Spaces:
Running
Running
refactor to follow tool validation
Browse files- .gitignore +1 -0
- __pycache__/tool.cpython-312.pyc +0 -0
- __pycache__/utils.cpython-312.pyc +0 -0
- tool.py +31 -147
- utils.py +124 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.venv
|
__pycache__/tool.cpython-312.pyc
ADDED
Binary file (12 kB). View file
|
|
__pycache__/utils.cpython-312.pyc
ADDED
Binary file (6.34 kB). View file
|
|
tool.py
CHANGED
@@ -1,141 +1,10 @@
|
|
1 |
import os
|
2 |
|
3 |
-
from
|
4 |
-
from typing import List, Optional, Tuple
|
5 |
-
|
6 |
-
import torch
|
7 |
-
from torch.utils.data import DataLoader, Dataset
|
8 |
-
|
9 |
-
import base64
|
10 |
-
from io import BytesIO
|
11 |
-
from PIL import Image
|
12 |
-
from pdf2image import convert_from_path
|
13 |
-
|
14 |
-
from tqdm import tqdm
|
15 |
-
from pqdm.processes import pqdm
|
16 |
-
|
17 |
-
from colpali_engine.models import ColQwen2, ColQwen2Processor
|
18 |
-
|
19 |
-
from smolagents import Tool, ChatMessage
|
20 |
|
21 |
from dotenv import load_dotenv
|
22 |
load_dotenv()
|
23 |
|
24 |
-
def encode_image_to_base64(image):
|
25 |
-
"""Encodes a PIL image to a base64 string."""
|
26 |
-
buffered = BytesIO()
|
27 |
-
image.save(buffered, format="JPEG")
|
28 |
-
return base64.b64encode(buffered.getvalue()).decode("utf-8")
|
29 |
-
|
30 |
-
DEFAULT_SYSTEM_PROMPT = \
|
31 |
-
"""You are a smart assistant designed to answer questions about a PDF document.
|
32 |
-
You are given relevant information in the form of PDF pages preceded by their metadata: document title, page identifier, surrounding context.
|
33 |
-
Use them to construct a short response to the question, and cite your sources in the following format: (document, page number).
|
34 |
-
If it is not possible to answer using the provided pages, do not attempt to provide an answer and simply say the answer is not present within the documents.
|
35 |
-
Give detailed and extensive answers, only containing info in the pages you are given.
|
36 |
-
You can answer using information contained in plots and figures if necessary.
|
37 |
-
Answer in the same language as the query."""
|
38 |
-
|
39 |
-
def _build_query(query, pages):
|
40 |
-
messages = []
|
41 |
-
messages.append({"type": "text", "text": "PDF pages:\n"})
|
42 |
-
for page in pages:
|
43 |
-
capt = page.caption
|
44 |
-
if capt is not None:
|
45 |
-
messages.append({
|
46 |
-
"type": "text",
|
47 |
-
"text": capt
|
48 |
-
})
|
49 |
-
messages.append({
|
50 |
-
"type": "image_url",
|
51 |
-
"image_url": {
|
52 |
-
"url": f"data:image/jpeg;base64,{encode_image_to_base64(page.image)}"
|
53 |
-
},
|
54 |
-
})
|
55 |
-
messages.append({"type": "text", "text": f"Query:\n{query}"})
|
56 |
-
|
57 |
-
return messages
|
58 |
-
|
59 |
-
def query_openai(query, pages, api_key=None, system_prompt=DEFAULT_SYSTEM_PROMPT, model="gpt-4o-mini") -> ChatMessage:
|
60 |
-
"""Calls OpenAI's GPT-4o-mini with the query and image data."""
|
61 |
-
if api_key and api_key.startswith("sk"):
|
62 |
-
try:
|
63 |
-
from openai import OpenAI
|
64 |
-
|
65 |
-
client = OpenAI(api_key=api_key.strip())
|
66 |
-
|
67 |
-
response = client.chat.completions.create(
|
68 |
-
model=model,
|
69 |
-
messages=[
|
70 |
-
{
|
71 |
-
"role": "system",
|
72 |
-
"content": system_prompt
|
73 |
-
},
|
74 |
-
{
|
75 |
-
"role": "user",
|
76 |
-
"content": _build_query(query, pages)
|
77 |
-
}
|
78 |
-
],
|
79 |
-
max_tokens=500,
|
80 |
-
)
|
81 |
-
|
82 |
-
message = ChatMessage.from_dict(
|
83 |
-
response.choices[0].message.model_dump(include={"role", "content", "tool_calls"})
|
84 |
-
)
|
85 |
-
message.raw = response
|
86 |
-
|
87 |
-
return message
|
88 |
-
|
89 |
-
except Exception as e:
|
90 |
-
return "OpenAI API connection failure. Verify the provided key is correct (sk-***)."
