from io import BytesIO import streamlit as st import shutil import requests import os from PyPDF2 import PdfReader from langchain.text_splitter import CharacterTextSplitter from langchain_openai import OpenAIEmbeddings from langchain_community.vectorstores import Chroma from langchain_openai import ChatOpenAI from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain def getpdfdoc(): with st.spinner("Loading PDF..."): filename = '48lawsofpower.pdf' if os.path.exists(filename): with open(filename, 'rb') as f: pdf_doc = f.read() return pdf_doc else: url = 'https://pgcag.files.wordpress.com/2010/01/48lawsofpower.pdf' response = requests.get(url) with open(filename, 'wb') as f: f.write(response.content) return getpdfdoc() def extract_text_from_pdf(pdf_file_obj): with st.spinner("Extracting text from PDF..."): pdf_reader = PdfReader(BytesIO(pdf_file_obj)) text = "" for page_num in range(len(pdf_reader.pages)): page_obj = pdf_reader.pages[page_num] text += page_obj.extract_text() return text def get_text_chunks(text): with st.spinner("Splitting text into chunks..."): text_splitter = CharacterTextSplitter( separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len ) chunks = text_splitter.split_text(text) return chunks def get_vectorstore(text_chunks): with st.spinner("Creating vectorstore..."): metadatas = [{"source": f"{i}-pl"} for i in range(len(text_chunks))] embeddings = OpenAIEmbeddings() vectorstore = Chroma.from_texts(texts=text_chunks, embedding=embeddings, persist_directory="./chroma_db", metadatas=metadatas) return vectorstore def get_conversation_chain(vectorstore): with st.spinner("Loading LLM..."): llm = ChatOpenAI() memory = ConversationBufferMemory( memory_key='chat_history', return_messages=True) conversation_chain = ConversationalRetrievalChain.from_llm( llm=llm, retriever=vectorstore.as_retriever(), memory=memory ) return conversation_chain def retrain_model(): st.session_state.conversation = None st.session_state.chat_history = None pdf_doc = getpdfdoc() # get pdf raw_text = extract_text_from_pdf(pdf_doc) # get pdf text text_chunks = get_text_chunks(raw_text) # get the text chunks vectorstore = get_vectorstore(text_chunks) # create vector store st.session_state.conversation = get_conversation_chain(vectorstore) # create conversation chain def handle_userinput(user_question): response = st.session_state.conversation({'question': user_question}) st.session_state.chat_history = response['chat_history'] for i, message in enumerate(st.session_state.chat_history): if i % 2 == 0: st.markdown("**User:**") st.markdown(message.content) else: st.markdown("**AI:**") st.markdown(message.content) def main(): if "conversation" not in st.session_state: st.session_state.conversation = None if "chat_history" not in st.session_state: st.session_state.chat_history = None if st.session_state.conversation is None: if os.path.isdir("./chroma_db"): if os.listdir("./chroma_db"): with st.spinner("Loading vector store..."): vectorstore = Chroma(persist_directory="./chroma_db", embedding_function=OpenAIEmbeddings()) st.session_state.conversation = get_conversation_chain(vectorstore) else: retrain_model() else: retrain_model() if st.session_state.conversation is not None: st.sidebar.button("Retrain model", on_click=retrain_model) st.header("Ask questions from 48 Laws of Power:books:") user_question = st.chat_input("Ask a question about your documents:") if user_question: handle_userinput(user_question) if __name__ == '__main__': main()