Spaces:
Sleeping
Sleeping
''' | |
https://github.com/kuangliu/pytorch-cifar | |
ResNet in PyTorch. | |
For Pre-activation ResNet, see 'preact_resnet.py'. | |
Reference: | |
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun | |
Deep Residual Learning for Image Recognition. arXiv:1512.03385 | |
''' | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from torch_lr_finder import LRFinder | |
class BasicBlock(nn.Module): | |
expansion = 1 | |
def __init__(self, in_planes, planes, stride=1): | |
super(BasicBlock, self).__init__() | |
self.conv1 = nn.Conv2d( | |
in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) | |
self.bn1 = nn.BatchNorm2d(planes) | |
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, | |
stride=1, padding=1, bias=False) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.shortcut = nn.Sequential() | |
if stride != 1 or in_planes != self.expansion*planes: | |
self.shortcut = nn.Sequential( | |
nn.Conv2d(in_planes, self.expansion*planes, | |
kernel_size=1, stride=stride, bias=False), | |
nn.BatchNorm2d(self.expansion*planes) | |
) | |
def forward(self, x): | |
out = F.relu(self.bn1(self.conv1(x))) | |
out = self.bn2(self.conv2(out)) | |
out += self.shortcut(x) | |
out = F.relu(out) | |
return out | |
class ResNet(nn.Module): | |
def __init__(self, block, num_blocks, num_classes=10): | |
super(ResNet, self).__init__() | |
self.in_planes = 64 | |
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, | |
stride=1, padding=1, bias=False) | |
self.bn1 = nn.BatchNorm2d(64) | |
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) | |
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) | |
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) | |
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) | |
self.linear = nn.Linear(512*block.expansion, num_classes) | |
def _make_layer(self, block, planes, num_blocks, stride): | |
strides = [stride] + [1]*(num_blocks-1) | |
layers = [] | |
for stride in strides: | |
layers.append(block(self.in_planes, planes, stride)) | |
self.in_planes = planes * block.expansion | |
return nn.Sequential(*layers) | |
def forward(self, x): | |
out = F.relu(self.bn1(self.conv1(x))) | |
out = self.layer1(out) | |
out = self.layer2(out) | |
out = self.layer3(out) | |
out = self.layer4(out) | |
out = F.avg_pool2d(out, 4) | |
out = out.view(out.size(0), -1) | |
out = self.linear(out) | |
return out | |
def ResNet18(): | |
return ResNet(BasicBlock, [2, 2, 2, 2]) | |
import torch.nn as nn | |
from torch.optim.lr_scheduler import OneCycleLR | |
from torch.utils.data import DataLoader | |
import matplotlib.pyplot as plt | |
from data_loader import CifarAlbumentationsDataset,\ | |
CIFAR_CLASS_LABELS, TRAIN_TRANSFORM, TEST_TRANSFORM | |
import model | |
from torch_lr_finder import LRFinder | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from pytorch_lightning import LightningModule | |
from torch.optim.lr_scheduler import OneCycleLR | |
from torchmetrics.functional import accuracy | |
class LitResnet(LightningModule): | |
def __init__(self, lr=0.03, batch_size=512): | |
super().__init__() | |
self.save_hyperparameters() | |
self.criterion = nn.CrossEntropyLoss() | |
self.model = ResNet18() | |
def forward(self, x): | |
return self.model(x) | |
def training_step(self, batch, batch_idx): | |
x, y = batch | |
output = self.forward(x) | |
loss = self.criterion(output, y) | |
self.log("train_loss", loss) | |
acc = accuracy(torch.argmax(output, dim=1), | |
y, 'multiclass', num_classes=10) | |
self.log(f"train_acc", acc, prog_bar=True) | |
return loss | |
def evaluate(self, batch, stage=None): | |
x, y = batch | |
output = self.forward(x) | |
loss = self.criterion(output, y) | |
preds = torch.argmax(output, dim=1) | |
acc = accuracy(preds, y, 'multiclass', num_classes=10) | |
if stage: | |
self.log(f"{stage}_loss", loss, prog_bar=True) | |
self.log(f"{stage}_acc", acc, prog_bar=True) | |
def validation_step(self, batch, batch_idx): | |
self.evaluate(batch, "val") | |
def test_step(self, batch, batch_idx): | |
self.evaluate(batch, "test") | |
# todo | |
# change the default for num_iter | |
def lr_finder(self, optimizer, num_iter=200,): | |
lr_finder = LRFinder(self, optimizer, self.criterion, | |
device=self.device) | |
lr_finder.range_test( | |
self.train_dataloader(), end_lr=1, | |
num_iter=num_iter, step_mode='exp', | |
) | |
ax, suggested_lr = lr_finder.plot(suggest_lr=True) | |
# todo | |
# how to log maplotlib images | |
# self.logger.experiment.add_image('lr_finder', plt.gcf(), 0) | |
lr_finder.reset() | |
return suggested_lr | |
def configure_optimizers(self): | |
optimizer = torch.optim.SGD( | |
self.parameters(), | |
lr=self.hparams.lr, | |
momentum=0.9, | |
weight_decay=5e-4, | |
) | |
suggested_lr = self.lr_finder(optimizer) | |
steps_per_epoch = len(self.train_dataloader()) | |
scheduler_dict = { | |
"scheduler": OneCycleLR( | |
optimizer, max_lr=suggested_lr, | |
steps_per_epoch=steps_per_epoch, | |
epochs=self.trainer.max_epochs, | |
pct_start=5/self.trainer.max_epochs, | |
three_phase=False, | |
div_factor=100, | |
final_div_factor=100, | |
anneal_strategy='linear', | |
), | |
"interval": "step", | |
} | |
return {"optimizer": optimizer, "lr_scheduler": scheduler_dict} | |
#################### | |
# DATA RELATED HOOKS | |
#################### | |
def prepare_data(self, data_path='../data'): | |
CifarAlbumentationsDataset( | |
data_path, train=True, download=True) | |
CifarAlbumentationsDataset( | |
data_path, train=False, download=True) | |
def setup(self, stage=None, data_dir='../data'): | |
if stage == "fit" or stage is None: | |
self.train_dataset = CifarAlbumentationsDataset(data_dir, train=True, transform=TRAIN_TRANSFORM) | |
self.test_dataset = CifarAlbumentationsDataset(data_dir, train=False, transform=TEST_TRANSFORM) | |
def train_dataloader(self): | |
return DataLoader(self.train_dataset, batch_size=self.hparams.batch_size, | |
shuffle=True, pin_memory=True) #num_workers=4, | |
def val_dataloader(self): | |
return DataLoader(self.test_dataset, batch_size=self.hparams.batch_size, | |
shuffle=False, pin_memory=True) | |