Spaces:
Running
Running
refactor to follow tool validation
Browse files- .gitignore +1 -0
- __pycache__/tool.cpython-312.pyc +0 -0
- __pycache__/utils.cpython-312.pyc +0 -0
- tool.py +31 -147
- utils.py +124 -0
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
.venv
|
__pycache__/tool.cpython-312.pyc
ADDED
|
Binary file (12 kB). View file
|
|
|
__pycache__/utils.cpython-312.pyc
ADDED
|
Binary file (6.34 kB). View file
|
|
|
tool.py
CHANGED
|
@@ -1,141 +1,10 @@
|
|
| 1 |
import os
|
| 2 |
|
| 3 |
-
from
|
| 4 |
-
from typing import List, Optional, Tuple
|
| 5 |
-
|
| 6 |
-
import torch
|
| 7 |
-
from torch.utils.data import DataLoader, Dataset
|
| 8 |
-
|
| 9 |
-
import base64
|
| 10 |
-
from io import BytesIO
|
| 11 |
-
from PIL import Image
|
| 12 |
-
from pdf2image import convert_from_path
|
| 13 |
-
|
| 14 |
-
from tqdm import tqdm
|
| 15 |
-
from pqdm.processes import pqdm
|
| 16 |
-
|
| 17 |
-
from colpali_engine.models import ColQwen2, ColQwen2Processor
|
| 18 |
-
|
| 19 |
-
from smolagents import Tool, ChatMessage
|
| 20 |
|
| 21 |
from dotenv import load_dotenv
|
| 22 |
load_dotenv()
|
| 23 |
|
| 24 |
-
def encode_image_to_base64(image):
|
| 25 |
-
"""Encodes a PIL image to a base64 string."""
|
| 26 |
-
buffered = BytesIO()
|
| 27 |
-
image.save(buffered, format="JPEG")
|
| 28 |
-
return base64.b64encode(buffered.getvalue()).decode("utf-8")
|
| 29 |
-
|
| 30 |
-
DEFAULT_SYSTEM_PROMPT = \
|
| 31 |
-
"""You are a smart assistant designed to answer questions about a PDF document.
|
| 32 |
-
You are given relevant information in the form of PDF pages preceded by their metadata: document title, page identifier, surrounding context.
|
| 33 |
-
Use them to construct a short response to the question, and cite your sources in the following format: (document, page number).
|
| 34 |
-
If it is not possible to answer using the provided pages, do not attempt to provide an answer and simply say the answer is not present within the documents.
|
| 35 |
-
Give detailed and extensive answers, only containing info in the pages you are given.
|
| 36 |
-
You can answer using information contained in plots and figures if necessary.
|
| 37 |
-
Answer in the same language as the query."""
|
| 38 |
-
|
| 39 |
-
def _build_query(query, pages):
|
| 40 |
-
messages = []
|
| 41 |
-
messages.append({"type": "text", "text": "PDF pages:\n"})
|
| 42 |
-
for page in pages:
|
| 43 |
-
capt = page.caption
|
| 44 |
-
if capt is not None:
|
| 45 |
-
messages.append({
|
| 46 |
-
"type": "text",
|
| 47 |
-
"text": capt
|
| 48 |
-
})
|
| 49 |
-
messages.append({
|
| 50 |
-
"type": "image_url",
|
| 51 |
-
"image_url": {
|
| 52 |
-
"url": f"data:image/jpeg;base64,{encode_image_to_base64(page.image)}"
|
| 53 |
-
},
|
| 54 |
-
})
|
| 55 |
-
messages.append({"type": "text", "text": f"Query:\n{query}"})
|
| 56 |
-
|
| 57 |
-
return messages
|
| 58 |
-
|
| 59 |
-
def query_openai(query, pages, api_key=None, system_prompt=DEFAULT_SYSTEM_PROMPT, model="gpt-4o-mini") -> ChatMessage:
|
| 60 |
-
"""Calls OpenAI's GPT-4o-mini with the query and image data."""
