import numpy as np import cv2 from insightface.utils import face_align from insightface import model_zoo from dofaker.utils import download_file, get_model_url class GFPGAN: def __init__(self, name='gfpgan', root='weights/models') -> None: _, model_file = download_file(get_model_url(name), save_dir=root, overwrite=False) providers = model_zoo.model_zoo.get_default_providers() self.session = model_zoo.model_zoo.PickableInferenceSession( model_file, providers=providers) self.input_mean = 127.5 self.input_std = 127.5 inputs = self.session.get_inputs() self.input_names = [] for inp in inputs: self.input_names.append(inp.name) outputs = self.session.get_outputs() output_names = [] for out in outputs: output_names.append(out.name) self.output_names = output_names assert len( self.output_names ) == 1, "The output number of GFPGAN model should be 1, but got {}, please check your model.".format( len(self.output_names)) output_shape = outputs[0].shape input_cfg = inputs[0] input_shape = input_cfg.shape self.input_shape = input_shape print('face_enhance-shape:', self.input_shape) self.input_size = tuple(input_shape[2:4][::-1]) def forward(self, image, image_format='bgr'): if isinstance(image, str): image = cv2.imread(image, 1) elif isinstance(image, np.ndarray): if image_format == 'bgr': image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) elif image_format == 'rgb': pass else: raise UserWarning( "gfpgan not support image format {}".format(image_format)) else: raise UserWarning( "gfpgan input must be str or np.ndarray, but got {}.".format( type(image))) img = (image - self.input_mean) / self.input_std pred = self.session.run(self.output_names, {self.input_names[0]: img})[0] return pred def _get(self, img, image_format='bgr'): if image_format.lower() == 'bgr': img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) elif image_format.lower() == 'rgb': pass else: raise UserWarning( "gfpgan not support image format {}".format(image_format)) h, w, c = img.shape img = cv2.resize(img, (self.input_shape[-1], self.input_shape[-2])) blob = cv2.dnn.blobFromImage( img, 1.0 / self.input_std, self.input_size, (self.input_mean, self.input_mean, self.input_mean), swapRB=False) pred = self.session.run(self.output_names, {self.input_names[0]: blob})[0] image_aug = pred.transpose((0, 2, 3, 1))[0] rgb_aug = np.clip(self.input_std * image_aug + self.input_mean, 0, 255).astype(np.uint8) rgb_aug = cv2.resize(rgb_aug, (w, h)) bgr_image = rgb_aug[:, :, ::-1] return bgr_image def get(self, img, target_face, paste_back=True, image_format='bgr'): aimg, M = face_align.norm_crop2(img, target_face.kps, self.input_size[0]) bgr_fake = self._get(aimg, image_format='bgr') if not paste_back: return bgr_fake, M else: target_img = img fake_diff = bgr_fake.astype(np.float32) - aimg.astype(np.float32) fake_diff = np.abs(fake_diff).mean(axis=2) fake_diff[:2, :] = 0 fake_diff[-2:, :] = 0 fake_diff[:, :2] = 0 fake_diff[:, -2:] = 0 IM = cv2.invertAffineTransform(M) img_white = np.full((aimg.shape[0], aimg.shape[1]), 255, dtype=np.float32) bgr_fake = cv2.warpAffine( bgr_fake, IM, (target_img.shape[1], target_img.shape[0]), borderValue=0.0) img_white = cv2.warpAffine( img_white, IM, (target_img.shape[1], target_img.shape[0]), borderValue=0.0) fake_diff = cv2.warpAffine( fake_diff, IM, (target_img.shape[1], target_img.shape[0]), borderValue=0.0) img_white[img_white > 20] = 255 fthresh = 10 fake_diff[fake_diff < fthresh] = 0 fake_diff[fake_diff >= fthresh] = 255 img_mask = img_white mask_h_inds, mask_w_inds = np.where(img_mask == 255) mask_h = np.max(mask_h_inds) - np.min(mask_h_inds) mask_w = np.max(mask_w_inds) - np.min(mask_w_inds) mask_size = int(np.sqrt(mask_h * mask_w)) k = max(mask_size // 10, 10) #k = max(mask_size//20, 6) #k = 6 kernel = np.ones((k, k), np.uint8) img_mask = cv2.erode(img_mask, kernel, iterations=1) kernel = np.ones((2, 2), np.uint8) fake_diff = cv2.dilate(fake_diff, kernel, iterations=1) k = max(mask_size // 20, 5) kernel_size = (k, k) blur_size = tuple(2 * i + 1 for i in kernel_size) img_mask = cv2.GaussianBlur(img_mask, blur_size, 0) k = 5 kernel_size = (k, k) blur_size = tuple(2 * i + 1 for i in kernel_size) fake_diff = cv2.GaussianBlur(fake_diff, blur_size, 0) img_mask /= 255 fake_diff /= 255 img_mask = np.reshape(img_mask, [img_mask.shape[0], img_mask.shape[1], 1]) fake_merged = img_mask * bgr_fake + ( 1 - img_mask) * target_img.astype(np.float32) fake_merged = fake_merged.astype(np.uint8) return fake_merged