import config
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import numpy as np
import os
import random
import torch

from collections import Counter
from tqdm import tqdm


def iou_width_height(boxes1, boxes2):
    """
    Parameters:
        boxes1 (tensor): width and height of the first bounding boxes
        boxes2 (tensor): width and height of the second bounding boxes
    Returns:
        tensor: Intersection over union of the corresponding boxes
    """
    intersection = torch.min(boxes1[..., 0], boxes2[..., 0]) * torch.min(
        boxes1[..., 1], boxes2[..., 1]
    )
    union = (
        boxes1[..., 0] * boxes1[..., 1] + boxes2[..., 0] * boxes2[..., 1] - intersection
    )
    return intersection / union


def intersection_over_union(boxes_preds, boxes_labels, box_format="midpoint"):
    """
    Video explanation of this function:
    https://youtu.be/XXYG5ZWtjj0

    This function calculates intersection over union (iou) given pred boxes
    and target boxes.

    Parameters:
        boxes_preds (tensor): Predictions of Bounding Boxes (BATCH_SIZE, 4)
        boxes_labels (tensor): Correct labels of Bounding Boxes (BATCH_SIZE, 4)
        box_format (str): midpoint/corners, if boxes (x,y,w,h) or (x1,y1,x2,y2)

    Returns:
        tensor: Intersection over union for all examples
    """

    if box_format == "midpoint":
        box1_x1 = boxes_preds[..., 0:1] - boxes_preds[..., 2:3] / 2
        box1_y1 = boxes_preds[..., 1:2] - boxes_preds[..., 3:4] / 2
        box1_x2 = boxes_preds[..., 0:1] + boxes_preds[..., 2:3] / 2
        box1_y2 = boxes_preds[..., 1:2] + boxes_preds[..., 3:4] / 2
        box2_x1 = boxes_labels[..., 0:1] - boxes_labels[..., 2:3] / 2
        box2_y1 = boxes_labels[..., 1:2] - boxes_labels[..., 3:4] / 2
        box2_x2 = boxes_labels[..., 0:1] + boxes_labels[..., 2:3] / 2
        box2_y2 = boxes_labels[..., 1:2] + boxes_labels[..., 3:4] / 2

    if box_format == "corners":
        box1_x1 = boxes_preds[..., 0:1]
        box1_y1 = boxes_preds[..., 1:2]
        box1_x2 = boxes_preds[..., 2:3]
        box1_y2 = boxes_preds[..., 3:4]
        box2_x1 = boxes_labels[..., 0:1]
        box2_y1 = boxes_labels[..., 1:2]
        box2_x2 = boxes_labels[..., 2:3]
        box2_y2 = boxes_labels[..., 3:4]

    x1 = torch.max(box1_x1, box2_x1)
    y1 = torch.max(box1_y1, box2_y1)
    x2 = torch.min(box1_x2, box2_x2)
    y2 = torch.min(box1_y2, box2_y2)

    intersection = (x2 - x1).clamp(0) * (y2 - y1).clamp(0)
    box1_area = abs((box1_x2 - box1_x1) * (box1_y2 - box1_y1))
    box2_area = abs((box2_x2 - box2_x1) * (box2_y2 - box2_y1))

    return intersection / (box1_area + box2_area - intersection + 1e-6)


def non_max_suppression(bboxes, iou_threshold, threshold, box_format="corners"):
    """
    Video explanation of this function:
    https://youtu.be/YDkjWEN8jNA

    Does Non Max Suppression given bboxes

    Parameters:
        bboxes (list): list of lists containing all bboxes with each bboxes
        specified as [class_pred, prob_score, x1, y1, x2, y2]
        iou_threshold (float): threshold where predicted bboxes is correct
        threshold (float): threshold to remove predicted bboxes (independent of IoU)
        box_format (str): "midpoint" or "corners" used to specify bboxes

    Returns:
        list: bboxes after performing NMS given a specific IoU threshold
    """

    assert type(bboxes) == list

    bboxes = [box for box in bboxes if box[1] > threshold]
    bboxes = sorted(bboxes, key=lambda x: x[1], reverse=True)
    bboxes_after_nms = []

    while bboxes:
        chosen_box = bboxes.pop(0)

        bboxes = [
            box
            for box in bboxes
            if box[0] != chosen_box[0]
            or intersection_over_union(
                torch.tensor(chosen_box[2:]),
                torch.tensor(box[2:]),
                box_format=box_format,
            )
            < iou_threshold
        ]

        bboxes_after_nms.append(chosen_box)

    return bboxes_after_nms


def mean_average_precision(
    pred_boxes, true_boxes, iou_threshold=0.5, box_format="midpoint", num_classes=20
):
    """
    Video explanation of this function:
    https://youtu.be/FppOzcDvaDI

    This function calculates mean average precision (mAP)