|
91 |
-
|
92 |
-
return "Enter your OpenAI API key to get a custom response"
|
93 |
-
|
94 |
-
CONTEXT_SYSTEM_PROMPT = \
|
95 |
-
"""You are a smart assistant designed to extract context of PDF pages.
|
96 |
-
Give concise answers, only containing info in the pages you are given.
|
97 |
-
You can answer using information contained in plots and figures if necessary."""
|
98 |
-
|
99 |
-
RAG_SYSTEM_PROMPT = \
|
100 |
-
""" You are a smart assistant designed to answer questions about a PDF document.
|
101 |
-
|
102 |
-
You are given relevant information in the form of PDF pages preceded by their metadata: document title, page identifier, surrounding context.
|
103 |
-
Use them to construct a response to the question, and cite your sources.
|
104 |
-
Use the following citation format:
|
105 |
-
"Some information from a first document [1, p.Page Number]. Some information from the same first document but at a different page [1, p.Page Number]. Some more information from another document [2, p.Page Number].
|
106 |
-
...
|
107 |
-
Sources:
|
108 |
-
[1] Document Title
|
109 |
-
[2] Another Document Title"
|
110 |
-
|
111 |
-
You can answer using information contained in plots and figures if necessary.
|
112 |
-
If it is not possible to answer using the provided pages, do not attempt to provide an answer and simply say the answer is not present within the documents.
|
113 |
-
Give detailed answers, only containing info in the pages you are given.
|
114 |
-
Answer in the same language as the query."""
|
115 |
-
|
116 |
-
@dataclass
|
117 |
-
class Metadata:
|
118 |
-
doc_title: str
|
119 |
-
page_id: int
|
120 |
-
context: Optional[str] = None
|
121 |
-
|
122 |
-
def __str__(self):
|
123 |
-
return f"Document: {self.doc_title}, Page ID: {self.page_id}, Context: {self.context}"
|
124 |
-
|
125 |
-
@dataclass
|
126 |
-
class Page:
|
127 |
-
image: Image.Image
|
128 |
-
metadata: Optional[Metadata] = None
|
129 |
-
|
130 |
-
@property
|
131 |
-
def caption(self):
|
132 |
-
if self.metadata is None:
|
133 |
-
return None
|
134 |
-
return f"Document: {self.metadata.doc_title}, Context: {self.metadata.context}"
|
135 |
-
|
136 |
-
def __hash__(self):
|
137 |
-
return hash(self.image)
|
138 |
-
|
139 |
class VisualRAGTool(Tool):
|
140 |
name = "visual_rag"
|
141 |
description = """Performs a RAG query on your internal PDF documents and returns the generated text response."""
|
@@ -161,7 +30,13 @@ class VisualRAGTool(Tool):
|
|
161 |
model_name: str = "vidore/colqwen2-v1.0"
|
162 |
api_key: str = os.getenv("OPENAI_KEY")
|
163 |
|
|
|
|
|
|
|
164 |
def _init_models(self, model_name: str) -> None:
|
|
|
|
|
|
|
165 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
166 |
self.model = ColQwen2.from_pretrained(
|
167 |
model_name,
|
@@ -170,9 +45,6 @@ class VisualRAGTool(Tool):
|
|
170 |
attn_implementation="flash_attention_2"
|
171 |
).eval()
|
172 |
self.processor = ColQwen2Processor.from_pretrained(model_name)
|
173 |
-
|
174 |
-
def __init__(self, *args, **kwargs):
|
175 |
-
self.is_initialized = False
|
176 |
|
177 |
def setup(self):
|
178 |
"""
|
@@ -186,8 +58,10 @@ class VisualRAGTool(Tool):
|
|
186 |
|
187 |
self.is_initialized = True
|
188 |
|
189 |
-
def _extract_contexts(self, images, api_key, window=10) ->
|
190 |
"""Extracts context from images."""
|
|
|
|
|
191 |
try:
|
192 |
args = [
|
193 |
{
|
@@ -218,8 +92,11 @@ class VisualRAGTool(Tool):
|
|
218 |
|
219 |
return contexts
|
220 |
|
221 |
-
def _preprocess_file(self, file: str, contextualize: bool = True, api_key: str = None, window: int = 10) ->
|
222 |
"""Converts a file to images and extracts metadata."""
