File size: 5,696 Bytes
d945eeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f677a8
 
 
 
 
 
 
d945eeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dd07dc
d945eeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f677a8
 
 
d945eeb
9f677a8
d945eeb
9f677a8
 
 
 
 
 
 
 
d945eeb
 
9f677a8
 
d945eeb
9f677a8
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import os
import tempfile
import time
from functools import lru_cache
from typing import Any

import gradio as gr
import numpy as np
import rembg
import torch
from gradio_litmodel3d import LitModel3D
from PIL import Image

import sf3d.utils as sf3d_utils
from sf3d.system import SF3D

from fastapi import FastAPI, File, UploadFile
from fastapi.responses import FileResponse

import datetime

app = FastAPI()

rembg_session = rembg.new_session()

COND_WIDTH = 512
COND_HEIGHT = 512
COND_DISTANCE = 1.6
COND_FOVY_DEG = 40
BACKGROUND_COLOR = [0.5, 0.5, 0.5]

# Cached. Doesn't change
c2w_cond = sf3d_utils.default_cond_c2w(COND_DISTANCE)
intrinsic, intrinsic_normed_cond = sf3d_utils.create_intrinsic_from_fov_deg(
    COND_FOVY_DEG, COND_HEIGHT, COND_WIDTH
)


model = SF3D.from_pretrained(
    "stabilityai/stable-fast-3d",
    config_name="config.yaml",
    weight_name="model.safetensors",
)
model.eval().cuda()

example_files = [
    os.path.join("demo_files/examples", f) for f in os.listdir("demo_files/examples")
]


def run_model(input_image):
    start = time.time()
    with torch.no_grad():
        with torch.autocast(device_type="cuda", dtype=torch.float16):
            model_batch = create_batch(input_image)
            model_batch = {k: v.cuda() for k, v in model_batch.items()}
            trimesh_mesh, _glob_dict = model.generate_mesh(model_batch, 1024)
            trimesh_mesh = trimesh_mesh[0]

    # Create new tmp file
    tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".glb")

    trimesh_mesh.export(tmp_file.name, file_type="glb", include_normals=True)

    print("Generation took:", time.time() - start, "s")

    return tmp_file.name


def create_batch(input_image: Image) -> dict[str, Any]:
    img_cond = (
        torch.from_numpy(
            np.asarray(input_image.resize((COND_WIDTH, COND_HEIGHT))).astype(np.float32)
            / 255.0
        )
        .float()
        .clip(0, 1)
    )
    mask_cond = img_cond[:, :, -1:]
    rgb_cond = torch.lerp(
        torch.tensor(BACKGROUND_COLOR)[None, None, :], img_cond[:, :, :3], mask_cond
    )

    batch_elem = {
        "rgb_cond": rgb_cond,
        "mask_cond": mask_cond,
        "c2w_cond": c2w_cond.unsqueeze(0),
        "intrinsic_cond": intrinsic.unsqueeze(0),
        "intrinsic_normed_cond": intrinsic_normed_cond.unsqueeze(0),
    }
    # Add batch dim
    batched = {k: v.unsqueeze(0) for k, v in batch_elem.items()}
    return batched


@lru_cache
def checkerboard(squares: int, size: int, min_value: float = 0.5):
    base = np.zeros((squares, squares)) + min_value
    base[1::2, ::2] = 1
    base[::2, 1::2] = 1

    repeat_mult = size // squares
    return (
        base.repeat(repeat_mult, axis=0)
        .repeat(repeat_mult, axis=1)[:, :, None]
        .repeat(3, axis=-1)
    )


def remove_background(input_image: Image) -> Image:
    return rembg.remove(input_image, session=rembg_session)


def resize_foreground(
    image: Image,
    ratio: float,
) -> Image:
    image = np.array(image)
    assert image.shape[-1] == 4
    alpha = np.where(image[..., 3] > 0)
    y1, y2, x1, x2 = (
        alpha[0].min(),
        alpha[0].max(),
        alpha[1].min(),
        alpha[1].max(),
    )
    # crop the foreground
    fg = image[y1:y2, x1:x2]
    # pad to square
    size = max(fg.shape[0], fg.shape[1])
    ph0, pw0 = (size - fg.shape[0]) // 2, (size - fg.shape[1]) // 2
    ph1, pw1 = size - fg.shape[0] - ph0, size - fg.shape[1] - pw0
    new_image = np.pad(
        fg,
        ((ph0, ph1), (pw0, pw1), (0, 0)),
        mode="constant",
        constant_values=((0, 0), (0, 0), (0, 0)),
    )

    # compute padding according to the ratio
    new_size = int(new_image.shape[0] / ratio)
    # pad to size, double side
    ph0, pw0 = (new_size - size) // 2, (new_size - size) // 2
    ph1, pw1 = new_size - size - ph0, new_size - size - pw0
    new_image = np.pad(
        new_image,
        ((ph0, ph1), (pw0, pw1), (0, 0)),
        mode="constant",
        constant_values=((0, 0), (0, 0), (0, 0)),
    )
    new_image = Image.fromarray(new_image, mode="RGBA").resize(
        (COND_WIDTH, COND_HEIGHT)
    )
    return new_image


def square_crop(input_image: Image) -> Image:
    # Perform a center square crop
    min_size = min(input_image.size)
    left = (input_image.size[0] - min_size) // 2
    top = (input_image.size[1] - min_size) // 2
    right = (input_image.size[0] + min_size) // 2
    bottom = (input_image.size[1] + min_size) // 2
    return input_image.crop((left, top, right, bottom)).resize(
        (COND_WIDTH, COND_HEIGHT)
    )


def show_mask_img(input_image: Image) -> Image:
    img_numpy = np.array(input_image)
    alpha = img_numpy[:, :, 3] / 255.0
    chkb = checkerboard(32, 512) * 255
    new_img = img_numpy[..., :3] * alpha[:, :, None] + chkb * (1 - alpha[:, :, None])
    return Image.fromarray(new_img.astype(np.uint8), mode="RGB")



def upload_file_to_s3(file_path, bucket_name, object_name=None):
    
    s3_client.upload_file(file_path, bucket_name, object_name)

    return True

    
@app.post("/process-image/")
async def process_image(file: UploadFile = File(...), foreground_ratio: float = 0.85):
    input_image = Image.open(file.file).convert("RGBA")
    rem_removed = remove_background(input_image)
    sqr_crop = square_crop(rem_removed)
    fr_res = resize_foreground(sqr_crop, foreground_ratio)
    glb_file = run_model(fr_res)


    timestamp = datetime.datetime.now().strftime('%Y%m%d%H%M%S%f')
    object_name = f'object_{timestamp}.glb'

    if upload_file_to_s3(glb_file, 'framebucket3d',object_name):
        return {
            "glb_path": f"https://framebucket3d.s3.amazonaws.com/{object_name_2}"
        }