
-
from dataclasses import dataclass
|
2 |
-
from typing import List, Optional, Tuple
|
3 |
-
|
4 |
-
import base64
|
5 |
-
from io import BytesIO
|
6 |
-
from PIL import Image
|
7 |
-
|
8 |
-
|
9 |
-
from smolagents import ChatMessage
|
10 |
-
|
11 |
-
def encode_image_to_base64(image):
|
12 |
-
"""Encodes a PIL image to a base64 string."""
|
13 |
-
buffered = BytesIO()
|
14 |
-
image.save(buffered, format="JPEG")
|
15 |
-
return base64.b64encode(buffered.getvalue()).decode("utf-8")
|
16 |
-
|
17 |
-
DEFAULT_SYSTEM_PROMPT = \
|
18 |
-
"""You are a smart assistant designed to answer questions about a PDF document.
|
19 |
-
You are given relevant information in the form of PDF pages preceded by their metadata: document title, page identifier, surrounding context.
|
20 |
-
Use them to construct a short response to the question, and cite your sources in the following format: (document, page number).
|
21 |
-
If it is not possible to answer using the provided pages, do not attempt to provide an answer and simply say the answer is not present within the documents.
|
22 |
-
Give detailed and extensive answers, only containing info in the pages you are given.
|
23 |
-
You can answer using information contained in plots and figures if necessary.
|
24 |
-
Answer in the same language as the query."""
|
25 |
-
|
26 |
-
def _build_query(query, pages):
|
27 |
-
messages = []
|
28 |
-
messages.append({"type": "text", "text": "PDF pages:\n"})
|
29 |
-
for page in pages:
|
30 |
-
capt = page.caption
|
31 |
-
if capt is not None:
|
32 |
-
messages.append({
|
33 |
-
"type": "text",
|
34 |
-
"text": capt
|
35 |
-
})
|
36 |
-
messages.append({
|
37 |
-
"type": "image_url",
|
38 |
-
"image_url": {
|
39 |
-
"url": f"data:image/jpeg;base64,{encode_image_to_base64(page.image)}"
|
40 |
-
},
|
41 |
-
})
|
42 |
-
messages.append({"type": "text", "text": f"Query:\n{query}"})
|
43 |
-
|
44 |
-
return messages
|
45 |
-
|
46 |
-
def query_openai(query, pages, api_key=None, system_prompt=DEFAULT_SYSTEM_PROMPT, model="gpt-4o-mini") -> ChatMessage:
|
47 |
-
"""Calls OpenAI's GPT-4o-mini with the query and image data."""
|
48 |
-
if api_key and api_key.startswith("sk"):
|
49 |
-
try:
|
50 |
-
from openai import OpenAI
|
51 |
-
|
52 |
-
client = OpenAI(api_key=api_key.strip())
|
53 |
-
|
54 |
-
response = client.chat.completions.create(
|
55 |
-
model=model,
|
56 |
-
messages=[
|
57 |
-
{
|
58 |
-
"role": "system",
|
59 |
-
"content": system_prompt
|
60 |
-
},
|
61 |
-
{
|
62 |
-
"role": "user",
|
63 |
-
"content": _build_query(query, pages)
|
64 |
-
}
|
65 |
-
],
|
66 |
-
max_tokens=500,
|
67 |
-
)
|
68 |
-
|
69 |
-
message = ChatMessage.from_dict(
|
70 |
-
response.choices[0].message.model_dump(include={"role", "content", "tool_calls"})
|
71 |
-
)
|
72 |
-
message.raw = response
|
73 |
-
|
74 |
-
return message
|
75 |
-
|
76 |
-
except Exception as e:
|
77 |
-
return "OpenAI API connection failure. Verify the provided key is correct (sk-***)."
|
78 |
-
|
79 |
-
return "Enter your OpenAI API key to get a custom response"
|
80 |
-
|
81 |
-
CONTEXT_SYSTEM_PROMPT = \
|
82 |
-
"""You are a smart assistant designed to extract context of PDF pages.
|
83 |
-
Give concise answers, only containing info in the pages you are given.
|
84 |
-
You can answer using information contained in plots and figures if necessary."""
|
85 |
-
|
86 |
-
RAG_SYSTEM_PROMPT = \
|
87 |
-
""" You are a smart assistant designed to answer questions about a PDF document.
|
88 |
-
|
89 |
-
You are given relevant information in the form of PDF pages preceded by their metadata: document title, page identifier, surrounding context.
|
90 |
-
Use them to construct a response to the question, and cite your sources.
|
91 |
-
Use the following citation format:
|
92 |
-
"Some information from a first document [1, p.Page Number]. Some information from the same first document but at a different page [1, p.Page Number]. Some more information from another document [2, p.Page Number].
|
93 |
-
...
|
94 |
-
Sources:
|
95 |
-
[1] Document Title
|
96 |
-
[2] Another Document Title"
|
97 |
-
|
98 |
-
You can answer using information contained in plots and figures if necessary.
|
99 |
-
If it is not possible to answer using the provided pages, do not attempt to provide an answer and simply say the answer is not present within the documents.
|
100 |
-
Give detailed answers, only containing info in the pages you are given.
|
101 |
-
Answer in the same language as the query."""
|
102 |
-
|
103 |
-
@dataclass
|
104 |
-
class Metadata:
|
105 |
-
doc_title: str
|
106 |
-
page_id: int
|
107 |
-
context: Optional[str] = None
|
108 |
-
|
109 |
-
def __str__(self):
|
110 |
-
return f"Document: {self.doc_title}, Page ID: {self.page_id}, Context: {self.context}"
|
111 |
-
|
112 |
-
@dataclass
|
113 |
-
class Page:
|
114 |
-
image: Image.Image
|
115 |
-
metadata: Optional[Metadata] = None
|
116 |
-
|
117 |
-
@property
|
118 |
-
def caption(self):
|
119 |
-
if self.metadata is None:
|
120 |
-
return None
|
121 |
-
return f"Document: {self.metadata.doc_title}, Context: {self.metadata.context}"
|
122 |
-
|
123 |
-
def __hash__(self):
|
124 |
-
return hash(self.image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|