|
|
|
|
|
|
|
223 |
title = file.split("/")[-1]
|
224 |
images = convert_from_path(file, thread_count=4)
|
225 |
if contextualize and api_key:
|
@@ -230,7 +107,7 @@ class VisualRAGTool(Tool):
|
|
230 |
|
231 |
return [Page(image=img, metadata=metadata) for img, metadata in zip(images, metadatas)]
|
232 |
|
233 |
-
def preprocess(self, files:
|
234 |
"""Preprocesses the files and extracts metadata."""
|
235 |
pages = [page for file in files for page in self._preprocess_file(file, contextualize=contextualize, api_key=api_key, window=window)]
|
236 |
|
@@ -238,9 +115,13 @@ class VisualRAGTool(Tool):
|
|
238 |
|
239 |
return pages
|
240 |
|
241 |
-
def compute_embeddings(self, pages
|
242 |
"""Embeds the images using the model."""
|
243 |
"""Example script to run inference with ColPali (ColQwen2)"""
|
|
|
|
|
|
|
|
|
244 |
# run inference - docs
|
245 |
dataloader = DataLoader(
|
246 |
pages,
|
@@ -259,7 +140,8 @@ class VisualRAGTool(Tool):
|
|
259 |
|
260 |
return embds
|
261 |
|
262 |
-
def index(self, files:
|
|
|
263 |
if not self.is_initialized:
|
264 |
self.setup()
|
265 |
|
@@ -285,8 +167,9 @@ class VisualRAGTool(Tool):
|
|
285 |
|
286 |
return len(embds)
|
287 |
|
288 |
-
def retrieve(self, query: str, k: int) ->
|
289 |
"""Retrieve the top k documents based on the query."""
|
|
|
290 |
k = min(k, len(self.embds))
|
291 |
|
292 |
qs = []
|
@@ -307,11 +190,14 @@ class VisualRAGTool(Tool):
|
|
307 |
|
308 |
return results
|
309 |
|
310 |
-
def generate_answer(self, query: str, docs:
|
|
|
|
|
311 |
result = query_openai(query, docs, api_key or self.api_key, system_prompt=RAG_SYSTEM_PROMPT)
|
312 |
return result
|
313 |
|
314 |
-
def search(self, query: str, k: int = 1, api_key: str = None) ->
|
|
|
315 |
print(f"Searching for query: {query}")
|
316 |
|
317 |
# Retrieve the top k documents
|
@@ -334,11 +220,9 @@ class VisualRAGTool(Tool):
|
|
334 |
# _ = self.index(files, api_key)
|
335 |
|
336 |
# Retrieve the top k documents and generate response
|
337 |
-
|
338 |
query=query,
|
339 |
files=None,
|
340 |
k=k,
|
341 |
api_key=api_key
|
342 |
-
)
|
343 |
-
|
344 |
-
return rag_answer
|
|
|
1 |
import os
|
2 |
|
3 |
+
from smolagents import Tool
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
from dotenv import load_dotenv
|
6 |
load_dotenv()
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
class VisualRAGTool(Tool):
|
9 |
name = "visual_rag"
|
10 |
description = """Performs a RAG query on your internal PDF documents and returns the generated text response."""
|
|
|
30 |
model_name: str = "vidore/colqwen2-v1.0"
|
31 |
api_key: str = os.getenv("OPENAI_KEY")
|
32 |
|
33 |
+
def __init__(self, *args, **kwargs):
|
34 |
+
self.is_initialized = False
|
35 |
+
|
36 |
def _init_models(self, model_name: str) -> None:
|
37 |
+
import torch
|
38 |
+
from colpali_engine.models import ColQwen2, ColQwen2Processor
|
39 |
+
|
40 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
41 |
self.model = ColQwen2.from_pretrained(
|
42 |
model_name,
|
|
|
45 |
attn_implementation="flash_attention_2"
|
46 |
).eval()
|
47 |
self.processor = ColQwen2Processor.from_pretrained(model_name)
|
|
|
|
|
|
|
48 |
|
49 |
def setup(self):
|
50 |
"""
|
|
|
58 |
|
59 |
self.is_initialized = True
|
60 |
|
61 |
+
def _extract_contexts(self, images, api_key, window=10) -> list:
|
62 |
"""Extracts context from images."""
|
63 |
+
from utils import query_openai, Page, CONTEXT_SYSTEM_PROMPT
|
64 |
+
from pqdm.processes import pqdm
|
65 |
try:
|
66 |
args = [
|
67 |
{
|
|
|
92 |
|
93 |
return contexts
|
94 |
|
95 |
+
def _preprocess_file(self, file: str, contextualize: bool = True, api_key: str = None, window: int = 10) -> list:
|
96 |
"""Converts a file to images and extracts metadata."""
