File size: 3,465 Bytes
743d1bd
04b933e
ec89555
1e3869c
1854dfd
9a692e8
7e5beaf
9c9ed59
04b933e
 
b0a938e
04b933e
b0a938e
04b933e
 
7d03deb
b5cdba7
 
04b933e
 
 
 
 
 
 
 
 
ec89555
 
 
b765dcc
ec89555
04b933e
 
 
 
 
11e36e3
04b933e
 
 
 
7d03deb
04b933e
076fc13
04b933e
 
d7cc9aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b7e132
 
 
 
d3c268a
 
 
d7cc9aa
6b7e132
d3c268a
d7cc9aa
 
 
 
 
 
 
fb783c6
 
11e36e3
 
fb783c6
 
d7cc9aa
fb783c6
 
94480b0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
from huggingface_hub import InferenceClient
import gradio as gr
import datetime

# Initialize the InferenceClient
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")

def format_prompt(message, history):
    prompt = "<s>"
    for user_prompt, bot_response in history:
        prompt += f"\[INST\] {user_prompt} \[/INST\]"
        prompt += f" {bot_response}</s> "
    prompt += f"\[INST\] {message} \[/INST\]"
    return prompt

def generate(prompt, history, system_prompt, temperature=0.9, max_new_tokens=9048, top_p=0.95, repetition_penalty=1.0):
    temperature = max(float(temperature), 1e-2)
    top_p = float(top_p)
    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )

    # Get current time
    now = datetime.datetime.now()
    formatted_time = now.strftime("%H.%M.%S, %B, %Y")
    system_prompt = f"server log: ~This message was sent at {formatted_time}. The actual year is 2024.~"

    formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""
    for response in stream:
        output += response.token.text
    return [(prompt, output)]

additional_inputs = [
    gr.Textbox(label="System Prompt", max_lines=1, interactive=True),
    gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"),
    gr.Slider(label="Max new tokens", value=9048, minimum=256, maximum=9048, step=64, interactive=True, info="The maximum numbers of new tokens"),
    gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"),
    gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens")
]

with gr.Blocks(theme=gr.themes.Soft(), css="""
    .gradio-container {
        width: 100%;
        height: 100%;
    }
    .gr-button, .gr-text-input, .gr-chatbot {
        border-radius: 15px;
    }
    .gr-button {
        width: 48px;
        height: 48px;
        background-color: #673ab7;
        color: #fff;
        font-size: 24px;
        display: flex;
        justify-content: center;
        align-items: center;
    }
    #row {
        display: flex;
        align-items: center;
    }
    #text-input {
        flex-grow: 1;
    }
""") as app:
    with gr.Row(elem_id="row"):
        text_input = gr.Textbox(label="Your message", placeholder="Type your message...", lines=1, max_lines=1, elem_id="text-input")
        submit_btn = gr.Button(
            "send",
            variant="primary",
            css_classes="material-symbols-outlined rounded-btn"
        ).style(square=True)

    chatbot = gr.Chatbot().style(height="calc(100vh - 100px)")

    def process_message(message, history):
        response = generate(message, history, additional_inputs[0].value)
        history.extend(response)
        return history, ""

    text_input.submit(process_message, inputs=[text_input, chatbot], outputs=[chatbot, text_input])
    submit_btn.click(process_message, inputs=[text_input, chatbot], outputs=[chatbot, text_input])

    app.launch(show_api=False)