    Parameters:
        pred_boxes (list): list of lists containing all bboxes with each bboxes
        specified as [train_idx, class_prediction, prob_score, x1, y1, x2, y2]
        true_boxes (list): Similar as pred_boxes except all the correct ones
        iou_threshold (float): threshold where predicted bboxes is correct
        box_format (str): "midpoint" or "corners" used to specify bboxes
        num_classes (int): number of classes

    Returns:
        float: mAP value across all classes given a specific IoU threshold
    """

    # list storing all AP for respective classes
    average_precisions = []

    # used for numerical stability later on
    epsilon = 1e-6

    for c in tqdm(range(num_classes)):
        detections = []
        ground_truths = []

        # Go through all predictions and targets,
        # and only add the ones that belong to the
        # current class c
        for detection in pred_boxes:
            if detection[1] == c:
                detections.append(detection)

        for true_box in true_boxes:
            if true_box[1] == c:
                ground_truths.append(true_box)

        # find the amount of bboxes for each training example
        # Counter here finds how many ground truth bboxes we get
        # for each training example, so let's say img 0 has 3,
        # img 1 has 5 then we will obtain a dictionary with:
        # amount_bboxes = {0:3, 1:5}
        amount_bboxes = Counter([gt[0] for gt in ground_truths])

        # We then go through each key, val in this dictionary
        # and convert to the following (w.r.t same example):
        # ammount_bboxes = {0:torch.tensor[0,0,0], 1:torch.tensor[0,0,0,0,0]}
        for key, val in amount_bboxes.items():
            amount_bboxes[key] = torch.zeros(val)

        # sort by box probabilities which is index 2
        detections.sort(key=lambda x: x[2], reverse=True)
        TP = torch.zeros((len(detections)))
        FP = torch.zeros((len(detections)))
        total_true_bboxes = len(ground_truths)

        # If none exists for this class then we can safely skip
        if total_true_bboxes == 0:
            continue

        for detection_idx, detection in enumerate(detections):
            # Only take out the ground_truths that have the same
            # training idx as detection
            ground_truth_img = [
                bbox for bbox in ground_truths if bbox[0] == detection[0]
            ]

            num_gts = len(ground_truth_img)
            best_iou = 0

            for idx, gt in enumerate(ground_truth_img):
                iou = intersection_over_union(
                    torch.tensor(detection[3:]),
                    torch.tensor(gt[3:]),
                    box_format=box_format,
                )

                if iou > best_iou:
                    best_iou = iou
                    best_gt_idx = idx

            if best_iou > iou_threshold:
                # only detect ground truth detection once
                if amount_bboxes[detection[0]][best_gt_idx] == 0:
                    # true positive and add this bounding box to seen
                    TP[detection_idx] = 1
                    amount_bboxes[detection[0]][best_gt_idx] = 1
                else:
                    FP[detection_idx] = 1

            # if IOU is lower then the detection is a false positive
            else:
                FP[detection_idx] = 1

        TP_cumsum = torch.cumsum(TP, dim=0)
        FP_cumsum = torch.cumsum(FP, dim=0)
        recalls = TP_cumsum / (total_true_bboxes + epsilon)
        precisions = TP_cumsum / (TP_cumsum + FP_cumsum + epsilon)
        precisions = torch.cat((torch.tensor([1]), precisions))
        recalls = torch.cat((torch.tensor([0]), recalls))
        # torch.trapz for numerical integration
        average_precisions.append(torch.trapz(precisions, recalls))

    return sum(average_precisions) / len(average_precisions)


def plot_image(image, boxes, return_fig=False):
    """Plots predicted bounding boxes on the image"""
    cmap = plt.get_cmap("tab20b")
    class_labels = config.COCO_LABELS if config.DATASET=='COCO' \
        else config.PASCAL_CLASSES
    colors = [cmap(i) for i in np.linspace(0, 1, len(class_labels))]
    im = np.array(image)
    height, width, _ = im.shape

    # Create figure and axes
    fig, ax = plt.subplots(1)
    # Display the image
    ax.imshow(im)

    # box[0] is x midpoint, box[2] is width
    # box[1] is y midpoint, box[3] is height

    # Create a Rectangle patch
    for box in boxes:
        assert len(box) == 6, "box should contain class pred, confidence, x, y, width, height"
        class_pred = box[0]
        box = box[2:]
        upper_left_x = box[0] - box[2] / 2
        upper_left_y = box[1] - box[3] / 2
        rect = patches.Rectangle(
            (upper_left_x * width, upper_left_y * height),
            box[2] * width,
            box[3] * height,
            linewidth=2,
            edgecolor=colors[int(class_pred)],
            facecolor="none",
        )
        # Add the patch to the Axes
        ax.add_patch(rect)
        plt.text(
            upper_left_x * width,
            upper_left_y * height,
            s=class_labels[int(class_pred)],
            color="white",
            verticalalignment="top",
            bbox={"color": colors[int(class_pred)], "pad": 0},
        )

