File size: 5,752 Bytes
743d1bd
04b933e
ec89555
48b3789
 
 
1e3869c
1854dfd
9a692e8
7e5beaf
48b3789
 
 
 
 
 
 
 
 
 
 
7cfaf27
 
 
 
 
 
04b933e
7d03deb
7cfaf27
 
 
 
 
 
 
 
 
 
 
48b3789
7cfaf27
 
48b3789
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cfaf27
 
2cb9aa9
 
 
 
d2acdfd
04b933e
 
7cfaf27
 
 
 
 
04b933e
 
48b3789
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
from huggingface_hub import InferenceClient
import gradio as gr
import datetime
import re
import requests
import json

# Initialize the InferenceClient
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")

# Enter your API key here
api_key = "1e8cd0385845a649e448cde4917058d6"

# Define the system prompt templates
system_prompt_templates = {
    r"\btime\b|\bhour\b|\bclock\b": "server log: ~This message was sent at {formatted_time}. The actual year is 2024.~",
    r"\bweather\b|\bforecast\b|\bmeteo": "server log: ~The current weather conditions in {city_name} are {weather_description} with a high of {current_temperature_c}°C ({current_temperature_f}°F) and a pressure of {current_pressure_hpa} hPa ({current_pressure_inHg} inHg) and humidity of {current_humidity}%.~",
    r"\bdate\b|\bcalendar\b": "server log: ~Today's date is {formatted_date}.~",
}

def format_prompt(message, history, system_prompt):
    prompt = "<s>"
    for user_prompt, bot_response in history:
        prompt += f"\[INST\] {user_prompt} \[/INST\]"
        prompt += f" {bot_response}</s> "
    prompt += f"\[INST\] {message} \[/INST\]"
    return prompt

def generate(prompt, history, system_prompt, temperature=0.9, max_new_tokens=9048, top_p=0.95, repetition_penalty=1.0):
    temperature = max(float(temperature), 1e-2)
    top_p = float(top_p)
    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )

    # Get current time and date
    now = datetime.datetime.now()
    formatted_time = now.strftime("%H.%M.%S, %B, %Y")
    formatted_date = now.strftime("%B %d, %Y")

    # Check for keywords in the user's input and update the system prompt accordingly
    city_name = None
    weather_description = None
    current_temperature_c = None
    current_temperature_f = None
    current_pressure_hpa = None
    current_pressure_inHg = None
    current_humidity = None
    for keyword, template in system_prompt_templates.items():
        if re.search(keyword, prompt, re.IGNORECASE):
            if keyword == r"\bweather\b|\bforecast\b|\bmeteo":
                base_url = "http://api.openweathermap.org/data/2.5/weather?"
                complete_url = base_url + "appid=" + api_key + "&q=" + city_name
                response = requests.get(complete_url)
                x = response.json()
                if x["cod"] != "404":
                    y = x["main"]
                    current_temperature_c = y["temp"] - 273.15  # Convert from Kelvin to Celsius
                    current_temperature_f = current_temperature_c * 9/5 + 32  # Convert from Celsius to Fahrenheit
                    current_pressure_hpa = y["pressure"]
                    current_pressure_inHg = current_pressure_hpa * 0.02953  # Convert from hPa to inHg
                    current_humidity = y["humidity"]
                    z = x["weather"]
                    weather_description = z[0]["description"]
                    city_name = x["name"]
                else:
                    print("City Not Found")
                    city_name = "unknown"
                    weather_description = "unknown"
                    current_temperature_c = 0
                    current_temperature_f = 32
                    current_pressure_hpa = 0
                    current_pressure_inHg = 0
                    current_humidity = 0
            system_prompt = template.format(formatted_time=formatted_time, formatted_date=formatted_date, city_name=city_name, weather_description=weather_description, current_temperature_c=current_temperature_c, current_temperature_f=current_temperature_f, current_pressure_hpa=current_pressure_hpa, current_pressure_inHg=current_pressure_inHg, current_humidity=current_humidity)
            break

    formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""
    for response in stream:
        output += response.token.text
        yield output

additional_inputs = [
    gr.Textbox(label="System Prompt", max_lines=1, interactive=True),
    gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"),
    gr.Slider(label="Max new tokens", value=9048, minimum=256, maximum=9048, step=64, interactive=True, info="The maximum numbers of new tokens"),
    gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"),
    gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens")
]

def check_keywords(text):
    for keyword, _ in system_prompt_templates.items():
        if re.search(keyword, text, re.IGNORECASE):
            return True
    return False

chatbot = gr.Chatbot(show_label=True, show_share_button=False, show_copy_button=True, likeable=True, layout="panel")
with gr.Blocks():
    with gr.Row():
        with gr.Column(scale=3):
            user_input = gr.Textbox(label="Your message", placeholder="Type your message here...")
        with gr.Column(scale=1):
            submit_button = gr.Button("Send")

    with gr.Row():
        chatbot_output = chatbot

    submit_button.click(
        fn=generate,
        inputs=[user_input, chatbot, gr.Textbox(label="System Prompt", max_lines=1, interactive=True)],
        outputs=chatbot_output,
        every=200,
        _js="check_keywords"
    )

gr.Blocks().launch(show_api=False)