Spaces:
Runtime error
Runtime error
| from fastapi import FastAPI, File, UploadFile, Form | |
| from fastapi.responses import StreamingResponse | |
| from pydantic import BaseModel | |
| from pydantic import Field | |
| from typing import Optional | |
| import logging | |
| import os | |
| import boto3 | |
| import json | |
| import shlex | |
| import subprocess | |
| import tempfile | |
| import time | |
| import base64 | |
| import gradio as gr | |
| import numpy as np | |
| import rembg | |
| import spaces | |
| import torch | |
| from PIL import Image | |
| from functools import partial | |
| import io | |
| from io import BytesIO | |
| from botocore.exceptions import NoCredentialsError, PartialCredentialsError | |
| import datetime | |
| app = FastAPI() | |
| subprocess.run(shlex.split('pip install wheel/torchmcubes-0.1.0-cp310-cp310-linux_x86_64.whl')) | |
| from tsr.system import TSR | |
| from tsr.utils import remove_background, resize_foreground, to_gradio_3d_orientation | |
| if torch.cuda.is_available(): | |
| device = "cuda:0" | |
| else: | |
| device = "cpu" | |
| # torch.cuda.synchronize() | |
| model = TSR.from_pretrained( | |
| "stabilityai/TripoSR", | |
| config_name="config.yaml", | |
| weight_name="model.ckpt", | |
| ) | |
| model.renderer.set_chunk_size(131072) | |
| model.to(device) | |
| rembg_session = rembg.new_session() | |
| ACCESS = os.getenv("ACCESS") | |
| SECRET = os.getenv("SECRET") | |
| bedrock = boto3.client(service_name='bedrock', aws_access_key_id = ACCESS, aws_secret_access_key = SECRET, region_name='us-east-1') | |
| bedrock_runtime = boto3.client(service_name='bedrock-runtime', aws_access_key_id = ACCESS, aws_secret_access_key = SECRET, region_name='us-east-1') | |
| s3_client = boto3.client('s3',aws_access_key_id = ACCESS, aws_secret_access_key = SECRET, region_name='us-east-1') | |
| def upload_file_to_s3(file_path, bucket_name, object_name=None): | |
| s3_client.upload_file(file_path, bucket_name, object_name) | |
| return True | |
| def check_input_image(input_image): | |
| if input_image is None: | |
| raise gr.Error("No image uploaded!") | |
| def preprocess(input_image, do_remove_background, foreground_ratio): | |
| def fill_background(image): | |
| torch.cuda.synchronize() # Ensure previous CUDA operations are complete | |
| image = np.array(image).astype(np.float32) / 255.0 | |
| image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5 | |
| image = Image.fromarray((image * 255.0).astype(np.uint8)) | |
| return image | |
| if do_remove_background: | |
| torch.cuda.synchronize() | |
| image = input_image.convert("RGB") | |
| image = remove_background(image, rembg_session) | |
| image = resize_foreground(image, foreground_ratio) | |
| image = fill_background(image) | |
| torch.cuda.synchronize() | |
| else: | |
| image = input_image | |
| if image.mode == "RGBA": | |
| image = fill_background(image) | |
| torch.cuda.synchronize() # Wait for all CUDA operations to complete | |
| torch.cuda.empty_cache() | |
| return image | |
| def generate(image, mc_resolution, formats=["obj", "glb"]): | |
| torch.cuda.synchronize() | |
| scene_codes = model(image, device=device) | |
| torch.cuda.synchronize() | |
| mesh = model.extract_mesh(scene_codes, resolution=mc_resolution)[0] | |
| torch.cuda.synchronize() | |
| mesh = to_gradio_3d_orientation(mesh) | |
| torch.cuda.synchronize() | |
| mesh_path_glb = tempfile.NamedTemporaryFile(suffix=f".glb", delete=False) | |
| torch.cuda.synchronize() | |
| mesh.export(mesh_path_glb.name) | |
| torch.cuda.synchronize() | |
| mesh_path_obj = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False) | |
| torch.cuda.synchronize() | |
| mesh.apply_scale([-1, 1, 1]) | |
| mesh.export(mesh_path_obj.name) | |
| torch.cuda.synchronize() | |
| torch.cuda.empty_cache() | |
| return mesh_path_obj.name, mesh_path_glb.name | |
| async def process_image( | |
| file: UploadFile = File(...), | |
| seed: int = Form(...), | |
| enhance_image: bool = Form(...), # Default enhance_image value | |
| do_remove_background: bool = Form(...), # Default do_remove_background value | |
| foreground_ratio: float = Form(...), # Ratio must be between 0.0 and 1.0 (exclusive) | |
| mc_resolution: int = Form(...), # Resolution must be between 256 and 4096 | |
| auth: str = Form(...), | |
| text_prompt: Optional[str] = Form(None) | |
| ): | |
| if auth == os.getenv("AUTHORIZE"): | |
| image_bytes = await file.read() | |
| image_pil = Image.open(BytesIO(image_bytes)) | |
| preprocessed = preprocess(image_pil, do_remove_background, foreground_ratio) | |
| mesh_name_obj, mesh_name_glb = generate(preprocessed, mc_resolution) | |
| timestamp = datetime.datetime.now().strftime('%Y%m%d%H%M%S%f') | |
| object_name = f'object_{timestamp}.obj' | |
| object_name_2 = f'object_{timestamp}.glb' | |
| object_name_3 = f"object_{timestamp}.png" | |
| preprocessed_image_tempfile = tempfile.NamedTemporaryFile(suffix=".png", delete=False) | |
| preprocessed.save(preprocessed_image_tempfile.name) | |
| upload_file_to_s3(preprocessed_image_tempfile.name, 'framebucket3d', object_name_3) | |
| if upload_file_to_s3(mesh_name_obj, 'framebucket3d',object_name) and upload_file_to_s3(mesh_name_glb, 'framebucket3d',object_name_2): | |
| # torch.cuda.synchronize() # Wait for all CUDA operations to complete | |
| # torch.cuda.empty_cache() | |
| return { | |
| "img_path": f"https://framebucket3d.s3.amazonaws.com/{object_name_3}", | |
| "obj_path": f"https://framebucket3d.s3.amazonaws.com/{object_name}", | |
| "glb_path": f"https://framebucket3d.s3.amazonaws.com/{object_name_2}" | |
| } | |
| else: | |
| return {"Internal Server Error": False} | |
| else: | |
| return {"Authentication":"Failed"} | |
| if __name__ == "__main__": | |
| import uvicorn | |
| uvicorn.run(app, host="0.0.0.0", port=7860) |