File size: 6,815 Bytes
2efd69c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
'''
https://github.com/kuangliu/pytorch-cifar

ResNet in PyTorch.

For Pre-activation ResNet, see 'preact_resnet.py'.

Reference:
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
    Deep Residual Learning for Image Recognition. arXiv:1512.03385
'''
import torch
from torch import nn
from torch.nn import functional as F
from torch_lr_finder import LRFinder


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, in_planes, planes, stride=1):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(
            in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
                               stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)

        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != self.expansion*planes:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, self.expansion*planes,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(self.expansion*planes)
            )

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
        out += self.shortcut(x)
        out = F.relu(out)
        return out

class ResNet(nn.Module):
    def __init__(self, block, num_blocks, num_classes=10):
        super(ResNet, self).__init__()
        self.in_planes = 64

        self.conv1 = nn.Conv2d(3, 64, kernel_size=3,
                               stride=1, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
        self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
        self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
        self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
        self.linear = nn.Linear(512*block.expansion, num_classes)

    def _make_layer(self, block, planes, num_blocks, stride):
        strides = [stride] + [1]*(num_blocks-1)
        layers = []
        for stride in strides:
            layers.append(block(self.in_planes, planes, stride))
            self.in_planes = planes * block.expansion
        return nn.Sequential(*layers)

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.layer4(out)
        out = F.avg_pool2d(out, 4)
        out = out.view(out.size(0), -1)
        out = self.linear(out)
        return out


def ResNet18():
    return ResNet(BasicBlock, [2, 2, 2, 2])

import torch.nn as nn
from torch.optim.lr_scheduler import OneCycleLR
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt

from data_loader import CifarAlbumentationsDataset,\
    CIFAR_CLASS_LABELS, TRAIN_TRANSFORM, TEST_TRANSFORM
import model
from torch_lr_finder import LRFinder

import torch
import torch.nn as nn
import torch.nn.functional as F
from pytorch_lightning import LightningModule
from torch.optim.lr_scheduler import OneCycleLR
from torchmetrics.functional import accuracy

class LitResnet(LightningModule):
    def __init__(self, lr=0.03, batch_size=512):
        super().__init__()

        self.save_hyperparameters()
        self.criterion = nn.CrossEntropyLoss()
        self.model = ResNet18()

    def forward(self, x):
        return self.model(x)

    def training_step(self, batch, batch_idx):
        x, y = batch
        output = self.forward(x)
        loss = self.criterion(output, y)
        self.log("train_loss", loss)
        acc = accuracy(torch.argmax(output, dim=1), 
                       y, 'multiclass', num_classes=10)
        self.log(f"train_acc", acc, prog_bar=True)
        return loss

    def evaluate(self, batch, stage=None):
        x, y = batch
        output = self.forward(x)
        loss = self.criterion(output, y)
        preds = torch.argmax(output, dim=1)
        acc = accuracy(preds, y, 'multiclass', num_classes=10)

        if stage:
            self.log(f"{stage}_loss", loss, prog_bar=True)
            self.log(f"{stage}_acc", acc, prog_bar=True)

    def validation_step(self, batch, batch_idx):
        self.evaluate(batch, "val")

    def test_step(self, batch, batch_idx):
        self.evaluate(batch, "test")

    # todo
    # change the default for num_iter
    def lr_finder(self, optimizer,  num_iter=200,):
        lr_finder = LRFinder(self, optimizer, self.criterion,
            device=self.device)
        lr_finder.range_test(
            self.train_dataloader(), end_lr=1,
            num_iter=num_iter, step_mode='exp',
            )
        ax, suggested_lr = lr_finder.plot(suggest_lr=True)
        # todo
        # how to log maplotlib images
        # self.logger.experiment.add_image('lr_finder', plt.gcf(), 0)
        lr_finder.reset() 
        return suggested_lr
    def configure_optimizers(self):
        optimizer = torch.optim.SGD(
            self.parameters(),
            lr=self.hparams.lr,
            momentum=0.9,
            weight_decay=5e-4,
        )
        suggested_lr = self.lr_finder(optimizer)
        steps_per_epoch = len(self.train_dataloader())
        scheduler_dict = {
            "scheduler":  OneCycleLR(
                optimizer, max_lr=suggested_lr,
                steps_per_epoch=steps_per_epoch,
                epochs=self.trainer.max_epochs, 
                pct_start=5/self.trainer.max_epochs,
                three_phase=False,
                div_factor=100,
                final_div_factor=100,
                anneal_strategy='linear',
            ),
            "interval": "step",
        }
        return {"optimizer": optimizer, "lr_scheduler": scheduler_dict}
    ####################
    # DATA RELATED HOOKS
    ####################

    def prepare_data(self, data_path='../data'):
        CifarAlbumentationsDataset(
                data_path, train=True, download=True)
        CifarAlbumentationsDataset(
                data_path, train=False, download=True)

    def setup(self, stage=None, data_dir='../data'):

        if stage == "fit" or stage is None:
            self.train_dataset = CifarAlbumentationsDataset(data_dir, train=True, transform=TRAIN_TRANSFORM)
            self.test_dataset = CifarAlbumentationsDataset(data_dir, train=False, transform=TEST_TRANSFORM)


    def train_dataloader(self):
        return DataLoader(self.train_dataset, batch_size=self.hparams.batch_size,
        shuffle=True, pin_memory=True) #num_workers=4, 

    def val_dataloader(self):
        return DataLoader(self.test_dataset, batch_size=self.hparams.batch_size,
        shuffle=False, pin_memory=True)