victorisgeek commited on
Commit
32e9ef6
·
verified ·
1 Parent(s): 2960826

Delete super_resolution

Browse files
super_resolution/0 DELETED
@@ -1 +0,0 @@
1
- y
 
 
super_resolution/__init__.py DELETED
@@ -1 +0,0 @@
1
- from .bsrgan import BSRGAN
 
 
super_resolution/bsrgan.py DELETED
@@ -1,84 +0,0 @@
1
- import numpy as np
2
-
3
- import cv2
4
-
5
- from insightface import model_zoo
6
- from dofaker.utils import download_file, get_model_url
7
-
8
-
9
- class BSRGAN:
10
-
11
- def __init__(self, name='bsrgan', root='weights/models', scale=1) -> None:
12
- _, model_file = download_file(get_model_url(name),
13
- save_dir=root,
14
- overwrite=False)
15
- self.scale = scale
16
- providers = model_zoo.model_zoo.get_default_providers()
17
- self.session = model_zoo.model_zoo.PickableInferenceSession(
18
- model_file, providers=providers)
19
-
20
- self.input_mean = 0.0
21
- self.input_std = 255.0
22
- inputs = self.session.get_inputs()
23
- self.input_names = []
24
- for inp in inputs:
25
- self.input_names.append(inp.name)
26
- outputs = self.session.get_outputs()
27
- output_names = []
28
- for out in outputs:
29
- output_names.append(out.name)
30
- self.output_names = output_names
31
- assert len(
32
- self.output_names
33
- ) == 1, "The output number of BSRGAN model should be 1, but got {}, please check your model.".format(
34
- len(self.output_names))
35
- output_shape = outputs[0].shape
36
- input_cfg = inputs[0]
37
- input_shape = input_cfg.shape
38
- self.input_shape = input_shape
39
- print('image super resolution shape:', self.input_shape)
40
-
41
- def forward(self, image, image_format='bgr'):
42
- if isinstance(image, str):
43
- image = cv2.imread(image, 1)
44
- image_format = 'bgr'
45
- elif isinstance(image, np.ndarray):
46
- if image_format == 'bgr':
47
- image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
48
- elif image_format == 'rgb':
49
- pass
50
- else:
51
- raise UserWarning(
52
- "BSRGAN not support image format {}".format(image_format))
53
- else:
54
- raise UserWarning(
55
- "BSRGAN input must be str or np.ndarray, but got {}.".format(
56
- type(image)))
57
- img = (image - self.input_mean) / self.input_std
58
- pred = self.session.run(self.output_names,
59
- {self.input_names[0]: img})[0]
60
- return pred
61
-
62
- def get(self, img, image_format='bgr'):
63
- if image_format.lower() == 'bgr':
64
- img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
65
- elif image_format.lower() == 'rgb':
66
- pass
67
- else:
68
- raise UserWarning(
69
- "gfpgan not support image format {}".format(image_format))
70
- h, w, c = img.shape
71
- blob = cv2.dnn.blobFromImage(
72
- img,
73
- 1.0 / self.input_std, (w, h),
74
- (self.input_mean, self.input_mean, self.input_mean),
75
- swapRB=False)
76
- pred = self.session.run(self.output_names,
77
- {self.input_names[0]: blob})[0]
78
- image_aug = pred.transpose((0, 2, 3, 1))[0]
79
- rgb_aug = np.clip(self.input_std * image_aug + self.input_mean, 0,
80
- 255).astype(np.uint8)
81
- rgb_aug = cv2.resize(rgb_aug,
82
- (int(w * self.scale), int(h * self.scale)))
83
- bgr_aug = rgb_aug[:, :, ::-1]
84
- return bgr_aug