    if return_fig:
        return fig
    plt.show()


def get_evaluation_bboxes(
    loader,
    model,
    iou_threshold,
    anchors,
    threshold,
    box_format="midpoint",
):
    # make sure model is in eval before get bboxes
    model.eval()
    train_idx = 0
    all_pred_boxes = []
    all_true_boxes = []
    for batch_idx, (x, labels) in enumerate(tqdm(loader)):
        x = x.to(config.DEVICE)
        with torch.no_grad():
            predictions = model(x)

        batch_size = x.shape[0]
        bboxes = [[] for _ in range(batch_size)]
        for i in range(3):
            S = predictions[i].shape[2]
            anchor = torch.tensor([*anchors[i]]) * S
            boxes_scale_i = cells_to_bboxes(
                predictions[i], anchor, S=S, is_preds=True
            )
            for idx, (box) in enumerate(boxes_scale_i):
                bboxes[idx] += box

        # we just want one bbox for each label, not one for each scale
        true_bboxes = cells_to_bboxes(
            labels[2], anchor, S=S, is_preds=False
        )

        for idx in range(batch_size):
            nms_boxes = non_max_suppression(
                bboxes[idx],
                iou_threshold=iou_threshold,
                threshold=threshold,
                box_format=box_format,
            )

            for nms_box in nms_boxes:
                all_pred_boxes.append([train_idx] + nms_box)

            for box in true_bboxes[idx]:
                if box[1] > threshold:
                    all_true_boxes.append([train_idx] + box)

            train_idx += 1

    model.train()
    return all_pred_boxes, all_true_boxes


def cells_to_bboxes(predictions, anchors, S, is_preds=True):
    """
    Scales the predictions coming from the model to
    be relative to the entire image such that they for example later
    can be plotted or.
    INPUT:
    predictions: tensor of size (N, 3, S, S, num_classes+5)
    anchors: the anchors used for the predictions
    S: the number of cells the image is divided in on the width (and height)
    is_preds: whether the input is predictions or the true bounding boxes
    OUTPUT:
    converted_bboxes: the converted boxes of sizes (N, num_anchors, S, S, 1+5) with class index,
                      object score, bounding box coordinates
    """
    BATCH_SIZE = predictions.shape[0]
    num_anchors = len(anchors)
    box_predictions = predictions[..., 1:5]
    if is_preds:
        anchors = anchors.reshape(1, len(anchors), 1, 1, 2)
        box_predictions[..., 0:2] = torch.sigmoid(box_predictions[..., 0:2])
        box_predictions[..., 2:] = torch.exp(box_predictions[..., 2:]) * anchors
        scores = torch.sigmoid(predictions[..., 0:1])
        best_class = torch.argmax(predictions[..., 5:], dim=-1).unsqueeze(-1)
    else:
        scores = predictions[..., 0:1]
        best_class = predictions[..., 5:6]

    cell_indices = (
        torch.arange(S)
        .repeat(predictions.shape[0], 3, S, 1)
        .unsqueeze(-1)
    ).to(config.DEVICE)
    x = 1 / S * (box_predictions[..., 0:1] + cell_indices)
    y = 1 / S * (box_predictions[..., 1:2] + cell_indices.permute(0, 1, 3, 2, 4))
    w_h = 1 / S * box_predictions[..., 2:4]
    converted_bboxes = torch.cat((best_class, scores, x, y, w_h), dim=-1)\
        .reshape(BATCH_SIZE, num_anchors * S * S, 6)
    return converted_bboxes.tolist()

def check_class_accuracy(model, batch, threshold, tag='train'):
    model.eval()
    tot_class_preds, correct_class = 0, 0
    tot_noobj, correct_noobj = 0, 0
    tot_obj, correct_obj = 0, 0
    x, y = batch

    x = x.to(config.DEVICE)

    with torch.no_grad():
        out = model(x)

    for i in range(3):
        y[i] = y[i].to(config.DEVICE)
        obj = y[i][..., 0] == 1 # in paper this is Iobj_i
        noobj = y[i][..., 0] == 0  # in paper this is Iobj_i

        correct_class += torch.sum(
            torch.argmax(out[i][..., 5:][obj], dim=-1) == y[i][..., 5][obj]
        )
        tot_class_preds += torch.sum(obj)

        obj_preds = torch.sigmoid(out[i][..., 0]) > threshold
        correct_obj += torch.sum(obj_preds[obj] == y[i][..., 0][obj])
        tot_obj += torch.sum(obj)
        correct_noobj += torch.sum(obj_preds[noobj] == y[i][..., 0][noobj])
        tot_noobj += torch.sum(noobj)

