victorisgeek commited on
Commit
5376bac
·
verified ·
1 Parent(s): 12c456b

Delete face_swap

Browse files
face_swap/0 DELETED
@@ -1 +0,0 @@
1
- i
 
 
face_swap/__init__.py DELETED
@@ -1,8 +0,0 @@
1
- from .inswapper import InSwapper
2
-
3
-
4
- def get_swapper_model(name='', root=None, **kwargs):
5
- if name.lower() == 'inswapper':
6
- return InSwapper(name=name, root=root, **kwargs)
7
- else:
8
- raise UserWarning('The swapper model {} not support.'.format(name))
 
 
 
 
 
 
 
 
 
face_swap/base_swapper.py DELETED
@@ -1,13 +0,0 @@
1
- class BaseSwapper:
2
-
3
- def forward(self, img, latent, *args, **kwargs):
4
- raise NotImplementedError
5
-
6
- def get(self,
7
- img,
8
- target_face,
9
- source_face,
10
- paste_back=True,
11
- *args,
12
- **kwargs):
13
- raise NotImplementedError
 
 
 
 
 
 
 
 
 
 
 
 
 
 
face_swap/inswapper.py DELETED
@@ -1,135 +0,0 @@
1
- import numpy as np
2
- import cv2
3
- import onnx
4
- from onnx import numpy_helper
5
-
6
- from insightface import model_zoo
7
- from insightface.utils import face_align
8
- from .base_swapper import BaseSwapper
9
-
10
- from dofaker.utils import download_file, get_model_url
11
-
12
-
13
- class InSwapper(BaseSwapper):
14
-
15
- def __init__(self, name='inswapper', root='weights/models'):
16
- _, model_file = download_file(get_model_url(name),
17
- save_dir=root,
18
- overwrite=False)
19
- providers = model_zoo.model_zoo.get_default_providers()
20
- self.session = model_zoo.model_zoo.PickableInferenceSession(
21
- model_file, providers=providers)
22
-
23
- model = onnx.load(model_file)
24
- graph = model.graph
25
- self.emap = numpy_helper.to_array(graph.initializer[-1])
26
- self.input_mean = 0.0
27
- self.input_std = 255.0
28
-
29
- inputs = self.session.get_inputs()
30
- self.input_names = []
31
- for inp in inputs:
32
- self.input_names.append(inp.name)
33
- outputs = self.session.get_outputs()
34
- output_names = []
35
- for out in outputs:
36
- output_names.append(out.name)
37
- self.output_names = output_names
38
- assert len(
39
- self.output_names
40
- ) == 1, "The output number of inswapper model should be 1, but got {}, please check your model.".format(
41
- len(self.output_names))
42
- output_shape = outputs[0].shape
43
- input_cfg = inputs[0]
44
- input_shape = input_cfg.shape
45
- self.input_shape = input_shape
46
- print('inswapper-shape:', self.input_shape)
47
- self.input_size = tuple(input_shape[2:4][::-1])
48
-
49
- def forward(self, img, latent):
50
- img = (img - self.input_mean) / self.input_std
51
- pred = self.session.run(self.output_names, {
52
- self.input_names[0]: img,
53
- self.input_names[1]: latent
54
- })[0]
55
- return pred
56
-
57
- def get(self, img, target_face, source_face, paste_back=True):
58
- aimg, M = face_align.norm_crop2(img, target_face.kps,
59
- self.input_size[0])
60
- blob = cv2.dnn.blobFromImage(
61
- aimg,
62
- 1.0 / self.input_std,
63
- self.input_size,
64
- (self.input_mean, self.input_mean, self.input_mean),
65
- swapRB=True)
66
- latent = source_face.normed_embedding.reshape((1, -1))
67
- latent = np.dot(latent, self.emap)
68
- latent /= np.linalg.norm(latent)
69
- pred = self.session.run(self.output_names, {
70
- self.input_names[0]: blob,
71
- self.input_names[1]: latent
72
- })[0]
73
- img_fake = pred.transpose((0, 2, 3, 1))[0]
74
- bgr_fake = np.clip(255 * img_fake, 0, 255).astype(np.uint8)[:, :, ::-1]
75
- if not paste_back:
76
- return bgr_fake, M
77
- else:
78
- target_img = img
79
- fake_diff = bgr_fake.astype(np.float32) - aimg.astype(np.float32)
80
- fake_diff = np.abs(fake_diff).mean(axis=2)
81
- fake_diff[:2, :] = 0
82
- fake_diff[-2:, :] = 0
83
- fake_diff[:, :2] = 0
84
- fake_diff[:, -2:] = 0
85
- IM = cv2.invertAffineTransform(M)
86
- img_white = np.full((aimg.shape[0], aimg.shape[1]),
87
- 255,
88
- dtype=np.float32)
89
- bgr_fake = cv2.warpAffine(
90
- bgr_fake,
91
- IM, (target_img.shape[1], target_img.shape[0]),
92
- borderValue=0.0)
93
- img_white = cv2.warpAffine(
94
- img_white,
95
- IM, (target_img.shape[1], target_img.shape[0]),
96
- borderValue=0.0)
97
- fake_diff = cv2.warpAffine(
98
- fake_diff,
99
- IM, (target_img.shape[1], target_img.shape[0]),
100
- borderValue=0.0)
101
- img_white[img_white > 20] = 255
102
- fthresh = 10
103
- fake_diff[fake_diff < fthresh] = 0
104
- fake_diff[fake_diff >= fthresh] = 255
105
- img_mask = img_white
106
- mask_h_inds, mask_w_inds = np.where(img_mask == 255)
107
- mask_h = np.max(mask_h_inds) - np.min(mask_h_inds)
108
- mask_w = np.max(mask_w_inds) - np.min(mask_w_inds)
109
- mask_size = int(np.sqrt(mask_h * mask_w))
110
- k = max(mask_size // 10, 10)
111
- #k = max(mask_size//20, 6)
112
- #k = 6
113
- kernel = np.ones((k, k), np.uint8)
114
- img_mask = cv2.erode(img_mask, kernel, iterations=1)
115
- kernel = np.ones((2, 2), np.uint8)
116
- fake_diff = cv2.dilate(fake_diff, kernel, iterations=1)
117
- k = max(mask_size // 20, 5)
118
- #k = 3
119
- #k = 3
120
- kernel_size = (k, k)
121
- blur_size = tuple(2 * i + 1 for i in kernel_size)
122
- img_mask = cv2.GaussianBlur(img_mask, blur_size, 0)
123
- k = 5
124
- kernel_size = (k, k)
125
- blur_size = tuple(2 * i + 1 for i in kernel_size)
126
- fake_diff = cv2.GaussianBlur(fake_diff, blur_size, 0)
127
- img_mask /= 255
128
- fake_diff /= 255
129
- #img_mask = fake_diff
130
- img_mask = np.reshape(img_mask,
131
- [img_mask.shape[0], img_mask.shape[1], 1])
132
- fake_merged = img_mask * bgr_fake + (
133
- 1 - img_mask) * target_img.astype(np.float32)
134
- fake_merged = fake_merged.astype(np.uint8)
135
- return fake_merged