eval-leaderboard / src /populate.py
xeon27
Add results for GAIA and GDM tasks
2718fde
raw
history blame
3.98 kB
import json
import os
import numpy as np
import pandas as pd
from src.about import Tasks
from src.display.formatting import has_no_nan_values, make_clickable_model
from src.display.utils import AutoEvalColumn, EvalQueueColumn
from src.leaderboard.read_evals import get_raw_eval_results
TASK_NAME_INVERSE_MAP = dict()
for task in Tasks:
TASK_NAME_INVERSE_MAP[task.value.col_name] = {
"name": task.value.benchmark,
"type": task.value.type,
"source": task.value.source,
}
EMPTY_SYMBOL = "--"
def get_inspect_log_url(model_name: str, benchmark_name: str) -> str:
"""Returns the URL to the log file for a given model and benchmark"""
with open("./inspect_log_file_names.json", "r") as f:
inspect_log_files = json.load(f)
log_file_name = inspect_log_files[model_name].get(benchmark_name, None)
if log_file_name is None:
return ""
else:
# replace .json with .eval
log_file_name = log_file_name.replace(".json", ".eval")
return f"https://storage.googleapis.com/inspect-evals/eval/{model_name}/index.html?log_file=logs/logs/{log_file_name}"
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
"""Creates a dataframe from all the individual experiment results"""
raw_data = get_raw_eval_results(results_path, requests_path)
all_data_json = [v.to_dict() for v in raw_data]
df = pd.DataFrame.from_records(all_data_json)
df = df[cols].round(decimals=2)
# subset for model and benchmark cols
df = df[[AutoEvalColumn.model.name] + benchmark_cols]
# drop rows for which all benchmark cols are empty
df = df.dropna(subset=benchmark_cols, axis=0, how="all")
df = df.fillna(EMPTY_SYMBOL)
# make values clickable and link to log files
for col in benchmark_cols:
df[col] = df[[AutoEvalColumn.model.name, col]].apply(lambda x: f"[{x[col]}]({get_inspect_log_url(model_name=x[AutoEvalColumn.model.name].split('>')[1].split('<')[0], benchmark_name=TASK_NAME_INVERSE_MAP[col]['name'])})" if x[col] != EMPTY_SYMBOL else x[col], axis=1)
return df
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
"""Creates the different dataframes for the evaluation queues requestes"""
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
all_evals = []
for entry in entries:
if ".json" in entry:
file_path = os.path.join(save_path, entry)
with open(file_path) as fp:
data = json.load(fp)
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"], data["model_sha"])
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
all_evals.append(data)
elif ".md" not in entry:
# this is a folder
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")]
for sub_entry in sub_entries:
file_path = os.path.join(save_path, entry, sub_entry)
with open(file_path) as fp:
data = json.load(fp)
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"], data["model_sha"])
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
all_evals.append(data)
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
df_running = pd.DataFrame.from_records(running_list, columns=cols)
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
return df_finished[cols], df_running[cols], df_pending[cols]