eval-leaderboard / src /populate.py
xeon27
Fix bug
64ec699
raw
history blame
4.14 kB
import json
import os
import numpy as np
import pandas as pd
from src.about import Tasks
from src.display.formatting import has_no_nan_values, make_clickable_model
from src.display.utils import AutoEvalColumn, EvalQueueColumn
from src.leaderboard.read_evals import get_raw_eval_results
from refactor_eval_results import MODEL_VERSION_MAP
TASK_NAME_INVERSE_MAP = dict()
for task in Tasks:
TASK_NAME_INVERSE_MAP[task.value.col_name] = {
"name": task.value.benchmark,
"type": task.value.type,
"source": task.value.source,
}
EMPTY_SYMBOL = "--"
def get_inspect_log_url(model_name: str, benchmark_name: str) -> str:
"""Returns the URL to the log file for a given model and benchmark"""
with open("./inspect_log_file_names.json", "r") as f:
inspect_log_files = json.load(f)
log_file_name = inspect_log_files[model_name].get(benchmark_name, None)
if log_file_name is None:
return ""
else:
# replace .json with .eval
log_file_name = log_file_name.replace(".json", ".eval")
return f"https://storage.googleapis.com/inspect-evals/eval/{model_name}/index.html?log_file=logs/logs/{log_file_name}"
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
"""Creates a dataframe from all the individual experiment results"""
raw_data = get_raw_eval_results(results_path, requests_path)
all_data_json = [v.to_dict() for v in raw_data]
df = pd.DataFrame.from_records(all_data_json)
df = df[cols].round(decimals=2)
# subset for model and benchmark cols
df = df[[AutoEvalColumn.model.name] + benchmark_cols]
# drop rows for which all benchmark cols are empty
df = df.dropna(subset=benchmark_cols, axis=0, how="all")
df = df.fillna(EMPTY_SYMBOL)
inverse_model_version_map = {v: k for k, v in MODEL_VERSION_MAP.items()}
# make values clickable and link to log files
for col in benchmark_cols:
df[col] = df[[AutoEvalColumn.model.name, col]].apply(lambda x: f"[{x[col]}]({get_inspect_log_url(model_name=inverse_model_version_map[x[AutoEvalColumn.model.name].split('>')[1].split('<')[0]], benchmark_name=TASK_NAME_INVERSE_MAP[col]['name'])})" if x[col] != EMPTY_SYMBOL else x[col], axis=1)
return df
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
"""Creates the different dataframes for the evaluation queues requestes"""
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
all_evals = []
for entry in entries:
if ".json" in entry:
file_path = os.path.join(save_path, entry)
with open(file_path) as fp:
data = json.load(fp)
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"], data["model_sha"])
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
all_evals.append(data)
elif ".md" not in entry:
# this is a folder
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")]
for sub_entry in sub_entries:
file_path = os.path.join(save_path, entry, sub_entry)
with open(file_path) as fp:
data = json.load(fp)
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"], data["model_sha"])
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
all_evals.append(data)
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
df_running = pd.DataFrame.from_records(running_list, columns=cols)
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
return df_finished[cols], df_running[cols], df_pending[cols]