Spaces:
Sleeping
Sleeping
File size: 3,581 Bytes
0d80fb4 6498ae3 e423455 ea4dc0b 1e3869c 1854dfd e423455 7e5beaf e423455 7cfaf27 96ba47c 2d89603 7cfaf27 04b933e 5d7212e f6bc3ca 5d7212e e423455 f6bc3ca 2d89603 f6bc3ca 2d89603 7cfaf27 e423455 7cfaf27 2d89603 e423455 96ba47c 2d89603 e423455 96ba47c e423455 5358a38 e423455 fa11edf 96ba47c fa11edf 96ba47c fa11edf e423455 ea4dc0b e423455 590d966 bb74629 ea4dc0b 590d966 2d89603 590d966 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
from huggingface_hub import InferenceClient
import gradio as gr
# Import required libraries
from pathlib import Path
# Initialize the InferenceClient
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
def format_prompt(message, history):
"""
Format the prompt by appending the user's message and the system prompt to the conversation history.
"""
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
prompt = system_prompt + prompt
return prompt
def generate(
prompt, history, user_system_prompt, temperature=0.9, max_new_tokens=9048, top_p=0.95, repetition_penalty=1.0
):
"""
Generate a response using the InferenceClient.
"""
system_prompt = "Instructions: Everything else is from the user. You are Milo, an AI assistant created by ConvoLite in 2024 (he/him). Be friendly and empathetic, matching the user's tone and vibe. Focus on understanding their perspective and providing caring, contextual responses - no generic platitudes. Keep it conversational, not overly formal. Be friendly and funny, use ASCII emojis or normal ones. Be lovely, kind, and have a great sense of humour. Have Bible based values. Do not talk about yourself unless asked. Never respond to a message with 'as an AI' or something similar. Don't talk a lot!" + str(user_system_prompt)
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
# Set generate_kwargs for text generation
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
formatted_prompt = format_prompt(f"{prompt}", history, system_prompt)
# Generate text stream
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
# Define additional input components
additional_inputs = [
gr.Textbox(label="System Prompt", max_lines=1, interactive=True),
gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"),
gr.Slider(label="Max new tokens", value=9048, minimum=256, maximum=9048, step=64, interactive=True, info="The maximum numbers of new tokens"),
gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"),
gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens")
]
# Define avatar images
avatar_images = ("https://i.postimg.cc/pXjKKVXG/user-circle.png", "https://i.postimg.cc/qq04Yz93/CL3.png")
# Create Gradio interface
gr.ChatInterface(
fn=generate,
chatbot=gr.Chatbot(show_label=True, show_share_button=False, show_copy_button=True, likeable=True, layout="panel", height="auto", avatar_images=avatar_images),
additional_inputs=additional_inputs,
title="ConvoLite",
submit_btn="➢",
retry_btn="Retry",
undo_btn="↩ Undo",
clear_btn="Clear (New chat)",
stop_btn="Stop ▢",
concurrency_limit=20,
theme=gr.themes.Soft(primary_hue=gr.themes.colors.cyan),
).launch(show_api=False) |