|
97 |
+
from pdf2image import convert_from_path
|
98 |
+
from utils import Metadata, Page
|
99 |
+
|
100 |
title = file.split("/")[-1]
|
101 |
images = convert_from_path(file, thread_count=4)
|
102 |
if contextualize and api_key:
|
|
|
107 |
|
108 |
return [Page(image=img, metadata=metadata) for img, metadata in zip(images, metadatas)]
|
109 |
|
110 |
+
def preprocess(self, files: list, contextualize: bool = True, api_key: str = None, window: int = 10) -> list:
|
111 |
"""Preprocesses the files and extracts metadata."""
|
112 |
pages = [page for file in files for page in self._preprocess_file(file, contextualize=contextualize, api_key=api_key, window=window)]
|
113 |
|
|
|
115 |
|
116 |
return pages
|
117 |
|
118 |
+
def compute_embeddings(self, pages) -> list:
|
119 |
"""Embeds the images using the model."""
|
120 |
"""Example script to run inference with ColPali (ColQwen2)"""
|
121 |
+
import torch
|
122 |
+
from torch.utils.data import DataLoader
|
123 |
+
from tqdm import tqdm
|
124 |
+
|
125 |
# run inference - docs
|
126 |
dataloader = DataLoader(
|
127 |
pages,
|
|
|
140 |
|
141 |
return embds
|
142 |
|
143 |
+
def index(self, files: list, contextualize: bool = True, api_key: str = None, overwrite_db: bool = False) -> int:
|
144 |
+
"""Indexes the uploaded files."""
|
145 |
if not self.is_initialized:
|
146 |
self.setup()
|
147 |
|
|
|
167 |
|
168 |
return len(embds)
|
169 |
|
170 |
+
def retrieve(self, query: str, k: int) -> list:
|
171 |
"""Retrieve the top k documents based on the query."""
|
172 |
+
import torch
|
173 |
k = min(k, len(self.embds))
|
174 |
|
175 |
qs = []
|
|
|
190 |
|
191 |
return results
|
192 |
|
193 |
+
def generate_answer(self, query: str, docs: list, api_key: str = None):
|
194 |
+
"""Generates an answer based on the query and the retrieved documents."""
|
195 |
+
from utils import query_openai, RAG_SYSTEM_PROMPT
|
196 |
result = query_openai(query, docs, api_key or self.api_key, system_prompt=RAG_SYSTEM_PROMPT)
|
197 |
return result
|
198 |
|
199 |
+
def search(self, query: str, k: int = 1, api_key: str = None) -> tuple:
|
200 |
+
"""Searches for the most relevant pages based on the query."""
|
201 |
print(f"Searching for query: {query}")
|
202 |
|
203 |
# Retrieve the top k documents
|
|
|
220 |
# _ = self.index(files, api_key)
|
221 |
|
222 |
# Retrieve the top k documents and generate response
|
223 |
+
return self.search(
|
224 |
query=query,
|
225 |
files=None,
|
226 |
k=k,
|
227 |
api_key=api_key
|
228 |
+
)[1]
|
|
|
|
utils.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import List, Optional, Tuple
|
3 |
+
|
4 |
+
import base64
|
5 |
+
from io import BytesIO
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
|
9 |
+
from smolagents import ChatMessage
|
10 |
+
|
11 |
+
def encode_image_to_base64(image):
|
12 |
+
"""Encodes a PIL image to a base64 string."""
|
13 |
+
buffered = BytesIO()
|
14 |
+
image.save(buffered, format="JPEG")
|
15 |
+
return base64.b64encode(buffered.getvalue()).decode("utf-8")
|
16 |
+
|
17 |
+
DEFAULT_SYSTEM_PROMPT = \
|
18 |
+
"""You are a smart assistant designed to answer questions about a PDF document.
|
19 |
+
You are given relevant information in the form of PDF pages preceded by their metadata: document title, page identifier, surrounding context.
|
20 |
+
Use them to construct a short response to the question, and cite your sources in the following format: (document, page number).
|
21 |
+
If it is not possible to answer using the provided pages, do not attempt to provide an answer and simply say the answer is not present within the documents.
|
22 |
+
Give detailed and extensive answers, only containing info in the pages you are given.
|
23 |
+
You can answer using information contained in plots and figures if necessary.
|
24 |
+
Answer in the same language as the query."""