|
| 61 |
-
if api_key and api_key.startswith("sk"):
|
| 62 |
-
try:
|
| 63 |
-
from openai import OpenAI
|
| 64 |
-
|
| 65 |
-
client = OpenAI(api_key=api_key.strip())
|
| 66 |
-
|
| 67 |
-
response = client.chat.completions.create(
|
| 68 |
-
model=model,
|
| 69 |
-
messages=[
|
| 70 |
-
{
|
| 71 |
-
"role": "system",
|
| 72 |
-
"content": system_prompt
|
| 73 |
-
},
|
| 74 |
-
{
|
| 75 |
-
"role": "user",
|
| 76 |
-
"content": _build_query(query, pages)
|
| 77 |
-
}
|
| 78 |
-
],
|
| 79 |
-
max_tokens=500,
|
| 80 |
-
)
|
| 81 |
-
|
| 82 |
-
message = ChatMessage.from_dict(
|
| 83 |
-
response.choices[0].message.model_dump(include={"role", "content", "tool_calls"})
|
| 84 |
-
)
|
| 85 |
-
message.raw = response
|
| 86 |
-
|
| 87 |
-
return message
|
| 88 |
-
|
| 89 |
-
except Exception as e:
|
| 90 |
-
return "OpenAI API connection failure. Verify the provided key is correct (sk-***)."
|
| 91 |
-
|
| 92 |
-
return "Enter your OpenAI API key to get a custom response"
|
| 93 |
-
|
| 94 |
-
CONTEXT_SYSTEM_PROMPT = \
|
| 95 |
-
"""You are a smart assistant designed to extract context of PDF pages.
|
| 96 |
-
Give concise answers, only containing info in the pages you are given.
|
| 97 |
-
You can answer using information contained in plots and figures if necessary."""
|
| 98 |
-
|
| 99 |
-
RAG_SYSTEM_PROMPT = \
|
| 100 |
-
""" You are a smart assistant designed to answer questions about a PDF document.
|
| 101 |
-
|
| 102 |
-
You are given relevant information in the form of PDF pages preceded by their metadata: document title, page identifier, surrounding context.
|
| 103 |
-
Use them to construct a response to the question, and cite your sources.
|
| 104 |
-
Use the following citation format:
|
| 105 |
-
"Some information from a first document [1, p.Page Number]. Some information from the same first document but at a different page [1, p.Page Number]. Some more information from another document [2, p.Page Number].
|
| 106 |
-
...
|
| 107 |
-
Sources:
|
| 108 |
-
[1] Document Title
|
| 109 |
-
[2] Another Document Title"
|
| 110 |
-
|
| 111 |
-
You can answer using information contained in plots and figures if necessary.
|
| 112 |
-
If it is not possible to answer using the provided pages, do not attempt to provide an answer and simply say the answer is not present within the documents.
|
| 113 |
-
Give detailed answers, only containing info in the pages you are given.
|
| 114 |
-
Answer in the same language as the query."""
|
| 115 |
-
|
| 116 |
-
@dataclass
|
| 117 |
-
class Metadata:
|
| 118 |
-
doc_title: str
|
| 119 |
-
page_id: int
|
| 120 |
-
context: Optional[str] = None
|
| 121 |
-
|
| 122 |
-
def __str__(self):
|
| 123 |
-
return f"Document: {self.doc_title}, Page ID: {self.page_id}, Context: {self.context}"
|
| 124 |
-
|
| 125 |
-
@dataclass
|
| 126 |
-
class Page:
|
| 127 |
-
image: Image.Image
|
| 128 |
-
metadata: Optional[Metadata] = None
|
| 129 |
-
|
| 130 |
-
@property
|
| 131 |
-
def caption(self):
|
| 132 |
-
if self.metadata is None:
|
| 133 |
-
return None
|
| 134 |
-
return f"Document: {self.metadata.doc_title}, Context: {self.metadata.context}"
|
| 135 |
-
|
| 136 |
-
def __hash__(self):
|
| 137 |
-
return hash(self.image)
|
| 138 |
-
|
| 139 |
class VisualRAGTool(Tool):
|
| 140 |
name = "visual_rag"
|
| 141 |
description = """Performs a RAG query on your internal PDF documents and returns the generated text response."""
