File size: 2,571 Bytes
0d80fb4
6498ae3
ec89555
e834dae
1e3869c
1854dfd
0d7fc07
7e5beaf
ec4d6e3
7cfaf27
 
0626d2d
 
 
7cfaf27
04b933e
0626d2d
7cfaf27
 
 
 
 
 
 
 
 
 
 
6be7d23
0626d2d
7cfaf27
2cb9aa9
 
 
 
96df08a
 
fa11edf
0626d2d
fa11edf
 
 
0626d2d
fa11edf
 
7699538
e834dae
590d966
0626d2d
e834dae
590d966
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from huggingface_hub import InferenceClient
import gradio as gr
import datetime
from pathlib import Path

# Initialize the InferenceClient
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")

def format_prompt(message, history):
    prompt = "<s>"
    for user_prompt, bot_response in history:
        prompt += f"[INST] {user_prompt} [/INST]"
        prompt += f" {bot_response}</s> "
    prompt += f"[INST] {message} [/INST]"
    return prompt

def generate(prompt, history, system_prompt, temperature=0.9, max_new_tokens=9048, top_p=0.95, repetition_penalty=1.0):
    temperature = max(float(temperature), 1e-2)
    top_p = float(top_p)
    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )
    now = datetime.datetime.now()
    formatted_time = now.strftime("%H:%M:%S, %B %d, %Y")
    system_prompt = f"System time: {formatted_time}"
    formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""
    for response in stream:
        output += response.token.text
        yield output

additional_inputs = [
    gr.Textbox(label="System Prompt", max_lines=1, interactive=True),
    gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"),
    gr.Slider(label="Max new tokens", value=9048, minimum=256, maximum=9048, step=64, interactive=True, info="The maximum numbers of new tokens"),
    gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"),
    gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens")
]

avatar_images = ("https://i.postimg.cc/pXjKKVXG/user-circle.png", "https://i.postimg.cc/qq04Yz93/CL3.png")

gr.ChatInterface(
    fn=submit,
    chatbot=gr.Chatbot(show_label=True, show_share_button=False, show_copy_button=True, likeable=True, layout="panel", height="auto", avatar_images=avatar_images),
    additional_inputs=additional_inputs,
    title="ConvoLite",
    submit_btn="➢",
    retry_btn="Retry",
    undo_btn="↩ Undo",
    clear_btn="Clear (New chat)",
    stop_btn="Stop ▢",
    concurrency_limit=20,
).launch(show_api=False)