    ans = {
        f"{tag}_class_accuracy": (correct_class/(tot_class_preds+1e-16))*100,
        f"{tag}_no_obj_accuracy": (correct_noobj/(tot_noobj+1e-16))*100,
        f"{tag}_obj_accuracy": (correct_obj/(tot_obj+1e-16))*100
    }
    model.train()
    return ans



def get_mean_std(loader):
    # var[X] = E[X**2] - E[X]**2
    channels_sum, channels_sqrd_sum, num_batches = 0, 0, 0

    for data, _ in tqdm(loader):
        channels_sum += torch.mean(data, dim=[0, 2, 3])
        channels_sqrd_sum += torch.mean(data ** 2, dim=[0, 2, 3])
        num_batches += 1

    mean = channels_sum / num_batches
    std = (channels_sqrd_sum / num_batches - mean ** 2) ** 0.5

    return mean, std


def save_checkpoint(model, optimizer, filename="my_checkpoint.pth.tar"):
    print("=> Saving checkpoint")
    checkpoint = {
        "state_dict": model.state_dict(),
        "optimizer": optimizer.state_dict(),
    }
    torch.save(checkpoint, filename)


def load_checkpoint(checkpoint_file, model, optimizer, lr, device):
    print("=> Loading checkpoint")
    checkpoint = torch.load(checkpoint_file, map_location=device)
    model.load_state_dict(checkpoint["state_dict"])
    optimizer.load_state_dict(checkpoint["optimizer"])

    # If we don't do this then it will just have learning rate of old checkpoint
    # and it will lead to many hours of debugging \:
    for param_group in optimizer.param_groups:
        param_group["lr"] = lr

def plot_couple_examples(model, batch, thresh, iou_thresh, anchors):
    model.eval()
    x, _ = batch
    x = x.to(config.DEVICE)
    batch_size = x.shape[0]
    with torch.no_grad():
        out = model(x)
        bboxes = [[] for _ in range(x.shape[0])]
        for i in range(3):
            batch_size, _, S, _, _ = out[i].shape
            anchor = anchors[i]
            boxes_scale_i = cells_to_bboxes(
                out[i], anchor, S=S, is_preds=True
            )
            for idx, (box) in enumerate(boxes_scale_i):
                bboxes[idx] += box

        model.train()

    for i in range(batch_size//4):
        nms_boxes = non_max_suppression(
            bboxes[i], iou_threshold=iou_thresh, 
            threshold=thresh, box_format="midpoint",
        )
        plot_image(x[i].permute(1,2,0).detach().cpu(), nms_boxes)



def seed_everything(seed=42):
    os.environ['PYTHONHASHSEED'] = str(seed)
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False


def clip_coords(boxes, img_shape):
    # Clip bounding xyxy bounding boxes to image shape (height, width)
    boxes[:, 0].clamp_(0, img_shape[1])  # x1
    boxes[:, 1].clamp_(0, img_shape[0])  # y1
    boxes[:, 2].clamp_(0, img_shape[1])  # x2
    boxes[:, 3].clamp_(0, img_shape[0])  # y2

def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
    # Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[..., 0] = w * (x[..., 0] - x[..., 2] / 2) + padw  # top left x
    y[..., 1] = h * (x[..., 1] - x[..., 3] / 2) + padh  # top left y
    y[..., 2] = w * (x[..., 0] + x[..., 2] / 2) + padw  # bottom right x
    y[..., 3] = h * (x[..., 1] + x[..., 3] / 2) + padh  # bottom right y
    return y


def xyn2xy(x, w=640, h=640, padw=0, padh=0):
    # Convert normalized segments into pixel segments, shape (n,2)
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[..., 0] = w * x[..., 0] + padw  # top left x
    y[..., 1] = h * x[..., 1] + padh  # top left y
    return y

def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0):
    # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] normalized where xy1=top-left, xy2=bottom-right
    if clip:
        clip_boxes(x, (h - eps, w - eps))  # warning: inplace clip
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[..., 0] = ((x[..., 0] + x[..., 2]) / 2) / w  # x center
    y[..., 1] = ((x[..., 1] + x[..., 3]) / 2) / h  # y center
    y[..., 2] = (x[..., 2] - x[..., 0]) / w  # width
    y[..., 3] = (x[..., 3] - x[..., 1]) / h  # height
    return y

def clip_boxes(boxes, shape):
    # Clip boxes (xyxy) to image shape (height, width)
    if isinstance(boxes, torch.Tensor):  # faster individually
        boxes[..., 0].clamp_(0, shape[1])  # x1
        boxes[..., 1].clamp_(0, shape[0])  # y1
        boxes[..., 2].clamp_(0, shape[1])  # x2
        boxes[..., 3].clamp_(0, shape[0])  # y2
    else:  # np.array (faster grouped)
        boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, shape[1])  # x1, x2
        boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0])  # y1, y2