Spaces:
Sleeping
Sleeping
File size: 6,815 Bytes
2efd69c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
'''
https://github.com/kuangliu/pytorch-cifar
ResNet in PyTorch.
For Pre-activation ResNet, see 'preact_resnet.py'.
Reference:
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
Deep Residual Learning for Image Recognition. arXiv:1512.03385
'''
import torch
from torch import nn
from torch.nn import functional as F
from torch_lr_finder import LRFinder
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(
in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, num_blocks, num_classes=10):
super(ResNet, self).__init__()
self.in_planes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=3,
stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
self.linear = nn.Linear(512*block.expansion, num_classes)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = F.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
def ResNet18():
return ResNet(BasicBlock, [2, 2, 2, 2])
import torch.nn as nn
from torch.optim.lr_scheduler import OneCycleLR
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
from data_loader import CifarAlbumentationsDataset,\
CIFAR_CLASS_LABELS, TRAIN_TRANSFORM, TEST_TRANSFORM
import model
from torch_lr_finder import LRFinder
import torch
import torch.nn as nn
import torch.nn.functional as F
from pytorch_lightning import LightningModule
from torch.optim.lr_scheduler import OneCycleLR
from torchmetrics.functional import accuracy
class LitResnet(LightningModule):
def __init__(self, lr=0.03, batch_size=512):
super().__init__()
self.save_hyperparameters()
self.criterion = nn.CrossEntropyLoss()
self.model = ResNet18()
def forward(self, x):
return self.model(x)
def training_step(self, batch, batch_idx):
x, y = batch
output = self.forward(x)
loss = self.criterion(output, y)
self.log("train_loss", loss)
acc = accuracy(torch.argmax(output, dim=1),
y, 'multiclass', num_classes=10)
self.log(f"train_acc", acc, prog_bar=True)
return loss
def evaluate(self, batch, stage=None):
x, y = batch
output = self.forward(x)
loss = self.criterion(output, y)
preds = torch.argmax(output, dim=1)
acc = accuracy(preds, y, 'multiclass', num_classes=10)
if stage:
self.log(f"{stage}_loss", loss, prog_bar=True)
self.log(f"{stage}_acc", acc, prog_bar=True)
def validation_step(self, batch, batch_idx):
self.evaluate(batch, "val")
def test_step(self, batch, batch_idx):
self.evaluate(batch, "test")
# todo
# change the default for num_iter
def lr_finder(self, optimizer, num_iter=200,):
lr_finder = LRFinder(self, optimizer, self.criterion,
device=self.device)
lr_finder.range_test(
self.train_dataloader(), end_lr=1,
num_iter=num_iter, step_mode='exp',
)
ax, suggested_lr = lr_finder.plot(suggest_lr=True)
# todo
# how to log maplotlib images
# self.logger.experiment.add_image('lr_finder', plt.gcf(), 0)
lr_finder.reset()
return suggested_lr
def configure_optimizers(self):
optimizer = torch.optim.SGD(
self.parameters(),
lr=self.hparams.lr,
momentum=0.9,
weight_decay=5e-4,
)
suggested_lr = self.lr_finder(optimizer)
steps_per_epoch = len(self.train_dataloader())
scheduler_dict = {
"scheduler": OneCycleLR(
optimizer, max_lr=suggested_lr,
steps_per_epoch=steps_per_epoch,
epochs=self.trainer.max_epochs,
pct_start=5/self.trainer.max_epochs,
three_phase=False,
div_factor=100,
final_div_factor=100,
anneal_strategy='linear',
),
"interval": "step",
}
return {"optimizer": optimizer, "lr_scheduler": scheduler_dict}
####################
# DATA RELATED HOOKS
####################
def prepare_data(self, data_path='../data'):
CifarAlbumentationsDataset(
data_path, train=True, download=True)
CifarAlbumentationsDataset(
data_path, train=False, download=True)
def setup(self, stage=None, data_dir='../data'):
if stage == "fit" or stage is None:
self.train_dataset = CifarAlbumentationsDataset(data_dir, train=True, transform=TRAIN_TRANSFORM)
self.test_dataset = CifarAlbumentationsDataset(data_dir, train=False, transform=TEST_TRANSFORM)
def train_dataloader(self):
return DataLoader(self.train_dataset, batch_size=self.hparams.batch_size,
shuffle=True, pin_memory=True) #num_workers=4,
def val_dataloader(self):
return DataLoader(self.test_dataset, batch_size=self.hparams.batch_size,
shuffle=False, pin_memory=True)
|