Spaces:
Runtime error
Runtime error
tokenid
commited on
Commit
Β·
00059bc
1
Parent(s):
ac99742
disable video rendering
Browse files- app.py +40 -46
- src/models/lrm_mesh.py +5 -2
app.py
CHANGED
|
@@ -127,6 +127,9 @@ state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_gene
|
|
| 127 |
model.load_state_dict(state_dict, strict=True)
|
| 128 |
|
| 129 |
model = model.to(device)
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
print('Loading Finished!')
|
| 132 |
|
|
@@ -199,11 +202,6 @@ def make3d(input_image, sample_steps, sample_seed):
|
|
| 199 |
else:
|
| 200 |
print("CUDA installation not found")
|
| 201 |
|
| 202 |
-
global model
|
| 203 |
-
if IS_FLEXICUBES:
|
| 204 |
-
model.init_flexicubes_geometry(device)
|
| 205 |
-
model = model.eval()
|
| 206 |
-
|
| 207 |
images, show_images = generate_mvs(input_image, sample_steps, sample_seed)
|
| 208 |
|
| 209 |
images = np.asarray(images, dtype=np.float32) / 255.0
|
|
@@ -226,46 +224,42 @@ def make3d(input_image, sample_steps, sample_seed):
|
|
| 226 |
# get triplane
|
| 227 |
planes = model.forward_planes(images, input_cameras)
|
| 228 |
|
| 229 |
-
# get video
|
| 230 |
-
chunk_size = 20 if IS_FLEXICUBES else 1
|
| 231 |
-
render_size = 384
|
| 232 |
|
| 233 |
-
frames = []
|
| 234 |
-
for i in tqdm(range(0, render_cameras.shape[1], chunk_size)):
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
frames = torch.cat(frames, dim=1)
|
| 249 |
-
|
| 250 |
-
images_to_video(
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
)
|
| 255 |
-
|
| 256 |
-
print(f"Video saved to {video_fpath}")
|
| 257 |
|
| 258 |
mesh_fpath = make_mesh(mesh_fpath, planes)
|
| 259 |
|
| 260 |
-
return
|
| 261 |
|
| 262 |
|
| 263 |
_HEADER_ = '''
|
| 264 |
-
<h2><b>Official π€ Gradio
|
| 265 |
-
<a href='https://github.com/TencentARC/InstantMesh' target='_blank'>
|
| 266 |
-
<b>InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models</b>
|
| 267 |
-
</a>.
|
| 268 |
-
</h2>
|
| 269 |
'''
|
| 270 |
|
| 271 |
_LINKS_ = '''
|
|
@@ -348,13 +342,13 @@ with gr.Blocks() as demo:
|
|
| 348 |
interactive=False
|
| 349 |
)
|
| 350 |
|
| 351 |
-
with gr.Column():
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
|
| 359 |
with gr.Row():
|
| 360 |
output_model_obj = gr.Model3D(
|
|
@@ -371,7 +365,7 @@ with gr.Blocks() as demo:
|
|
| 371 |
).success(
|
| 372 |
fn=make3d,
|
| 373 |
inputs=[processed_image, sample_steps, sample_seed],
|
| 374 |
-
outputs=[
|
| 375 |
)
|
| 376 |
|
| 377 |
demo.launch()
|
|
|
|
| 127 |
model.load_state_dict(state_dict, strict=True)
|
| 128 |
|
| 129 |
model = model.to(device)
|
| 130 |
+
if IS_FLEXICUBES:
|
| 131 |
+
model.init_flexicubes_geometry(device, use_renderer=False)
|
| 132 |
+
model = model.eval()
|
| 133 |
|
| 134 |
print('Loading Finished!')
