Spaces:
Runtime error
Runtime error
| from typing import Any, List, Callable | |
| import cv2 | |
| import insightface | |
| import threading | |
| import DeepFakeAI.globals | |
| import DeepFakeAI.processors.frame.core as frame_processors | |
| from DeepFakeAI import wording | |
| from DeepFakeAI.core import update_status | |
| from DeepFakeAI.face_analyser import get_one_face, get_many_faces, find_similar_faces | |
| from DeepFakeAI.face_reference import get_face_reference, set_face_reference | |
| from DeepFakeAI.typing import Face, Frame | |
| from DeepFakeAI.utilities import conditional_download, resolve_relative_path, is_image, is_video | |
| FRAME_PROCESSOR = None | |
| THREAD_LOCK = threading.Lock() | |
| NAME = 'FACEFUSION.FRAME_PROCESSOR.FACE_SWAPPER' | |
| def get_frame_processor() -> Any: | |
| global FRAME_PROCESSOR | |
| with THREAD_LOCK: | |
| if FRAME_PROCESSOR is None: | |
| model_path = resolve_relative_path('../.assets/models/inswapper_128.onnx') | |
| FRAME_PROCESSOR = insightface.model_zoo.get_model(model_path, providers = DeepFakeAI.globals.execution_providers) | |
| return FRAME_PROCESSOR | |
| def clear_frame_processor() -> None: | |
| global FRAME_PROCESSOR | |
| FRAME_PROCESSOR = None | |
| def pre_check() -> bool: | |
| download_directory_path = resolve_relative_path('../.assets/models') | |
| conditional_download(download_directory_path, ['https://github.com/DeepFakeAI/DeepFakeAI-assets/releases/download/models/inswapper_128.onnx']) | |
| return True | |
| def pre_process() -> bool: | |
| if not is_image(DeepFakeAI.globals.source_path): | |
| update_status(wording.get('select_image_source') + wording.get('exclamation_mark'), NAME) | |
| return False | |
| elif not get_one_face(cv2.imread(DeepFakeAI.globals.source_path)): | |
| update_status(wording.get('no_source_face_detected') + wording.get('exclamation_mark'), NAME) | |
| return False | |
| if not is_image(DeepFakeAI.globals.target_path) and not is_video(DeepFakeAI.globals.target_path): | |
| update_status(wording.get('select_image_or_video_target') + wording.get('exclamation_mark'), NAME) | |
| return False | |
| return True | |
| def post_process() -> None: | |
| clear_frame_processor() | |
| def swap_face(source_face : Face, target_face : Face, temp_frame : Frame) -> Frame: | |
| return get_frame_processor().get(temp_frame, target_face, source_face, paste_back = True) | |
| def process_frame(source_face : Face, reference_face : Face, temp_frame : Frame) -> Frame: | |
| if 'reference' in DeepFakeAI.globals.face_recognition: | |
| similar_faces = find_similar_faces(temp_frame, reference_face, DeepFakeAI.globals.reference_face_distance) | |
| if similar_faces: | |
| for similar_face in similar_faces: | |
| temp_frame = swap_face(source_face, similar_face, temp_frame) | |
| if 'many' in DeepFakeAI.globals.face_recognition: | |
| many_faces = get_many_faces(temp_frame) | |
| if many_faces: | |
| for target_face in many_faces: | |
| temp_frame = swap_face(source_face, target_face, temp_frame) | |
| return temp_frame | |
| def process_frames(source_path : str, temp_frame_paths : List[str], update: Callable[[], None]) -> None: | |
| source_face = get_one_face(cv2.imread(source_path)) | |
| reference_face = get_face_reference() if 'reference' in DeepFakeAI.globals.face_recognition else None | |
| for temp_frame_path in temp_frame_paths: | |
| temp_frame = cv2.imread(temp_frame_path) | |
| result_frame = process_frame(source_face, reference_face, temp_frame) | |
| cv2.imwrite(temp_frame_path, result_frame) | |
| if update: | |
| update() | |
| def process_image(source_path : str, target_path : str, output_path : str) -> None: | |
| source_face = get_one_face(cv2.imread(source_path)) | |
| target_frame = cv2.imread(target_path) | |
| reference_face = get_one_face(target_frame, DeepFakeAI.globals.reference_face_position) if 'reference' in DeepFakeAI.globals.face_recognition else None | |
| result_frame = process_frame(source_face, reference_face, target_frame) | |
| cv2.imwrite(output_path, result_frame) | |
| def process_video(source_path : str, temp_frame_paths : List[str]) -> None: | |
| conditional_set_face_reference(temp_frame_paths) | |
| frame_processors.process_video(source_path, temp_frame_paths, process_frames) | |
| def conditional_set_face_reference(temp_frame_paths : List[str]) -> None: | |
| if 'reference' in DeepFakeAI.globals.face_recognition and not get_face_reference(): | |
| reference_frame = cv2.imread(temp_frame_paths[DeepFakeAI.globals.reference_frame_number]) | |
| reference_face = get_one_face(reference_frame, DeepFakeAI.globals.reference_face_position) | |
| set_face_reference(reference_face) | |