|
25 |
+
|
26 |
+
def _build_query(query, pages):
|
27 |
+
messages = []
|
28 |
+
messages.append({"type": "text", "text": "PDF pages:\n"})
|
29 |
+
for page in pages:
|
30 |
+
capt = page.caption
|
31 |
+
if capt is not None:
|
32 |
+
messages.append({
|
33 |
+
"type": "text",
|
34 |
+
"text": capt
|
35 |
+
})
|
36 |
+
messages.append({
|
37 |
+
"type": "image_url",
|
38 |
+
"image_url": {
|
39 |
+
"url": f"data:image/jpeg;base64,{encode_image_to_base64(page.image)}"
|
40 |
+
},
|
41 |
+
})
|
42 |
+
messages.append({"type": "text", "text": f"Query:\n{query}"})
|
43 |
+
|
44 |
+
return messages
|
45 |
+
|
46 |
+
def query_openai(query, pages, api_key=None, system_prompt=DEFAULT_SYSTEM_PROMPT, model="gpt-4o-mini") -> ChatMessage:
|
47 |
+
"""Calls OpenAI's GPT-4o-mini with the query and image data."""
|
48 |
+
if api_key and api_key.startswith("sk"):
|
49 |
+
try:
|
50 |
+
from openai import OpenAI
|
51 |
+
|
52 |
+
client = OpenAI(api_key=api_key.strip())
|
53 |
+
|
54 |
+
response = client.chat.completions.create(
|
55 |
+
model=model,
|
56 |
+
messages=[
|
57 |
+
{
|
58 |
+
"role": "system",
|
59 |
+
"content": system_prompt
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"role": "user",
|
63 |
+
"content": _build_query(query, pages)
|
64 |
+
}
|
65 |
+
],
|
66 |
+
max_tokens=500,
|
67 |
+
)
|
68 |
+
|
69 |
+
message = ChatMessage.from_dict(
|
70 |
+
response.choices[0].message.model_dump(include={"role", "content", "tool_calls"})
|
71 |
+
)
|
72 |
+
message.raw = response
|
73 |
+
|
74 |
+
return message
|
75 |
+
|
76 |
+
except Exception as e:
|
77 |
+
return "OpenAI API connection failure. Verify the provided key is correct (sk-***)."
|
78 |
+
|
79 |
+
return "Enter your OpenAI API key to get a custom response"
|
80 |
+
|
81 |
+
CONTEXT_SYSTEM_PROMPT = \
|
82 |
+
"""You are a smart assistant designed to extract context of PDF pages.
|
83 |
+
Give concise answers, only containing info in the pages you are given.
|
84 |
+
You can answer using information contained in plots and figures if necessary."""
|
85 |
+
|
86 |
+
RAG_SYSTEM_PROMPT = \
|
87 |
+
""" You are a smart assistant designed to answer questions about a PDF document.
|
88 |
+
|
89 |
+
You are given relevant information in the form of PDF pages preceded by their metadata: document title, page identifier, surrounding context.
|
90 |
+
Use them to construct a response to the question, and cite your sources.
|
91 |
+
Use the following citation format:
|
92 |
+
"Some information from a first document [1, p.Page Number]. Some information from the same first document but at a different page [1, p.Page Number]. Some more information from another document [2, p.Page Number].
|
93 |
+
...
|
94 |
+
Sources:
|
95 |
+
[1] Document Title
|
96 |
+
[2] Another Document Title"
|
97 |
+
|
98 |
+
You can answer using information contained in plots and figures if necessary.
|
99 |
+
If it is not possible to answer using the provided pages, do not attempt to provide an answer and simply say the answer is not present within the documents.
|
100 |
+
Give detailed answers, only containing info in the pages you are given.
|
101 |
+
Answer in the same language as the query."""
|
102 |
+
|
103 |
+
@dataclass
|
104 |
+
class Metadata:
|
105 |
+
doc_title: str
|
106 |
+
page_id: int
|
107 |
+
context: Optional[str] = None
|
108 |
+
|
109 |
+
def __str__(self):
|
110 |
+
return f"Document: {self.doc_title}, Page ID: {self.page_id}, Context: {self.context}"
|
111 |
+
|
112 |
+
@dataclass
|
113 |
+
class Page:
|
114 |
+
image: Image.Image
|
115 |
+
metadata: Optional[Metadata] = None
|
116 |
+
|
117 |
+
@property
|
118 |
+
def caption(self):
|
119 |
+
if self.metadata is None:
|
120 |
+
return None
|
121 |
+
return f"Document: {self.metadata.doc_title}, Context: {self.metadata.context}"
|
122 |
+
|
123 |
+
def __hash__(self):
|
124 |
+
return hash(self.image)
|