Spaces:
Runtime error
Runtime error
from fastapi import FastAPI, File, UploadFile, Form | |
from fastapi.responses import StreamingResponse | |
from pydantic import BaseModel | |
from pydantic import Field | |
from typing import Optional | |
import logging | |
import os | |
import boto3 | |
import json | |
import shlex | |
import subprocess | |
import tempfile | |
import time | |
import base64 | |
import gradio as gr | |
import numpy as np | |
import rembg | |
import spaces | |
import torch | |
from PIL import Image | |
from functools import partial | |
import io | |
from io import BytesIO | |
from botocore.exceptions import NoCredentialsError, PartialCredentialsError | |
import datetime | |
app = FastAPI() | |
subprocess.run(shlex.split('pip install wheel/torchmcubes-0.1.0-cp310-cp310-linux_x86_64.whl')) | |
from tsr.system import TSR | |
from tsr.utils import remove_background, resize_foreground, to_gradio_3d_orientation | |
if torch.cuda.is_available(): | |
device = "cuda:0" | |
else: | |
device = "cpu" | |
# torch.cuda.synchronize() | |
model = TSR.from_pretrained( | |
"stabilityai/TripoSR", | |
config_name="config.yaml", | |
weight_name="model.ckpt", | |
) | |
model.renderer.set_chunk_size(131072) | |
model.to(device) | |
rembg_session = rembg.new_session() | |
ACCESS = os.getenv("ACCESS") | |
SECRET = os.getenv("SECRET") | |
bedrock = boto3.client(service_name='bedrock', aws_access_key_id = ACCESS, aws_secret_access_key = SECRET, region_name='us-east-1') | |
bedrock_runtime = boto3.client(service_name='bedrock-runtime', aws_access_key_id = ACCESS, aws_secret_access_key = SECRET, region_name='us-east-1') | |
s3_client = boto3.client('s3',aws_access_key_id = ACCESS, aws_secret_access_key = SECRET, region_name='us-east-1') | |
def upload_file_to_s3(file_path, bucket_name, object_name=None): | |
s3_client.upload_file(file_path, bucket_name, object_name) | |
return True | |
def check_input_image(input_image): | |
if input_image is None: | |
raise gr.Error("No image uploaded!") | |
def preprocess(input_image, do_remove_background, foreground_ratio): | |
def fill_background(image): | |
torch.cuda.synchronize() # Ensure previous CUDA operations are complete | |
image = np.array(image).astype(np.float32) / 255.0 | |
image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5 | |
image = Image.fromarray((image * 255.0).astype(np.uint8)) | |
return image | |
if do_remove_background: | |
torch.cuda.synchronize() | |
image = input_image.convert("RGB") | |
image = remove_background(image, rembg_session) | |
image = resize_foreground(image, foreground_ratio) | |
image = fill_background(image) | |
torch.cuda.synchronize() | |
else: | |
image = input_image | |
if image.mode == "RGBA": | |
image = fill_background(image) | |
torch.cuda.synchronize() # Wait for all CUDA operations to complete | |
torch.cuda.empty_cache() | |
return image | |
def generate(image, mc_resolution, formats=["obj", "glb"]): | |
torch.cuda.synchronize() | |
scene_codes = model(image, device=device) | |
torch.cuda.synchronize() | |
mesh = model.extract_mesh(scene_codes, resolution=mc_resolution)[0] | |
torch.cuda.synchronize() | |
mesh = to_gradio_3d_orientation(mesh) | |
torch.cuda.synchronize() | |
mesh_path_glb = tempfile.NamedTemporaryFile(suffix=f".glb", delete=False) | |
torch.cuda.synchronize() | |
mesh.export(mesh_path_glb.name) | |
torch.cuda.synchronize() | |
mesh_path_obj = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False) | |
torch.cuda.synchronize() | |
mesh.apply_scale([-1, 1, 1]) | |
mesh.export(mesh_path_obj.name) | |
torch.cuda.synchronize() | |
torch.cuda.empty_cache() | |
return mesh_path_obj.name, mesh_path_glb.name | |
async def process_image( | |
file: UploadFile = File(...), | |
seed: int = Form(...), | |
enhance_image: bool = Form(...), # Default enhance_image value | |
do_remove_background: bool = Form(...), # Default do_remove_background value | |
foreground_ratio: float = Form(...), # Ratio must be between 0.0 and 1.0 (exclusive) | |
mc_resolution: int = Form(...), # Resolution must be between 256 and 4096 | |
auth: str = Form(...), | |
text_prompt: Optional[str] = Form(None) | |
): | |
if auth == os.getenv("AUTHORIZE"): | |
image_bytes = await file.read() | |
image_pil = Image.open(BytesIO(image_bytes)) | |
preprocessed = preprocess(image_pil, do_remove_background, foreground_ratio) | |
mesh_name_obj, mesh_name_glb = generate(preprocessed, mc_resolution) | |
timestamp = datetime.datetime.now().strftime('%Y%m%d%H%M%S%f') | |
object_name = f'object_{timestamp}.obj' | |
object_name_2 = f'object_{timestamp}.glb' | |
object_name_3 = f"object_{timestamp}.png" | |
preprocessed_image_tempfile = tempfile.NamedTemporaryFile(suffix=".png", delete=False) | |
preprocessed.save(preprocessed_image_tempfile.name) | |
upload_file_to_s3(preprocessed_image_tempfile.name, 'framebucket3d', object_name_3) | |
if upload_file_to_s3(mesh_name_obj, 'framebucket3d',object_name) and upload_file_to_s3(mesh_name_glb, 'framebucket3d',object_name_2): | |
# torch.cuda.synchronize() # Wait for all CUDA operations to complete | |
# torch.cuda.empty_cache() | |
return { | |
"img_path": f"https://framebucket3d.s3.amazonaws.com/{object_name_3}", | |
"obj_path": f"https://framebucket3d.s3.amazonaws.com/{object_name}", | |
"glb_path": f"https://framebucket3d.s3.amazonaws.com/{object_name_2}" | |
} | |
else: | |
return {"Internal Server Error": False} | |
else: | |
return {"Authentication":"Failed"} | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run(app, host="0.0.0.0", port=7860) |