Spaces:
Paused
Paused
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import torchvision.transforms as transforms | |
| import cv2 | |
| import numpy as np | |
| from .model import BiSeNet | |
| mask_regions = { | |
| "Background":0, | |
| "Skin":1, | |
| "L-Eyebrow":2, | |
| "R-Eyebrow":3, | |
| "L-Eye":4, | |
| "R-Eye":5, | |
| "Eye-G":6, | |
| "L-Ear":7, | |
| "R-Ear":8, | |
| "Ear-R":9, | |
| "Nose":10, | |
| "Mouth":11, | |
| "U-Lip":12, | |
| "L-Lip":13, | |
| "Neck":14, | |
| "Neck-L":15, | |
| "Cloth":16, | |
| "Hair":17, | |
| "Hat":18 | |
| } | |
| # Borrowed from simswap | |
| # https://github.com/neuralchen/SimSwap/blob/26c84d2901bd56eda4d5e3c5ca6da16e65dc82a6/util/reverse2original.py#L30 | |
| class SoftErosion(nn.Module): | |
| def __init__(self, kernel_size=15, threshold=0.6, iterations=1): | |
| super(SoftErosion, self).__init__() | |
| r = kernel_size // 2 | |
| self.padding = r | |
| self.iterations = iterations | |
| self.threshold = threshold | |
| # Create kernel | |
| y_indices, x_indices = torch.meshgrid(torch.arange(0., kernel_size), torch.arange(0., kernel_size)) | |
| dist = torch.sqrt((x_indices - r) ** 2 + (y_indices - r) ** 2) | |
| kernel = dist.max() - dist | |
| kernel /= kernel.sum() | |
| kernel = kernel.view(1, 1, *kernel.shape) | |
| self.register_buffer('weight', kernel) | |
| def forward(self, x): | |
| x = x.float() | |
| for i in range(self.iterations - 1): | |
| x = torch.min(x, F.conv2d(x, weight=self.weight, groups=x.shape[1], padding=self.padding)) | |
| x = F.conv2d(x, weight=self.weight, groups=x.shape[1], padding=self.padding) | |
| mask = x >= self.threshold | |
| x[mask] = 1.0 | |
| x[~mask] /= x[~mask].max() | |
| return x, mask | |
| device = "cpu" | |
| def init_parser(pth_path, mode="cpu"): | |
| global device | |
| device = mode | |
| n_classes = 19 | |
| net = BiSeNet(n_classes=n_classes) | |
| if device == "cuda": | |
| net.cuda() | |
| net.load_state_dict(torch.load(pth_path)) | |
| else: | |
| net.load_state_dict(torch.load(pth_path, map_location=torch.device('cpu'))) | |
| net.eval() | |
| return net | |
| def image_to_parsing(img, net): | |
| img = cv2.resize(img, (512, 512)) | |
| img = img[:,:,::-1] | |
| transform = transforms.Compose([ | |
| transforms.ToTensor(), | |
| transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) | |
| ]) | |
| img = transform(img.copy()) | |
| img = torch.unsqueeze(img, 0) | |
| with torch.no_grad(): | |
| img = img.to(device) | |
| out = net(img)[0] | |
| parsing = out.squeeze(0).cpu().numpy().argmax(0) | |
| return parsing | |
| def get_mask(parsing, classes): | |
| res = parsing == classes[0] | |
| for val in classes[1:]: | |
| res += parsing == val | |
| return res | |
| def swap_regions(source, target, net, smooth_mask, includes=[1,2,3,4,5,10,11,12,13], blur=10): | |
| parsing = image_to_parsing(source, net) | |
| if len(includes) == 0: | |
| return source, np.zeros_like(source) | |
| include_mask = get_mask(parsing, includes) | |
| mask = np.repeat(include_mask[:, :, np.newaxis], 3, axis=2).astype("float32") | |
| if smooth_mask is not None: | |
| mask_tensor = torch.from_numpy(mask.copy().transpose((2, 0, 1))).float().to(device) | |
| face_mask_tensor = mask_tensor[0] + mask_tensor[1] | |
| soft_face_mask_tensor, _ = smooth_mask(face_mask_tensor.unsqueeze_(0).unsqueeze_(0)) | |
| soft_face_mask_tensor.squeeze_() | |
| mask = np.repeat(soft_face_mask_tensor.cpu().numpy()[:, :, np.newaxis], 3, axis=2) | |
| if blur > 0: | |
| mask = cv2.GaussianBlur(mask, (0, 0), blur) | |
| resized_source = cv2.resize((source).astype("float32"), (512, 512)) | |
| resized_target = cv2.resize((target).astype("float32"), (512, 512)) | |
| result = mask * resized_source + (1 - mask) * resized_target | |
| result = cv2.resize(result.astype("uint8"), (source.shape[1], source.shape[0])) | |
| return result | |
| def mask_regions_to_list(values): | |
| out_ids = [] | |
| for value in values: | |
| if value in mask_regions.keys(): | |
| out_ids.append(mask_regions.get(value)) | |
| return out_ids | |