|
|
@@ -161,7 +30,13 @@ class VisualRAGTool(Tool):
|
|
| 161 |
model_name: str = "vidore/colqwen2-v1.0"
|
| 162 |
api_key: str = os.getenv("OPENAI_KEY")
|
| 163 |
|
|
|
|
|
|
|
|
|
|
| 164 |
def _init_models(self, model_name: str) -> None:
|
|
|
|
|
|
|
|
|
|
| 165 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 166 |
self.model = ColQwen2.from_pretrained(
|
| 167 |
model_name,
|
|
@@ -170,9 +45,6 @@ class VisualRAGTool(Tool):
|
|
| 170 |
attn_implementation="flash_attention_2"
|
| 171 |
).eval()
|
| 172 |
self.processor = ColQwen2Processor.from_pretrained(model_name)
|
| 173 |
-
|
| 174 |
-
def __init__(self, *args, **kwargs):
|
| 175 |
-
self.is_initialized = False
|
| 176 |
|
| 177 |
def setup(self):
|
| 178 |
"""
|
|
@@ -186,8 +58,10 @@ class VisualRAGTool(Tool):
|
|
| 186 |
|
| 187 |
self.is_initialized = True
|
| 188 |
|
| 189 |
-
def _extract_contexts(self, images, api_key, window=10) ->
|
| 190 |
"""Extracts context from images."""
|
|
|
|
|
|
|
| 191 |
try:
|
| 192 |
args = [
|
| 193 |
{
|
|
@@ -218,8 +92,11 @@ class VisualRAGTool(Tool):
|
|
| 218 |
|
| 219 |
return contexts
|
| 220 |
|
| 221 |
-
def _preprocess_file(self, file: str, contextualize: bool = True, api_key: str = None, window: int = 10) ->
|
| 222 |
"""Converts a file to images and extracts metadata."""
|
|
|
|
|
|
|
|
|
|
| 223 |
title = file.split("/")[-1]
|
| 224 |
images = convert_from_path(file, thread_count=4)
|
| 225 |
if contextualize and api_key:
|
|
@@ -230,7 +107,7 @@ class VisualRAGTool(Tool):
|
|
| 230 |
|
| 231 |
return [Page(image=img, metadata=metadata) for img, metadata in zip(images, metadatas)]
|
| 232 |
|
| 233 |
-
def preprocess(self, files:
|
| 234 |
"""Preprocesses the files and extracts metadata."""
|
| 235 |
pages = [page for file in files for page in self._preprocess_file(file, contextualize=contextualize, api_key=api_key, window=window)]
|
| 236 |
|
|
@@ -238,9 +115,13 @@ class VisualRAGTool(Tool):
|
|
| 238 |
|
| 239 |
return pages
|
| 240 |
|
| 241 |
-
def compute_embeddings(self, pages
|
| 242 |
"""Embeds the images using the model."""
|
| 243 |
"""Example script to run inference with ColPali (ColQwen2)"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 244 |
# run inference - docs
|
| 245 |
dataloader = DataLoader(
|
| 246 |
pages,
|
|
@@ -259,7 +140,8 @@ class VisualRAGTool(Tool):
|
|
| 259 |
|
| 260 |
return embds
|
| 261 |
|
| 262 |
-
def index(self, files:
|
|
|
|
| 263 |
if not self.is_initialized:
|
| 264 |
self.setup()
|
| 265 |
|
|
@@ -285,8 +167,9 @@ class VisualRAGTool(Tool):
|
|
| 285 |
|
| 286 |
return len(embds)
|
| 287 |
|
| 288 |
-
def retrieve(self, query: str, k: int) ->
|
| 289 |
"""Retrieve the top k documents based on the query."""
