Update app.y
Browse files
app.py
CHANGED
@@ -1,19 +1,67 @@
|
|
1 |
-
|
2 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
9 |
|
|
|
|
|
10 |
def respond(
|
11 |
message,
|
12 |
history: list[tuple[str, str]],
|
13 |
system_message,
|
14 |
-
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
):
|
18 |
messages = [{"role": "system", "content": system_message}]
|
19 |
|
@@ -22,43 +70,26 @@ def respond(
|
|
22 |
messages.append({"role": "user", "content": val[0]})
|
23 |
if val[1]:
|
24 |
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
"""
|
44 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
"""
|
46 |
demo = gr.ChatInterface(
|
47 |
respond,
|
48 |
additional_inputs=[
|
49 |
-
gr.Textbox(value="
|
50 |
-
gr.Slider(minimum=1, maximum=
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
],
|
60 |
)
|
61 |
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
+
from llama_index.llms.llama_cpp import LlamaCPP
|
2 |
+
from llama_index.core import VectorStoreIndex, StorageContext
|
3 |
+
from llama_index.vector_stores.mongodb import MongoDBAtlasVectorSearch
|
4 |
+
import pymongo
|
5 |
+
from pymongo.mongo_client import MongoClient
|
6 |
+
from pymongo.operations import SearchIndexModel
|
7 |
+
from llama_index.core import VectorStoreIndex, StorageContext
|
8 |
+
import os
|
9 |
+
###### load LLM
|
10 |
+
model_url = "https://huggingface.co/georgesung/llama3_8b_chat_uncensored/resolve/main/llama3_8b_chat_uncensored_q4_0.gguf"
|
11 |
|
12 |
+
llm = LlamaCPP(
|
13 |
+
# You can pass in the URL to a GGML model to download it automatically
|
14 |
+
model_url=model_url,
|
15 |
+
# optionally, you can set the path to a pre-downloaded model instead of model_url
|
16 |
+
model_path=None,
|
17 |
+
temperature=0.01,
|
18 |
+
max_new_tokens=1024,
|
19 |
+
# llama2 has a context window of 4096 tokens, but we set it lower to allow for some wiggle room
|
20 |
+
context_window=3900,
|
21 |
+
# kwargs to pass to __call__()
|
22 |
+
generate_kwargs={},
|
23 |
+
# kwargs to pass to __init__()
|
24 |
+
# set to at least 1 to use GPU
|
25 |
+
model_kwargs={"n_gpu_layers": 1},
|
26 |
+
verbose=True,
|
27 |
+
)
|
28 |
+
# load embedding model
|
29 |
+
# sentence transformers
|
30 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
31 |
+
|
32 |
+
from llama_index.core.node_parser import SentenceSplitter
|
33 |
+
from llama_index.core import Settings
|
34 |
+
|
35 |
+
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en")
|
36 |
+
Settings.llm = llm
|
37 |
+
Settings.embed_model = embed_model
|
38 |
+
Settings.node_parser = SentenceSplitter(chunk_size=1024)
|
39 |
+
Settings.num_output = 256
|
40 |
+
Settings.context_window = 3900
|
41 |
+
|
42 |
+
# Load vector database
|
43 |
+
|
44 |
+
MONGO_URI = "mongodb+srv://groverorgrf:[email protected]/?retryWrites=true&w=majority&appName=Cluster0"
|
45 |
+
os.environ["MONGODB_URI"] = MONGO_URI
|
46 |
+
DB_NAME = "neuroRAG"
|
47 |
+
COLLECTION_NAME = "neuro_books"
|
48 |
+
# Connect to your Atlas deployment
|
49 |
+
mongo_client = MongoClient(MONGO_URI)
|
50 |
+
collection = mongo_client[DB_NAME][COLLECTION_NAME]
|
51 |
+
#
|
52 |
+
|
53 |
+
vector_store = MongoDBAtlasVectorSearch(mongo_client, db_name=DB_NAME, collection_name=COLLECTION_NAME, vector_index_name="default")
|
54 |
|
55 |
+
# Recover index
|
56 |
+
index = VectorStoreIndex.from_vector_store(vector_store)
|
57 |
|
58 |
+
|
59 |
+
########### FOR CHAT
|
60 |
def respond(
|
61 |
message,
|
62 |
history: list[tuple[str, str]],
|
63 |
system_message,
|
64 |
+
top_k,
|
|
|
|
|
65 |
):
|
66 |
messages = [{"role": "system", "content": system_message}]
|
67 |
|
|
|
70 |
messages.append({"role": "user", "content": val[0]})
|
71 |
if val[1]:
|
72 |
messages.append({"role": "assistant", "content": val[1]})
|
73 |
+
#
|
74 |
+
# build the query engine
|
75 |
+
query_engine = index.as_query_engine(similarity_top_k=top_k)
|
76 |
+
#
|
77 |
+
query_str = message
|
78 |
+
response = query_engine.query(query_str)
|
79 |
+
#
|
80 |
+
return response
|
81 |
+
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
"""
|
83 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
84 |
"""
|
85 |
demo = gr.ChatInterface(
|
86 |
respond,
|
87 |
additional_inputs=[
|
88 |
+
gr.Textbox(value="Qual é sua pergunta?", label="System message"),
|
89 |
+
gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
],
|
91 |
)
|
92 |
|
93 |
|
94 |
if __name__ == "__main__":
|
95 |
+
demo.launch()
|