Spaces:
Running
Running
Delete super_resolution
Browse files- super_resolution/0 +0 -1
- super_resolution/__init__.py +0 -1
- super_resolution/bsrgan.py +0 -84
super_resolution/0
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
y
|
|
|
|
super_resolution/__init__.py
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
from .bsrgan import BSRGAN
|
|
|
|
super_resolution/bsrgan.py
DELETED
@@ -1,84 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
|
3 |
-
import cv2
|
4 |
-
|
5 |
-
from insightface import model_zoo
|
6 |
-
from dofaker.utils import download_file, get_model_url
|
7 |
-
|
8 |
-
|
9 |
-
class BSRGAN:
|
10 |
-
|
11 |
-
def __init__(self, name='bsrgan', root='weights/models', scale=1) -> None:
|
12 |
-
_, model_file = download_file(get_model_url(name),
|
13 |
-
save_dir=root,
|
14 |
-
overwrite=False)
|
15 |
-
self.scale = scale
|
16 |
-
providers = model_zoo.model_zoo.get_default_providers()
|
17 |
-
self.session = model_zoo.model_zoo.PickableInferenceSession(
|
18 |
-
model_file, providers=providers)
|
19 |
-
|
20 |
-
self.input_mean = 0.0
|
21 |
-
self.input_std = 255.0
|
22 |
-
inputs = self.session.get_inputs()
|
23 |
-
self.input_names = []
|
24 |
-
for inp in inputs:
|
25 |
-
self.input_names.append(inp.name)
|
26 |
-
outputs = self.session.get_outputs()
|
27 |
-
output_names = []
|
28 |
-
for out in outputs:
|
29 |
-
output_names.append(out.name)
|
30 |
-
self.output_names = output_names
|
31 |
-
assert len(
|
32 |
-
self.output_names
|
33 |
-
) == 1, "The output number of BSRGAN model should be 1, but got {}, please check your model.".format(
|
34 |
-
len(self.output_names))
|
35 |
-
output_shape = outputs[0].shape
|
36 |
-
input_cfg = inputs[0]
|
37 |
-
input_shape = input_cfg.shape
|
38 |
-
self.input_shape = input_shape
|
39 |
-
print('image super resolution shape:', self.input_shape)
|
40 |
-
|
41 |
-
def forward(self, image, image_format='bgr'):
|
42 |
-
if isinstance(image, str):
|
43 |
-
image = cv2.imread(image, 1)
|
44 |
-
image_format = 'bgr'
|
45 |
-
elif isinstance(image, np.ndarray):
|
46 |
-
if image_format == 'bgr':
|
47 |
-
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
48 |
-
elif image_format == 'rgb':
|
49 |
-
pass
|
50 |
-
else:
|
51 |
-
raise UserWarning(
|
52 |
-
"BSRGAN not support image format {}".format(image_format))
|
53 |
-
else:
|
54 |
-
raise UserWarning(
|
55 |
-
"BSRGAN input must be str or np.ndarray, but got {}.".format(
|
56 |
-
type(image)))
|
57 |
-
img = (image - self.input_mean) / self.input_std
|
58 |
-
pred = self.session.run(self.output_names,
|
59 |
-
{self.input_names[0]: img})[0]
|
60 |
-
return pred
|
61 |
-
|
62 |
-
def get(self, img, image_format='bgr'):
|
63 |
-
if image_format.lower() == 'bgr':
|
64 |
-
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
65 |
-
elif image_format.lower() == 'rgb':
|
66 |
-
pass
|
67 |
-
else:
|
68 |
-
raise UserWarning(
|
69 |
-
"gfpgan not support image format {}".format(image_format))
|
70 |
-
h, w, c = img.shape
|
71 |
-
blob = cv2.dnn.blobFromImage(
|
72 |
-
img,
|
73 |
-
1.0 / self.input_std, (w, h),
|
74 |
-
(self.input_mean, self.input_mean, self.input_mean),
|
75 |
-
swapRB=False)
|
76 |
-
pred = self.session.run(self.output_names,
|
77 |
-
{self.input_names[0]: blob})[0]
|
78 |
-
image_aug = pred.transpose((0, 2, 3, 1))[0]
|
79 |
-
rgb_aug = np.clip(self.input_std * image_aug + self.input_mean, 0,
|
80 |
-
255).astype(np.uint8)
|
81 |
-
rgb_aug = cv2.resize(rgb_aug,
|
82 |
-
(int(w * self.scale), int(h * self.scale)))
|
83 |
-
bgr_aug = rgb_aug[:, :, ::-1]
|
84 |
-
return bgr_aug
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|