Spaces:
Running
Running
File size: 7,062 Bytes
396dfd7 f7b89d2 3c64e23 f7b89d2 6db62ef 4c1e130 6db62ef 4c1e130 f7b89d2 4c1e130 f7b89d2 4c1e130 f7b89d2 4c1e130 f7b89d2 4c1e130 3c64e23 396dfd7 f7b89d2 4c1e130 3c64e23 d8ebb49 3c64e23 d8ebb49 6db62ef 42005f4 3c64e23 957b077 8b7cf39 957b077 3c64e23 bb0d5c8 6db62ef 3c64e23 6db62ef 3c64e23 6db62ef 3c64e23 d8ebb49 6db62ef 3c64e23 f7b89d2 4c1e130 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import gradio as gr
from app.utils import add_rank_and_format, filter_models, get_refresh_function
from data.model_handler import ModelHandler
METRICS = ["ndcg_at_5", "recall_at_1"]
def main():
model_handler = ModelHandler()
initial_metric = "ndcg_at_5"
data = model_handler.get_vidore_data(initial_metric)
data = add_rank_and_format(data)
NUM_DATASETS = len(data.columns) - 3
NUM_SCORES = len(data) * NUM_DATASETS
NUM_MODELS = len(data)
css = """
table > thead {
white-space: normal
}
table {
--cell-width-1: 250px
}
table > tbody > tr > td:nth-child(2) > div {
overflow-x: auto
}
.filter-checkbox-group {
max-width: max-content;
}
#markdown size
.markdown {
font-size: 1rem;
}
"""
with gr.Blocks(css=css) as block:
with gr.Tabs():
with gr.TabItem("π Leaderboard"):
gr.Markdown("# ViDoRe: The Visual Document Retrieval Benchmark ππ")
gr.Markdown("### From the paper - ColPali: Efficient Document Retrieval with Vision Language Models π")
gr.Markdown(
"""
Visual Document Retrieval Benchmark leaderboard. To submit results, refer to the corresponding tab.
Refer to the [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics, tasks and models.
"""
)
datasets_columns = list(data.columns[3:])
anchor_columns = list(data.columns[:3])
default_columns = anchor_columns + datasets_columns
with gr.Row():
metric_dropdown = gr.Dropdown(choices=METRICS, value=initial_metric, label="Select Metric")
research_textbox = gr.Textbox(placeholder="π Search Models... [press enter]", label="Filter Models by Name", )
column_checkboxes = gr.CheckboxGroup(choices=datasets_columns, value=default_columns, label="Select Columns to Display")
with gr.Row():
datatype = ["number", "markdown"] + ["number"] * (NUM_DATASETS + 1)
dataframe = gr.Dataframe(data, datatype=datatype, type="pandas")
def update_data(metric, search_term, selected_columns):
data = model_handler.get_vidore_data(metric)
data = add_rank_and_format(data)
data = filter_models(data, search_term)
if selected_columns:
selected_columns = selected_columns
data = data[selected_columns]
return data
with gr.Row():
refresh_button = gr.Button("Refresh")
refresh_button.click(get_refresh_function(), inputs=[metric_dropdown], outputs=dataframe, concurrency_limit=20)
# Automatically refresh the dataframe when the dropdown value changes
metric_dropdown.change(get_refresh_function(), inputs=[metric_dropdown], outputs=dataframe)
research_textbox.submit(
lambda metric, search_term, selected_columns: update_data(metric, search_term, selected_columns),
inputs=[metric_dropdown, research_textbox, column_checkboxes],
outputs=dataframe
)
column_checkboxes.change(
lambda metric, search_term, selected_columns: update_data(metric, search_term, selected_columns),
inputs=[metric_dropdown, research_textbox, column_checkboxes],
outputs=dataframe
)
#column_checkboxes.change(get_refresh_function(), inputs=[metric_dropdown, column_checkboxes], outputs=dataframe)
gr.Markdown(
f"""
- **Total Datasets**: {NUM_DATASETS}
- **Total Scores**: {NUM_SCORES}
- **Total Models**: {NUM_MODELS}
"""
+ r"""
Please consider citing:
```bibtex
@misc{faysse2024colpaliefficientdocumentretrieval,
title={ColPali: Efficient Document Retrieval with Vision Language Models},
author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and CΓ©line Hudelot and Pierre Colombo},
year={2024},
eprint={2407.01449},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2407.01449},
}
```
"""
)
with gr.TabItem("π Submit your model"):
gr.Markdown("# How to Submit a New Model to the Leaderboard")
gr.Markdown(
"""
To submit a new model to the ViDoRe leaderboard, follow these steps:
1. **Evaluate your model**:
- Follow the evaluation script provided in the [ViDoRe GitHub repository](https://github.com/illuin-tech/vidore-benchmark/)
2. **Format your submission file**:
- The submission file should automatically be generated, and named `results.json` with the
following structure:
```json
{
"dataset_name_1": {
"metric_1": score_1,
"metric_2": score_2,
...
},
"dataset_name_2": {
"metric_1": score_1,
"metric_2": score_2,
...
},
}
```
- The dataset names should be the same as the ViDoRe dataset names listed in the following
collection: [ViDoRe Benchmark](https://huggingface.co/collections/vidore/vidore-benchmark-667173f98e70a1c0fa4db00d).
3. **Submit your model**:
- Create a public HuggingFace model repository with your model.
- Add the tag `vidore` to your model in the metadata of the model card and place the
`results.json` file at the root.
And you're done! Your model will appear on the leaderboard when you click refresh! Once the space
gets rebooted, it will appear on startup.
Note: For proper hyperlink redirection, please ensure that your model repository name is in
kebab-case, e.g. `my-model-name`.
"""
)
block.queue(max_size=10).launch(debug=True)
if __name__ == "__main__":
main()
|