Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -36,19 +36,10 @@ os.environ["CUDA_VISIBLE_DEVICES"] = "1"
|
|
| 36 |
|
| 37 |
HEADER = """FRAME AI"""
|
| 38 |
|
| 39 |
-
# if torch.cuda.is_available():
|
| 40 |
-
# device = "cuda:0"
|
| 41 |
-
# else:
|
| 42 |
-
# device = "cpu"
|
| 43 |
-
|
| 44 |
-
# torch.cuda.set_device(1)
|
| 45 |
-
|
| 46 |
-
# CUDA_LAUNCH_BLOCKING=1
|
| 47 |
-
|
| 48 |
-
|
| 49 |
if torch.cuda.is_available():
|
| 50 |
-
|
| 51 |
-
|
|
|
|
| 52 |
|
| 53 |
|
| 54 |
model = TSR.from_pretrained(
|
|
@@ -168,6 +159,7 @@ def check_input_image(input_image):
|
|
| 168 |
raise gr.Error("No image uploaded!")
|
| 169 |
|
| 170 |
def preprocess(input_image, do_remove_background, foreground_ratio):
|
|
|
|
| 171 |
def fill_background(image):
|
| 172 |
image = np.array(image).astype(np.float32) / 255.0
|
| 173 |
image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
|
|
@@ -185,10 +177,12 @@ def preprocess(input_image, do_remove_background, foreground_ratio):
|
|
| 185 |
image = input_image
|
| 186 |
if image.mode == "RGBA":
|
| 187 |
image = fill_background(image)
|
|
|
|
| 188 |
return image
|
| 189 |
|
| 190 |
# @spaces.GPU
|
| 191 |
def generate(image, mc_resolution, formats=["obj", "glb"]):
|
|
|
|
| 192 |
torch.cuda.empty_cache()
|
| 193 |
scene_codes = model(image, device=device)
|
| 194 |
mesh = model.extract_mesh(scene_codes, resolution=mc_resolution)[0]
|
|
@@ -200,6 +194,8 @@ def generate(image, mc_resolution, formats=["obj", "glb"]):
|
|
| 200 |
mesh_path_obj = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False)
|
| 201 |
mesh.apply_scale([-1, 1, 1]) # Otherwise the visualized .obj will be flipped
|
| 202 |
mesh.export(mesh_path_obj.name)
|
|
|
|
|
|
|
| 203 |
|
| 204 |
return mesh_path_obj.name, mesh_path_glb.name
|
| 205 |
|
|
|
|
| 36 |
|
| 37 |
HEADER = """FRAME AI"""
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
if torch.cuda.is_available():
|
| 40 |
+
device = "cuda:0"
|
| 41 |
+
else:
|
| 42 |
+
device = "cpu"
|
| 43 |
|
| 44 |
|
| 45 |
model = TSR.from_pretrained(
|
|
|
|
| 159 |
raise gr.Error("No image uploaded!")
|
| 160 |
|
| 161 |
def preprocess(input_image, do_remove_background, foreground_ratio):
|
| 162 |
+
torch.cuda.synchronize()
|
| 163 |
def fill_background(image):
|
| 164 |
image = np.array(image).astype(np.float32) / 255.0
|
| 165 |
image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
|
|
|
|
| 177 |
image = input_image
|
| 178 |
if image.mode == "RGBA":
|
| 179 |
image = fill_background(image)
|
| 180 |
+
torch.cuda.synchronize()
|
| 181 |
return image
|
| 182 |
|
| 183 |
# @spaces.GPU
|
| 184 |
def generate(image, mc_resolution, formats=["obj", "glb"]):
|
| 185 |
+
torch.cuda.synchronize()
|
| 186 |
torch.cuda.empty_cache()
|
| 187 |
scene_codes = model(image, device=device)
|
| 188 |
mesh = model.extract_mesh(scene_codes, resolution=mc_resolution)[0]
|
|
|
|
| 194 |
mesh_path_obj = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False)
|
| 195 |
mesh.apply_scale([-1, 1, 1]) # Otherwise the visualized .obj will be flipped
|
| 196 |
mesh.export(mesh_path_obj.name)
|
| 197 |
+
|
| 198 |
+
torch.cuda.synchronize()
|
| 199 |
|
| 200 |
return mesh_path_obj.name, mesh_path_glb.name
|
| 201 |
|