|
|
|
|
| 290 |
k = min(k, len(self.embds))
|
| 291 |
|
| 292 |
qs = []
|
|
@@ -307,11 +190,14 @@ class VisualRAGTool(Tool):
|
|
| 307 |
|
| 308 |
return results
|
| 309 |
|
| 310 |
-
def generate_answer(self, query: str, docs:
|
|
|
|
|
|
|
| 311 |
result = query_openai(query, docs, api_key or self.api_key, system_prompt=RAG_SYSTEM_PROMPT)
|
| 312 |
return result
|
| 313 |
|
| 314 |
-
def search(self, query: str, k: int = 1, api_key: str = None) ->
|
|
|
|
| 315 |
print(f"Searching for query: {query}")
|
| 316 |
|
| 317 |
# Retrieve the top k documents
|
|
@@ -334,11 +220,9 @@ class VisualRAGTool(Tool):
|
|
| 334 |
# _ = self.index(files, api_key)
|
| 335 |
|
| 336 |
# Retrieve the top k documents and generate response
|
| 337 |
-
|
| 338 |
query=query,
|
| 339 |
files=None,
|
| 340 |
k=k,
|
| 341 |
api_key=api_key
|
| 342 |
-
)
|
| 343 |
-
|
| 344 |
-
return rag_answer
|
|
|
|
| 1 |
import os
|
| 2 |
|
| 3 |
+
from smolagents import Tool
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
from dotenv import load_dotenv
|
| 6 |
load_dotenv()
|
| 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
class VisualRAGTool(Tool):
|
| 9 |
name = "visual_rag"
|
| 10 |
description = """Performs a RAG query on your internal PDF documents and returns the generated text response."""
|
|
|
|
| 30 |
model_name: str = "vidore/colqwen2-v1.0"
|
| 31 |
api_key: str = os.getenv("OPENAI_KEY")
|
| 32 |
|
| 33 |
+
def __init__(self, *args, **kwargs):
|
| 34 |
+
self.is_initialized = False
|
| 35 |
+
|
| 36 |
def _init_models(self, model_name: str) -> None:
|
| 37 |
+
import torch
|
| 38 |
+
from colpali_engine.models import ColQwen2, ColQwen2Processor
|
| 39 |
+
|
| 40 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 41 |
self.model = ColQwen2.from_pretrained(
|
| 42 |
model_name,
|
|
|
|
| 45 |
attn_implementation="flash_attention_2"
|
| 46 |
).eval()
|
| 47 |
self.processor = ColQwen2Processor.from_pretrained(model_name)
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
def setup(self):
|
| 50 |
"""
|
|
|
|
| 58 |
|
| 59 |
self.is_initialized = True
|
| 60 |
|
| 61 |
+
def _extract_contexts(self, images, api_key, window=10) -> list:
|
| 62 |
"""Extracts context from images."""
|
| 63 |
+
from utils import query_openai, Page, CONTEXT_SYSTEM_PROMPT
|
| 64 |
+
from pqdm.processes import pqdm
|
| 65 |
try:
|
| 66 |
args = [
|
| 67 |
{
|
|
|
|
| 92 |
|
| 93 |
return contexts
|
| 94 |
|
| 95 |
+
def _preprocess_file(self, file: str, contextualize: bool = True, api_key: str = None, window: int = 10) -> list:
|
| 96 |
"""Converts a file to images and extracts metadata."""
|
| 97 |
+
from pdf2image import convert_from_path
|
| 98 |
+
from utils import Metadata, Page
|
| 99 |
+
|
| 100 |
title = file.split("/")[-1]
|
| 101 |
images = convert_from_path(file, thread_count=4)
|
| 102 |
if contextualize and api_key:
|
|
|
|
| 107 |
|
| 108 |
return [Page(image=img, metadata=metadata) for img, metadata in zip(images, metadatas)]
|
| 109 |
|
| 110 |
+
def preprocess(self, files: list, contextualize: bool = True, api_key: str = None, window: int = 10) -> list:
|
| 111 |
"""Preprocesses the files and extracts metadata."""
|
| 112 |
pages = [page for file in files for page in self._preprocess_file(file, contextualize=contextualize, api_key=api_key, window=window)]
|
| 113 |
|
|
|
|
| 115 |
|
| 116 |
return pages
|
| 117 |
|
| 118 |
+
def compute_embeddings(self, pages) -> list:
|
| 119 |
"""Embeds the images using the model."""
|
| 120 |
"""Example script to run inference with ColPali (ColQwen2)"""
|
| 121 |
+
import torch
|
| 122 |
+
from torch.utils.data import DataLoader
|
| 123 |
+
from tqdm import tqdm
|
| 124 |
+
|
| 125 |
# run inference - docs
|
| 126 |
dataloader = DataLoader(
|
| 127 |
pages,
|
|
|
|
| 140 |
|
| 141 |
return embds
|
| 142 |
|
| 143 |
+
def index(self, files: list, contextualize: bool = True, api_key: str = None, overwrite_db: bool = False) -> int:
|
| 144 |
+
"""Indexes the uploaded files."""