|
| 135 |
|
|
|
|
| 202 |
else:
|
| 203 |
print("CUDA installation not found")
|
| 204 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
images, show_images = generate_mvs(input_image, sample_steps, sample_seed)
|
| 206 |
|
| 207 |
images = np.asarray(images, dtype=np.float32) / 255.0
|
|
|
|
| 224 |
# get triplane
|
| 225 |
planes = model.forward_planes(images, input_cameras)
|
| 226 |
|
| 227 |
+
# # get video
|
| 228 |
+
# chunk_size = 20 if IS_FLEXICUBES else 1
|
| 229 |
+
# render_size = 384
|
| 230 |
|
| 231 |
+
# frames = []
|
| 232 |
+
# for i in tqdm(range(0, render_cameras.shape[1], chunk_size)):
|
| 233 |
+
# if IS_FLEXICUBES:
|
| 234 |
+
# frame = model.forward_geometry(
|
| 235 |
+
# planes,
|
| 236 |
+
# render_cameras[:, i:i+chunk_size],
|
| 237 |
+
# render_size=render_size,
|
| 238 |
+
# )['img']
|
| 239 |
+
# else:
|
| 240 |
+
# frame = model.synthesizer(
|
| 241 |
+
# planes,
|
| 242 |
+
# cameras=render_cameras[:, i:i+chunk_size],
|
| 243 |
+
# render_size=render_size,
|
| 244 |
+
# )['images_rgb']
|
| 245 |
+
# frames.append(frame)
|
| 246 |
+
# frames = torch.cat(frames, dim=1)
|
| 247 |
+
|
| 248 |
+
# images_to_video(
|
| 249 |
+
# frames[0],
|
| 250 |
+
# video_fpath,
|
| 251 |
+
# fps=30,
|
| 252 |
+
# )
|
| 253 |
+
|
| 254 |
+
# print(f"Video saved to {video_fpath}")
|
| 255 |
|
| 256 |
mesh_fpath = make_mesh(mesh_fpath, planes)
|
| 257 |
|
| 258 |
+
return mesh_fpath, show_images
|
| 259 |
|
| 260 |
|
| 261 |
_HEADER_ = '''
|
| 262 |
+
<h2><b>Official π€ Gradio Demo</b></h2><h2><a href='https://github.com/TencentARC/InstantMesh' target='_blank'><b>InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models</b></a></h2>
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
'''
|
| 264 |
|
| 265 |
_LINKS_ = '''
|
|
|
|
| 342 |
interactive=False
|
| 343 |
)
|
| 344 |
|
| 345 |
+
# with gr.Column():
|
| 346 |
+
# output_video = gr.Video(
|
| 347 |
+
# label="video", format="mp4",
|
| 348 |
+
# width=379,
|
| 349 |
+
# autoplay=True,
|
| 350 |
+
# interactive=False
|
| 351 |
+
# )
|
| 352 |
|
| 353 |
with gr.Row():
|
| 354 |
output_model_obj = gr.Model3D(
|
|
|
|
| 365 |
).success(
|
| 366 |
fn=make3d,
|
| 367 |
inputs=[processed_image, sample_steps, sample_seed],
|
| 368 |
+
outputs=[output_model_obj, mv_show_images]
|
| 369 |
)
|
| 370 |
|
| 371 |
demo.launch()
|
src/models/lrm_mesh.py
CHANGED
|
@@ -74,9 +74,12 @@ class InstantMesh(nn.Module):
|
|
| 74 |
samples_per_ray=rendering_samples_per_ray,
|
| 75 |
)
|
| 76 |
|
| 77 |
-
def init_flexicubes_geometry(self, device, fovy=50.0):
|
| 78 |
camera = PerspectiveCamera(fovy=fovy, device=device)
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
| 80 |
self.geometry = FlexiCubesGeometry(
|
| 81 |
grid_res=self.grid_res,
|
| 82 |
scale=self.grid_scale,
|
|
|
|
| 74 |
samples_per_ray=rendering_samples_per_ray,
|
| 75 |
)
|
| 76 |
|
| 77 |
+
def init_flexicubes_geometry(self, device, fovy=50.0, use_renderer=True):
|
| 78 |
camera = PerspectiveCamera(fovy=fovy, device=device)
|
| 79 |
+
if use_renderer:
|
| 80 |
+
renderer = NeuralRender(device, camera_model=camera)
|
| 81 |
+
else:
|
| 82 |
+
renderer = None
|
| 83 |
self.geometry = FlexiCubesGeometry(
|
| 84 |
grid_res=self.grid_res,
|
| 85 |
scale=self.grid_scale,
|