Spaces:
Runtime error
Runtime error
File size: 8,644 Bytes
ce190ee ae61fe0 cd31093 ac09955 ce190ee ae61fe0 ce190ee ae61fe0 ce190ee ae61fe0 ce190ee ae61fe0 ce190ee fe58151 e2d1ef3 fe58151 e2d1ef3 fe58151 490814b ae61fe0 51920a8 9da944e ae61fe0 9da944e ae61fe0 ce190ee b75254c 95ba8da b75254c ae61fe0 ce190ee ac09955 ae61fe0 ac09955 ae61fe0 ac09955 51920a8 ac09955 51920a8 ac09955 51920a8 ac09955 51920a8 ac09955 51920a8 ac09955 ae61fe0 51920a8 ae61fe0 9da944e ae61fe0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
# based on https://huggingface.co/spaces/NimaBoscarino/climategan/blob/main/app.py # noqa: E501
# thank you @NimaBoscarino
import os
import gradio as gr
import googlemaps
from skimage import io
from urllib import parse
import numpy as np
from climategan_wrapper import ClimateGAN
from textwrap import dedent
def predict(cg: ClimateGAN, api_key):
def _predict(*args):
image = place = painter = None
if len(args) == 2:
image = args[0]
painter = args[1]
else:
assert len(args) == 3, "Unknown number of inputs {}".format(len(args))
image, place, painter = args
if api_key and place:
geocode_result = gmaps.geocode(place)
address = geocode_result[0]["formatted_address"]
static_map_url = f"https://maps.googleapis.com/maps/api/streetview?size=640x640&location={parse.quote(address)}&source=outdoor&key={api_key}"
img_np = io.imread(static_map_url)
else:
img_np = image
painters = {
"ClimateGAN Painter": "climategan",
"Stable Diffusion Painter": "stable_diffusion",
"Both": "both",
}
output_dict = cg.infer_single(img_np, painters[painter], as_pil_image=True)
input_image = output_dict["input"]
masked_input = output_dict["masked_input"]
wildfire = output_dict["wildfire"]
smog = output_dict["smog"]
depth = np.repeat(output_dict["depth"], 3, axis=-1)
segmentation = output_dict["segmentation"]
climategan_flood = output_dict.get(
"climategan_flood",
np.ones(input_image.shape) * 255,
)
stable_flood = output_dict.get(
"stable_flood",
np.ones(input_image.shape) * 255,
)
stable_copy_flood = output_dict.get(
"stable_copy_flood",
np.ones(input_image.shape) * 255,
)
concat = output_dict.get(
"concat",
np.ones(input_image.shape) * 255,
)
return (
input_image,
masked_input,
segmentation,
depth,
climategan_flood,
stable_flood,
stable_copy_flood,
concat,
wildfire,
smog,
)
return _predict
if __name__ == "__main__":
api_key = os.environ.get("GMAPS_API_KEY")
gmaps = None
if api_key is not None:
gmaps = googlemaps.Client(key=api_key)
cg = ClimateGAN(
model_path="config/model/masker",
dev_mode=os.environ.get("CG_DEV_MODE", "").lower() == "true",
)
cg._setup_stable_diffusion()
with gr.Blocks(
css=dedent(
"""
a {
color: #0088ff;
text-decoration: underline;
}
strong {
color: #c34318;
}
"""
)
) as blocks:
with gr.Row():
with gr.Column():
gr.Markdown("# ClimateGAN: Visualize Climate Change")
gr.HTML(
dedent(
"""
<p>
Climate change does not impact everyone equally.
This Space shows the effects of the climate emergency,
"one address at a time".
</p>
<p>
Visit the original experience at
<a href="https://thisclimatedoesnotexist.com/">
ThisClimateDoesNotExist.com
</a>
</p>
<br>
<p>
Enter an address or upload a Street View image, and ClimateGAN
will generate images showing how the location could be impacted
by flooding, wildfires, or smog if it happened there.
</p>
<br>
<p>
This is <strong>not</strong> an exercise in climate prediction,
rather an exercise of empathy, to put yourself in other's shoes,
as if Climate Change came crushing on your doorstep.
</p>
"""
)
)
with gr.Column():
gr.HTML(
dedent(
"""
<br>
<br>
<br>
<p style='text-align: center'>
Visit
<a href='https://thisclimatedoesnotexist.com/'>
ThisClimateDoesNotExist.com
</a>
for more information
|
Original
<a href='https://github.com/cc-ai/climategan'>
ClimateGAN GitHub Repo
</a>
</p>
<br>
<p>
After you have selected an image and started the inference you
will see all the outputs of ClimateGAN, including intermediate
outputs such as the flood mask, the segmentation map and the
depth maps used to produce the 3 events.
</p>
<br>
<p>
This Space makes use of recent Stable Diffusion in-painting
pipelines to replace ClimateGAN's original Painter. If you
select 'Both' painters, you will see a comparison
</p>
<br>
<br>
<p>
Read the original
<a
href='https://openreview.net/forum?id=EZNOb_uNpJk'
target='_blank'>
ICLR 2021 ClimateGAN paper
</a>
</p>
"""
)
)
with gr.Row():
gr.Markdown("## Inputs")
with gr.Row():
with gr.Column():
inputs = [gr.inputs.Image(label="Input Image")]
with gr.Column():
if api_key:
inputs += [gr.inputs.Textbox(label="Address or place name")]
inputs += [
gr.inputs.Dropdown(
choices=[
"ClimateGAN Painter",
"Stable Diffusion Painter",
"Both",
],
label="Choose Flood Painter",
default="Both",
)
]
btn = gr.Button("See for yourself!", label="Run", variant="primary")
with gr.Row():
gr.Markdown("## Outputs")
with gr.Row():
outputs = []
outputs.append(
gr.outputs.Image(type="numpy", label="Original image"),
)
outputs.append(
gr.outputs.Image(type="numpy", label="Masked input image"),
)
outputs.append(
gr.outputs.Image(type="numpy", label="Segmentation map"),
)
outputs.append(
gr.outputs.Image(type="numpy", label="Depth map"),
)
with gr.Row():
outputs.append(
gr.outputs.Image(type="numpy", label="ClimateGAN-Flooded image"),
)
outputs.append(
gr.outputs.Image(type="numpy", label="Stable Diffusion-Flooded image"),
)
outputs.append(
gr.outputs.Image(
type="numpy",
label="Stable Diffusion-Flooded image (restricted to masked area)",
)
),
with gr.Row():
outputs.append(
gr.outputs.Image(type="numpy", label="Comparison of previous images"),
)
with gr.Row():
outputs.append(
gr.outputs.Image(type="numpy", label="Wildfire"),
)
outputs.append(
gr.outputs.Image(type="numpy", label="Smog"),
)
btn.click(predict(cg, api_key), inputs=inputs, outputs=outputs)
blocks.launch()
|