|
| 145 |
if not self.is_initialized:
|
| 146 |
self.setup()
|
| 147 |
|
|
|
|
| 167 |
|
| 168 |
return len(embds)
|
| 169 |
|
| 170 |
+
def retrieve(self, query: str, k: int) -> list:
|
| 171 |
"""Retrieve the top k documents based on the query."""
|
| 172 |
+
import torch
|
| 173 |
k = min(k, len(self.embds))
|
| 174 |
|
| 175 |
qs = []
|
|
|
|
| 190 |
|
| 191 |
return results
|
| 192 |
|
| 193 |
+
def generate_answer(self, query: str, docs: list, api_key: str = None):
|
| 194 |
+
"""Generates an answer based on the query and the retrieved documents."""
|
| 195 |
+
from utils import query_openai, RAG_SYSTEM_PROMPT
|
| 196 |
result = query_openai(query, docs, api_key or self.api_key, system_prompt=RAG_SYSTEM_PROMPT)
|
| 197 |
return result
|
| 198 |
|
| 199 |
+
def search(self, query: str, k: int = 1, api_key: str = None) -> tuple:
|
| 200 |
+
"""Searches for the most relevant pages based on the query."""
|
| 201 |
print(f"Searching for query: {query}")
|
| 202 |
|
| 203 |
# Retrieve the top k documents
|
|
|
|
| 220 |
# _ = self.index(files, api_key)
|
| 221 |
|
| 222 |
# Retrieve the top k documents and generate response
|
| 223 |
+
return self.search(
|
| 224 |
query=query,
|
| 225 |
files=None,
|
| 226 |
k=k,
|
| 227 |
api_key=api_key
|
| 228 |
+
)[1]
|
|
|
|
|
|
utils.py
ADDED
|
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass
|
| 2 |
+
from typing import List, Optional, Tuple
|
| 3 |
+
|
| 4 |
+
import base64
|
| 5 |
+
from io import BytesIO
|
| 6 |
+
from PIL import Image
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
from smolagents import ChatMessage
|
| 10 |
+
|
| 11 |
+
def encode_image_to_base64(image):
|
| 12 |
+
"""Encodes a PIL image to a base64 string."""
|
| 13 |
+
buffered = BytesIO()
|
| 14 |
+
image.save(buffered, format="JPEG")
|
| 15 |
+
return base64.b64encode(buffered.getvalue()).decode("utf-8")
|
| 16 |
+
|
| 17 |
+
DEFAULT_SYSTEM_PROMPT = \
|
| 18 |
+
"""You are a smart assistant designed to answer questions about a PDF document.
|
| 19 |
+
You are given relevant information in the form of PDF pages preceded by their metadata: document title, page identifier, surrounding context.
|
| 20 |
+
Use them to construct a short response to the question, and cite your sources in the following format: (document, page number).
|
| 21 |
+
If it is not possible to answer using the provided pages, do not attempt to provide an answer and simply say the answer is not present within the documents.
|
| 22 |
+
Give detailed and extensive answers, only containing info in the pages you are given.
|
| 23 |
+
You can answer using information contained in plots and figures if necessary.
|
| 24 |
+
Answer in the same language as the query."""
|
| 25 |
+
|
| 26 |
+
def _build_query(query, pages):
|
| 27 |
+
messages = []
|
| 28 |
+
messages.append({"type": "text", "text": "PDF pages:\n"})
|
| 29 |
+
for page in pages:
|
| 30 |
+
capt = page.caption
|
| 31 |
+
if capt is not None:
|
| 32 |
+
messages.append({
|
| 33 |
+
"type": "text",
|
| 34 |
+
"text": capt
|
| 35 |
+
})
|
| 36 |
+
messages.append({
|
| 37 |
+
"type": "image_url",
|
| 38 |
+
"image_url": {
|
| 39 |
+
"url": f"data:image/jpeg;base64,{encode_image_to_base64(page.image)}"
|
| 40 |
+
},
|
| 41 |
+
})
|
| 42 |
+
messages.append({"type": "text", "text": f"Query:\n{query}"})
|
| 43 |
+
|
| 44 |
+
return messages
|
| 45 |
+
|
| 46 |
+
def query_openai(query, pages, api_key=None, system_prompt=DEFAULT_SYSTEM_PROMPT, model="gpt-4o-mini") -> ChatMessage:
|
| 47 |
+
"""Calls OpenAI's GPT-4o-mini with the query and image data."""
