File size: 7,062 Bytes
396dfd7
f7b89d2
3c64e23
 
 
 
f7b89d2
6db62ef
4c1e130
 
6db62ef
4c1e130
 
f7b89d2
4c1e130
 
 
f7b89d2
4c1e130
 
 
 
f7b89d2
4c1e130
 
 
 
 
 
 
f7b89d2
4c1e130
 
 
3c64e23
 
 
 
 
396dfd7
f7b89d2
4c1e130
3c64e23
 
 
d8ebb49
3c64e23
 
 
d8ebb49
6db62ef
42005f4
3c64e23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
957b077
8b7cf39
 
 
 
 
 
 
957b077
3c64e23
 
 
 
 
 
 
 
 
 
bb0d5c8
6db62ef
3c64e23
6db62ef
 
3c64e23
 
 
 
 
 
 
 
 
 
 
 
 
 
6db62ef
 
 
3c64e23
d8ebb49
6db62ef
 
 
 
 
 
 
 
3c64e23
 
f7b89d2
 
4c1e130
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import gradio as gr

from app.utils import add_rank_and_format, filter_models, get_refresh_function
from data.model_handler import ModelHandler

METRICS = ["ndcg_at_5", "recall_at_1"]

def main():
    model_handler = ModelHandler()
    initial_metric = "ndcg_at_5"

    data = model_handler.get_vidore_data(initial_metric)
    data = add_rank_and_format(data)

    NUM_DATASETS = len(data.columns) - 3
    NUM_SCORES = len(data) * NUM_DATASETS
    NUM_MODELS = len(data)

    css = """
    table > thead {
        white-space: normal
    }

    table {
        --cell-width-1: 250px
    }

    table > tbody > tr > td:nth-child(2) > div {
        overflow-x: auto
    }

    .filter-checkbox-group {
        max-width: max-content;
    }

    #markdown size
    .markdown {
        font-size: 1rem;
    }
    """

    with gr.Blocks(css=css) as block:
        with gr.Tabs():
            with gr.TabItem("πŸ† Leaderboard"):
                gr.Markdown("# ViDoRe: The Visual Document Retrieval Benchmark πŸ“šπŸ”")
                gr.Markdown("### From the paper - ColPali: Efficient Document Retrieval with Vision Language Models πŸ‘€")

                gr.Markdown(
                    """
                Visual Document Retrieval Benchmark leaderboard. To submit results, refer to the corresponding tab.  

                Refer to the [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics, tasks and models.
                """
                )
                datasets_columns = list(data.columns[3:])
                anchor_columns = list(data.columns[:3])
                default_columns = anchor_columns + datasets_columns

                with gr.Row():
                    metric_dropdown = gr.Dropdown(choices=METRICS, value=initial_metric, label="Select Metric")
                    research_textbox = gr.Textbox(placeholder="πŸ” Search Models... [press enter]", label="Filter Models by Name", )
                    column_checkboxes = gr.CheckboxGroup(choices=datasets_columns, value=default_columns, label="Select Columns to Display")

                with gr.Row():
                    datatype = ["number", "markdown"] + ["number"] * (NUM_DATASETS + 1)
                    dataframe = gr.Dataframe(data, datatype=datatype, type="pandas")

                def update_data(metric, search_term, selected_columns):
                    data = model_handler.get_vidore_data(metric)
                    data = add_rank_and_format(data)
                    data = filter_models(data, search_term)
                    if selected_columns:
                        selected_columns = selected_columns
                        data = data[selected_columns]
                    return data

                with gr.Row():
                    refresh_button = gr.Button("Refresh")
                    refresh_button.click(get_refresh_function(), inputs=[metric_dropdown], outputs=dataframe, concurrency_limit=20)


                # Automatically refresh the dataframe when the dropdown value changes
                metric_dropdown.change(get_refresh_function(), inputs=[metric_dropdown], outputs=dataframe)
                research_textbox.submit(
                    lambda metric, search_term, selected_columns: update_data(metric, search_term, selected_columns), 
                    inputs=[metric_dropdown, research_textbox, column_checkboxes], 
                    outputs=dataframe
                )
                column_checkboxes.change(
                    lambda metric, search_term, selected_columns: update_data(metric, search_term, selected_columns), 
                    inputs=[metric_dropdown, research_textbox, column_checkboxes], 
                    outputs=dataframe
                )

                #column_checkboxes.change(get_refresh_function(), inputs=[metric_dropdown, column_checkboxes], outputs=dataframe)


                gr.Markdown(
                    f"""
                - **Total Datasets**: {NUM_DATASETS}
                - **Total Scores**: {NUM_SCORES}
                - **Total Models**: {NUM_MODELS}
                """
                    + r"""
                Please consider citing:

                ```bibtex
                @misc{faysse2024colpaliefficientdocumentretrieval,
                  title={ColPali: Efficient Document Retrieval with Vision Language Models}, 
                  author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and CΓ©line Hudelot and Pierre Colombo},
                  year={2024},
                  eprint={2407.01449},
                  archivePrefix={arXiv},
                  primaryClass={cs.IR},
                  url={https://arxiv.org/abs/2407.01449}, 
                }
                ```
                """
                )
            with gr.TabItem("πŸ“š Submit your model"):
                gr.Markdown("# How to Submit a New Model to the Leaderboard")
                gr.Markdown(
                    """
                    To submit a new model to the ViDoRe leaderboard, follow these steps:

                    1. **Evaluate your model**:
                       - Follow the evaluation script provided in the [ViDoRe GitHub repository](https://github.com/illuin-tech/vidore-benchmark/)

                    2. **Format your submission file**:
                        - The submission file should automatically be generated, and named `results.json` with the
                        following structure:
                        ```json
                        {
                            "dataset_name_1": {
                                "metric_1": score_1,
                                "metric_2": score_2,
                                ...
                            },
                            "dataset_name_2": {
                                "metric_1": score_1,
                                "metric_2": score_2,
                                ...
                            },
                        }
                        ```
                        - The dataset names should be the same as the ViDoRe dataset names listed in the following
                        collection: [ViDoRe Benchmark](https://huggingface.co/collections/vidore/vidore-benchmark-667173f98e70a1c0fa4db00d).

                    3. **Submit your model**:
                        - Create a public HuggingFace model repository with your model.
                        - Add the tag `vidore` to your model in the metadata of the model card and place the
                        `results.json` file at the root.

                    And you're done! Your model will appear on the leaderboard when you click refresh! Once the space
                    gets rebooted, it will appear on startup.

                    Note: For proper hyperlink redirection, please ensure that your model repository name is in
                    kebab-case, e.g. `my-model-name`.
                    """
                )

    block.queue(max_size=10).launch(debug=True)


if __name__ == "__main__":    
    main()