|
| 48 |
+
if api_key and api_key.startswith("sk"):
|
| 49 |
+
try:
|
| 50 |
+
from openai import OpenAI
|
| 51 |
+
|
| 52 |
+
client = OpenAI(api_key=api_key.strip())
|
| 53 |
+
|
| 54 |
+
response = client.chat.completions.create(
|
| 55 |
+
model=model,
|
| 56 |
+
messages=[
|
| 57 |
+
{
|
| 58 |
+
"role": "system",
|
| 59 |
+
"content": system_prompt
|
| 60 |
+
},
|
| 61 |
+
{
|
| 62 |
+
"role": "user",
|
| 63 |
+
"content": _build_query(query, pages)
|
| 64 |
+
}
|
| 65 |
+
],
|
| 66 |
+
max_tokens=500,
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
message = ChatMessage.from_dict(
|
| 70 |
+
response.choices[0].message.model_dump(include={"role", "content", "tool_calls"})
|
| 71 |
+
)
|
| 72 |
+
message.raw = response
|
| 73 |
+
|
| 74 |
+
return message
|
| 75 |
+
|
| 76 |
+
except Exception as e:
|
| 77 |
+
return "OpenAI API connection failure. Verify the provided key is correct (sk-***)."
|
| 78 |
+
|
| 79 |
+
return "Enter your OpenAI API key to get a custom response"
|
| 80 |
+
|
| 81 |
+
CONTEXT_SYSTEM_PROMPT = \
|
| 82 |
+
"""You are a smart assistant designed to extract context of PDF pages.
|
| 83 |
+
Give concise answers, only containing info in the pages you are given.
|
| 84 |
+
You can answer using information contained in plots and figures if necessary."""
|
| 85 |
+
|
| 86 |
+
RAG_SYSTEM_PROMPT = \
|
| 87 |
+
""" You are a smart assistant designed to answer questions about a PDF document.
|
| 88 |
+
|
| 89 |
+
You are given relevant information in the form of PDF pages preceded by their metadata: document title, page identifier, surrounding context.
|
| 90 |
+
Use them to construct a response to the question, and cite your sources.
|
| 91 |
+
Use the following citation format:
|
| 92 |
+
"Some information from a first document [1, p.Page Number]. Some information from the same first document but at a different page [1, p.Page Number]. Some more information from another document [2, p.Page Number].
|
| 93 |
+
...
|
| 94 |
+
Sources:
|
| 95 |
+
[1] Document Title
|
| 96 |
+
[2] Another Document Title"
|
| 97 |
+
|
| 98 |
+
You can answer using information contained in plots and figures if necessary.
|
| 99 |
+
If it is not possible to answer using the provided pages, do not attempt to provide an answer and simply say the answer is not present within the documents.
|
| 100 |
+
Give detailed answers, only containing info in the pages you are given.
|
| 101 |
+
Answer in the same language as the query."""
|
| 102 |
+
|
| 103 |
+
@dataclass
|
| 104 |
+
class Metadata:
|
| 105 |
+
doc_title: str
|
| 106 |
+
page_id: int
|
| 107 |
+
context: Optional[str] = None
|
| 108 |
+
|
| 109 |
+
def __str__(self):
|
| 110 |
+
return f"Document: {self.doc_title}, Page ID: {self.page_id}, Context: {self.context}"
|
| 111 |
+
|
| 112 |
+
@dataclass
|
| 113 |
+
class Page:
|
| 114 |
+
image: Image.Image
|
| 115 |
+
metadata: Optional[Metadata] = None
|
| 116 |
+
|
| 117 |
+
@property
|
| 118 |
+
def caption(self):
|
| 119 |
+
if self.metadata is None:
|
| 120 |
+
return None
|
| 121 |
+
return f"Document: {self.metadata.doc_title}, Context: {self.metadata.context}"
|
| 122 |
+
|
| 123 |
+
def __hash__(self):
|
| 124 |
+
return hash(self.image)
|